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Abstract: Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive
research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles rep-
resenting molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., pro-
teins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathologi-
cal roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying
proteins can participate in tumor development and progression through multiple signaling pathways, including EMT,
invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring
several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summa-
rized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance
to therapies in recipient cells, which might further support therapeutic strategy determinations.
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Introduction

Today, cancer is still a major public health prob-
lem worldwide [1]. Despite of significant thera-
peutic advances in recent decades, the lack of
specificity and effectiveness remains major
obstacles in clinical treatment. There is an
urgent need to identify and validate more effec-
tive and less invasive surrogate biomarkers so
as to elucidate underlying mechanisms of
tumor progression and further provide more
potential therapeutic targets for cancer diagno-
sis and treatment.

Exosomes are extracellular vesicles (EVs) con-
stantly released by most eukaryotic cells. As an
intermediate of intercellular communication,
exosomes have multiple important biological
functions and have been involved in various
diseases [2]. In particular, tumor-derived exo-
somes (TDEs) are implicated in promoting
tumor progression, pre-metastasis and immune
escape by paracrine subversion of local and
distant microenvironments [3]. Emerging evi-
dence supported that exosomes should have a

profound impact on the development of cancer
therapeutics.

A plenty of key regulators have been identified
from tissues and body fluids during tumor pro-
gression. However, growing evidence indicated
that non-exosomal protein biomarkers have li-
mitations of low accuracy, specificity and repro-
ducibility. Compared with regular tumor bio-
markers, exosomes carry cargos reflective of
genetic or signaling alterations in cancer cells
of origin [4, 5], which provides a robust method
to monitor cancer progression further guide
clinical decisions and treatment strategies.

To date, a wealth of research regarding exo-
somes in cancer diagnosis and treatment has
been reported. Recent reviews have mainly fo-
cused on the genetic components of exosomes
(i.e., microRNAs) but only a small proportion on
exsomal proteins. Considering that detecting
key regulatory proteins (e.g., phosphoproteins
or other proteins with post-translational modifi-
cation) can provide more direct information
about disease progression, this review high-
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Figure 1. Schematic representation of biogenesis and overall composition of exosomes. Exosomes stem from later
endosomes, generated by inward/inner budding from the plasma membrane (PM) or by fusion of internal multive-
sicular bodies (MVBs) with the PM in most of eukaryotic cells. Exosomes are vesicles with a phospholipid bilayer
membrane and are enriched with a range of proteins, RNAs and DNA molecular cargoes. RNAs include mRNA, miR-
NA, ncRNA, and etc. Exosomes contain endosome-specific tetraspanins (CD9, CD63, CD81), adhesion molecules
(e.g., integrins), antigen presentation (MHC-I, -1l) and other transmembrane proteins on their membrane surfaces.
Exosomes also contain types of cytosolic proteins, including ESCRTSs, cytokines and signal molecules. Abbreviations:
mRNA, messenger RNA; miRNA, microRNA; ncRNA, non-coding RNA; ESCRT, endosomal sorting complex required

for transport; MHC, major histocompatibility complex.

lights the unique features of exosomal proteins
in cancer. The application potential and clinical
significance to develop exosomal proteins as
novel diagnostic and prognostic biomarkers as
well as therapeutic targets are summarized in a
variety of cancer types.

Biological features of exosomes

Definition, morphology and compositions of
exosomes

Exosomes are a class of lipid bilayer-enclosed
EVs devoid of intracellular organelles but con-
tain all known molecular constituents within a
cell [6, 7] (Figure 1). They are produced in late
endosomes with size ranging from 30 nm to
150 nm [2, 8, 9]. The overall composition of
exosomes is representative of mixed popula-
tions, which includes lipids, nucleic acids and
proteins (Figure 1) [10]. The lipid composition
mimics plasma membranes [11, 12]. Nucleic
acids, as key components of exosomes, have
multiple functional impacts. For instance,
microRNAs (miRNAs) affect gene expression
in distant cells through exosomal RNA cargo
selection. Exosomal proteome is composited
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by endosomal, plasma, cytosolic and nuclear
proteins, including tetraspanins (CD9, CD81),
proteins associated with endosomal sorting
complexes required for transport (ESCRT) (Alix,
Tsg101), cytoskeletal proteins (actin, tubulin)
and cytokines. These different types of pro-
teins are involved in membrane transport and
fusion, exosome biogenesis, and can also serve
as mediators for cell-cell communication
(Figure 1) [6].

Physical and biological features of exosomes

Exosomes can be secreted by plenty of cell
types in vitro, including endothelial cells, epi-
thelial cells, immune cells, tumor cells, and etc.
In vivo, exosomes are also broadly observed in
numerous body fluids (such as plasma/serum,
saliva, urine, reviewed in [9]). Exosomes are
formed by inward budding of multivesicular
bodies (MVBs) in intracellular endosomes and
released by fusing with the plasma membrane
(Figure 1). In accordance with this biogenesis
and secretion process, exosomes display a het-
erogeneity by incorporating both plasma mem-
brane and cytosolic components [13, 14]. For
instance, the highly heterogeneity of TDEs likely
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Figure 2. Schematic representation of different exosome isolation and biomarker detection methods. Abbreviations:
HRP, horseradish peroxidase; WB, western blotting; ELISA, enzyme-linked immunosorbent assay; MS, Mass Spec-
trometry; Ab, antibody; SAM, self-assembled monolayers; DPV, differential pulse voltammetry.

reflects the phenotypic state of tumor cells that
generate exosomes [15, 16]. There is growing
evidence showing that cell-derived exosomes
act as dynamic mediators of local and systemic
cell communication by carrying molecular infor-
mation [17]. Through transport of essential
substances via their cargos, TDEs are capable
to modulate tumor microenvironment (TME)
during cancer progression [7, 18].

Isolation and enrichment of exosomes

Exosomes often coexist in complex biological
fluids with many substances (such as lipopro-
tein or other EVs), thus it is indispensable to
obtain non-destructive isolation of exosome
[9]. A variant of isolation approaches have been
established to purify exosomes for further anal-
ysis [19], that have been well summarized in
recent review articles [20, 21]. Currently, the
mainstream isolation and detection methods
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of exosomes (i.e., purification by ultracentrifu-
gation) could not satisfy the clinical applica-
tions. Therefore, efforts to develop new tech-
nologies are currently undergoing to obtain
high-quality exosomes for theranostics pur-
poses.

Strategies for identification and analysis of
exosome proteins

In order to identify and analyze exosome-asso-
ciated protein biomarkers, an ideal detection is
required with characteristics including high-
throughput and easy operability, as well as
high sensitivity, specificity and stability. The
morphology and immunophenotype of exo-
somes are routinely performed using electron
microscopy (EM) [22]. Furthermore, the isolat-
ed exosomes can be verified by surface bio-
marker analysis through ELISA and Western
blotting (Figure 2). In these processes, the
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conservative exosomal proteins will be identi-
fied and quantitatively assessed specifically
(e.g., tumor-associated proteins). Subsequen-
tly, mass spectrometry or extracellular vesicle
(EV) arrays (a sandwich ELISA-based method
simultaneously studies multiple membrane-
associated proteins) for proteome analysis was
applied for discovering disease-specific pro-
teins (Figure 2) [13, 23, 24]. In common, these
methods require pre-isolation of exosome and
protein extractions, which may be is a cumber-
some process.

Recently, a rapid and high-throughput platform,
the microfluidic device was developed to simul-
taneously isolate and identify exosome surface
proteins without pre-purification [25, 26]. This
microfluidic device is conjugated with multiple
functional assays to further investigate the bio-
logical mechanisms of exosome surface pro-
teins (Figure 2). In addition, ultrasensitive na-
noplasmon enhanced scattering (nPES) assay
was also applied to analyze exosomes [27].
The design of nPES is based on a conjugation
of exosome-specific antibody and nanoparti-
cles (e.g., gold nanospheres), as well as a sen-
sor chip to produce plasmon effect (Figure 2).
In a more efficient way, a combination of mi-
crofluidic chip and nPES was developed to
achieve better exosome capture [28].

Exosomes with specific surface markers could
also be detected using biosensors (e.g., a
type of immune-biosensor based on horserad-
ish peroxidase (HRP)-conjugated antibodies,
Figure 2) [29]. By keeping the non-disruptive
features on exosome integrity, this method pro-
vides an ideal platform to study diagnostic bio-
markers of disease through a non-invasive test
(e.g., blood test). However, it can be only appli-
cable for membrane bound or surface proteins
on exosomes but lacks of a broad feasibility
for intra-exosomal proteins. Alternatively, pro-
teomic analysis of exosomes by mass spec-
trometry could identify proteins from the whole
proteome secreted by a cell or within biological
fluid samples like patient plasma, which fea-
tures a more effective approach with high
potential for diagnostic and therapeutic appli-
cations [30, 31].

Role of exosomes in cancer

As generally acknowledged, cancer progres-
sion is sustained by continuous information
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exchange between the tumor cells and their
stromal microenvironment. These include re-
modeling tumor microenvironment, promoting
angiogenesis, inducing invasion, metastasis
and survival, as well as regulating immune
escape (Figure 3) [32-34].

Exosome in tumor progression

TDESs play important functions in different stag-
es of cancer progression cascade (Figure 3)
[35]. For example, TDEs carry several types of
main angiogenic stimulatory factors (i.e., vas-
cular endothelial growth factor, VEGF; fibroblast
growth factor, FGF; transforming growth factor
B, TGF-B; etc.) to induce vascular formation and
angiogenesis in cancer [36]. Furthermore, it
has been reported that TDEs are also incorpo-
rated in inducing epithelial mesenchymal tran-
sition (EMT) in recipient cells by activating key
regulation signaling pathways, such as TGF-$3
and WNT/B-catenin signaling pathways [37].
During tumorigenesis, by mediating cellular
communication between tumor cells and the
surrounding cells, TDEs enhance invasion,
migration and establishment of a premetastat-
ic niche. Therefore, TDEs have emerged as a
source of information to determine potential
regulatory drivers of tumor progression and
metastasis [38].

Exosome and tumor microenvironment

Numerous studies have demonstrated that
TDEs support the tumor microenvironment
through the transfer of their cargos to neigh-
boring or distant cells (including fibroblast,
macrophage, immune cells and other normal
cells, Figure 3), which is involved in many key
processes during cancer progression [39]. For
instance, it has been shown that secretion of
TDEs increased under hypoxic conditions [40].
The increased TDEs release established a link
between hypoxia and tumor aggressiveness. In
return, the function of exosomes influenced by
hypoxia in various cancer types would further
promote hypoxic cell survival in the tumor
microenvironment. The complex signaling path-
way network between TDEs-mediated cells and
the tumor microenvironment is considered to
provide a protective environment for their
cargo, thereby making them superior targets
for cancer screening, monitoring, diagnosis and
prognosis evaluation [41, 42].
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Figure 3. Tumor-derived exosomes (TDEs) elicit various mechanisms to
stimulate tumor progression. TDEs can cause the remodeling of tumor mi-
croenvironment, promote EMT and angiogenesis, induce tumor invasion
and metastasis. Cancer cells remodel B cells, T cells, DCs, and NK cells
via exosomes resulting in immune regulation. TDEs also act as signaling
platforms to initiate downstream signaling cascades or modulate the gene-
expression program through membrane fusion in the target cells. Abbre-
viations: DCs, dendritic cells; NK cells, nature killer cells; EMT, epithelial-

mesenchymal transition.

Exosome in cancer immunoregulation

The immunoregulation of TDEs mainly acts
through modulating antigen presentation, im-
mune activation or suppression and immune
surveillance (Figure 3). Thus, TDEs have a dual
function in stimulating immune response. On
the one hand, TDEs play a key role in immune
system evasion from host immune surveillan-
ce. For instance, by transferring antigen com-
ponents through exosomes to T-cell, immune
escape and cell migration are potently stimu-
lated [43]. On the other hand, as an effective
cancer immunotherapy, some antigen-positive
TDEs have high immunogenicity to improve the
antitumor immunity [44]. Understanding exo-
some biology, especially the molecular mecha-
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nisms involved in immune cell
targeting, interaction and ma-
nipulation, will provide signifi-
cant insights in immunorecog-
nition and therapeutic interven-
tion of cancer.

Immune Cells

Exosome in cancer signaling
platform

Epithelial Cells

Secreted by cancer cells, TDEs
have been largely considered
as a central participant in shut-
tling specific tumor markers
between cells [45]. TDEs con-
tain a variety of membrane pro-
teins (e.g., integrins; major his-
tocompatibility complex, MHC-
1, -2; tetraspanins) that can
interact with specific ligands on
target cells to induce signaling
cascades (Figure 3). In addi-
tion, the membrane fusion

n “gga// between TDEs and target cells
@ .
fﬁmg_\ results in the release of cargos

(e.g., functional miRNA and
proteins) into the cytoplasm,
which can in turn re-program
the gene-expression profiles in
the target cell [2]. Through par-
ticipating in cellular communi-
cations, modulating cell signal-
ing, and contributing to pre-
metastatic niche (PMN) forma-
tion [46-49], TDEs provide a
reservoir of key regulators that
have multiple important roles
in tumor progression.

Exosome biomarkers in tumor biology

Exosomes present a list of validated and sur-
rogate non-invasive biomarkers with a high
accuracy of diagnostic and prognostic informa-
tion in cancer [50]. Exosome nucleic acids,
such as DNA, mRNAs, miRNAs, and ncRNAs
(Figure 1) have been shown to be highly associ-
ated with the tumor progression of multiple
cancer types [51]. As proved in plenty of stud-
ies, miRNAs present in TDEs phenocopy those
in original tumors [52] and may serve as reli-
able diagnostic biomarkers to monitor the
tumor progression [53]. In addition, the whole-
genome sequencing results revealed that DNAs
in exosomes may provide detailed information
about cancer-specific mutations [54, 55], wh-
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ich has a great potential to inform diagnosis
and predict cancer therapeutic outcomes. The
study of exosome nucleic acids has been well-
described in a recent review [56].

Exosomes are also composed of a large variety
of proteins (Figure 1) that participate in many
biological processes [57]. Proteins in TDEs
impact distant cell signaling or promote a niche
that sustains tumor microenvironment leading
to cancer spreading. It was broadly observed
that certain types of proteins were frequently
enriched in specific cancer cell-derived exo-
somes compared with non-tumor cells, provid-
ing the potential to apply these proteins in can-
cer prediction, diagnosis and prognosis [32].
With the development of both proteomic tech-
nologies and analytical approaches, research
on exosomal proteins is rapidly progressing. In
following sections, we will categorize multiple
types of exosomal protein biomarkers in differ-
ent types of cancer.

Exosome proteins as diagnostic and prognos-
tic biomarkers in cancer

As a promising type of novel cancer biomark-
ers, TDE proteins have several outstanding
characteristics [58-60]. First, TDEs have easy
accessibility due to their broad existence and
strong permeability. Secondly, the specific lipid
bilayer membrane structure of exosomes pro-
tects proteins from degradation. In addition,
certain cancer-associated proteins are en-
riched in TDEs. Compared to traditional tumor
biomarkers, TDE proteins have improved per-
formance and accuracy in determining cancer
progression. These quantifiable proteins were
shown to be involved in multiple biological func-
tions and metastasis-related pathways in can-
cer, thus have promise as novel biomarkers for
a variety of human cancers [52], including lung,
breast, pancreatic, colorectal and prostate can-
cer (Table 1).

Lung cancer

Lung cancer is one of the most fatal malignan-
cies and the leading cause of tumor mortality
worldwide [1]. The poor survival rates of lung
cancer are mainly due to late-stage diagnosis.
Thus, it is gaining growing interest to develop
new strategies for early detection/diagnosis of
lung cancer and novel targeted therapies. In
this regard, lung cancer derived-exosomes may
provide new insights since they play a pivotal
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role in regulating physiological functions of sur-
rounding tissue cells and tumor microenviron-
ment (Table 1).

The expression levels of epidermal growth fac-
tor receptor (EGFR) in plasma exosome were
different between lung cancer patients and
healthy individuals. It was also observed that
exosomal EGFR in lung cancer induces tumor
antigen-specific regulatory T cells (Treg) to
inhibit the function of tumor-specific CD8* T
cells, thus accelerating lung cancer progres-
sion [61, 62]. In particular, proteins associated
with signal transduction (i.e., growth factor
receptor-bound protein 2 (GRB2), proto-onco-
gene tyrosine kinase Src (Src) and EGFR), are
enriched in plasma exosomes of non-small
cell lung cancer (NSCLC). These proteins can
actively regulate recipient cells proliferation
[63]. In addition, according to liquid biopsy
results of urine samples, EGFR or leucine-rich
alpha-2 glycoprotein 1 (LRG1) were identified at
a remarkably higher expressions in NSCLC
patients [64], and could be used as non-inva-
sive diagnosis urinary biomarkers for detecting
NSCLC [65].

Exosomes contain enriched amounts of cell-
specific markers from endosomal origin, such
as tetraspanins CD9, CD63, and CD81. In lung
cancer, tetraspanins CD151, CD171 and tet-
raspanin 8 (TSPANS8) were found in exosomes
derived from lung cancer tissues, which were
applied as another class of biomarkers to dis-
tinguish different pathological types of lung
cancer [66]. For example, exosomal CD151 and
TSPANS8 were demonstrated in vitro to modu-
late extracellular matrix and the associated
molecules, thus initiate the metastatic process
[67]. These proteins are expressed at a signifi-
cantly higher level in NSCLC patients as com-
pared to healthy individuals [24]. In addition,
the serum-released exosomal membrane pro-
tein CD91 was also used as a detection index
of lung adenocarcinoma [68] and can also act
as a reliable biomarker in diagnosing NSCLC
[69]. Exosomal CD5L protein expression was
detected to be associated with tumor tissues in
clinic, suggesting that CD5L may be another
potential biomarker for non-invasive diagnosis
of NSCLC [70].

Recently, another well-known cancer biomark-
er, mucin-1 (MUC1), was also found to be sensi-
tive in distinguishing NSCLC patients from
healthy counterparts [71]. Additionally, mime-
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Table 1. Exosomal proteins as biomarkers in tumor diagnosis and prognosis

Cancer Types Protein markers in Function in tumorigenesis Ref.
exosome
Lung cancer EGFR Induce tumor antigen-specific Treg to regulate CD8* T cells [61, 62]
EGFR, GRB2, Src Regulate recipient cells proliferation in NSCLC [63]
LRG1 High expression in urinary exosomes [64, 65]
CD151, TSPAN8 Modulate extracellular matrix to initiate metastatic [66, 67]
CD171 Induce EMT to cause metastasis and poor prognosis [66]
CD91 A lung adenocarcinoma specific antigen [68]
CD5L Block lung epithelial apoptosis to repress immunosurveillance; associated with cancer [70]
tissue in clinic
MuUC1 Selectively enriched in the exosome compartment [71]
ALDOA, ALDH3A1 Promote glycolytic activity to enhance motility of recipient cells; related to poor prognosis [74]
of lung cancer patients
BALF Induce metastasis via vascular endothelial-cadherin way [75]
Breast cancer HER2 Molecular classification of tumor tissues [77]
Fibronectin, Del-1 Distinguish breast cancer at different status [78, 79]
CD24 Enriched in pleural effusions and ascites of patients [80]
CD47 Prevents cancer cells recognition by innate immune system [81]
CD82 Redistribution from tissues to blood due to metastasis [82]
PKG1, RALGAPA2, Phosphoproteins enriched in exosomes of human plasma [84]
NFX1, TJP2
GPC1 Induce cellular division, differentiation, morphogenesis to identify early stage cancer [85]
Survivin, survivin-2B  Similar variant pattern in breast cancer tissues; related prominent antiapoptotic pathway [86]
AnxA2 Promote angiogenesis; related to TNBC tumor grade and poor survival [87]
TTLL4A Mediate microtubule polyglutamylation to alter exosome homeostasis; produce a pre- [88]
metastatic niche
Rab27a, TRAF3IP2 Inflammatory mediator; involved in metastasis in vivo [89]
TSP1 Disrupt intercellular integrity of endothelial cells to induce trans-endothelial migration of [90]
cancer cells
Pancreatic cancer MIF Initiate liver pre-metastatic niche formation and metastasis [95, 96]
GPC1 Clinic preoperative and postoperative prognostic index [97]
CD44v6 Activate Wnt/B-catenin/PAI-1/TIM-1 to promote the migration and invasion of PCICs [98, 99]
CD44v6/C1QBP Promote fibrotic liver microenvironment [100]
Tspan8 Induce VEGF-independent angiogenesis [101]
CD151, Tspan8 Induce EMT, ECM remodeling and pro-inflammatory effect [102, 103]
TJ-Cld7 Modulate exosomal transporters composition to affect PCICs-derived exosomes and [104]
induce PCICs migration
Myoferlin Mediate VEGF inclusion to promote tumor growth and angiogenesis [105]
Integrins Cause organotropic metastasis [48]
Integrin B, Mediates plectin transfer to induce proliferation, migration and invasion of pancreatic cells [106]
ZIP4 Stimulate proliferation, migration and invasion of non-metastatic pancreatic cancer cells [107]
Survivin Enhance PDAC cell survival; enriched in PDAC patient serum [108]
EphA2 Enriched in recurrent pancreatic cancer [109]
TNC Induce local invasion and distant metastasis [110]
CKAP4 Related to DKK1 endocytosis and exosome biogenesis [111]
Colorectal cancer DKK4 Related to APC overexpression [112]
Wnt4 Activate Wnt/B-catenin pathway to induce migration and invasion [113]
CPNE3 Highly expressed in tissues and plasma of patients [114]
Hsp60 Accumulated in peri-cancerous tissues [115, 116]
GPC1 Enriched in tumor tissues and plasma of patients [117]
CD9, CD147 Abundant in colorectal cancer patient serum [118]
CEA Predict metastatic colorectal cancer [119]
PrP Promote hypoxic TME of metastasis via increase of endothelial permeability and angio- [120]
genic cytokine secretion
CAPS1 Promote epithelial cell migration to regulate metastasis [121]
STX2 Related to increased expression of Exosome Complex 4 [122]

2232

Am J Cancer Res 2022;12(5):2226-2248



Exosome proteins in cancer theranostics

Prostate Cancer  HIF-1a Promotes metastasis via repression of E-cadherin [124]
Integrin o B, Induce the progression and invasion of cells [125, 126]
Integrin o B, Increases recipient cells adhesion and migration on vitronectin; activate Src phosphoryla-  [48, 126]

tion in recipient cells; induce metastatic niche to alter angiogenesis

Integrin a,, &, B, Induce EMT, promoting inflammation, migration and invasion of cancer cells [127-129]
PKM2 Induce pre-metastatic niche for bone metastasis [130]
PLD Stimulate exosome osteoblast activity for bone metastasis [131]
Hyal 1 Stimulate prostate stromal cells mobility for metastatic [132]
Caveolin-1 Promote invasion and metastasis via NF-kB signaling [133]
MMP-9, MMP-14 Stimulating ERK1/2 phosphorylation [134, 135]
Src, IGF-1R, GRKs, FAK Induce angiogenesis via VEGF transcription stimulation in TME [136]
GGT1 Higher in prostate cancer patients matching tumor tissues [137]
B-catenin, PCA-3, PSA, Enriched in patient’s urinary exosomes [138]
PSMA

EpCAM, EGFR, survivin Detected in exosomes [139]

Abbreviations: ALDH3A1, aldehyde dehydrogenase 3-A1; ALDOA, fructose-bisphosphate aldolase; AnxA2, annexin A2; APC, adenomatous polyposis coli; BALF, bronchoal-
veolar fluid; C1QBP, complement C1q binding protein; CAPS1, calcium-dependent activator protein secretion factor 1; CD44v6, CD44 variant isoform 6; CEA, carcino-
embryonic antigen; CKAP4, cytoskeleton-associated protein 4; CPNE3, Copine 3; Del-1, developmental endothelial locus-1; DKK1, dickkopf-related protein 1; DKK4,
dickkopf-related protein 4; EGFR, epidermal growth factor receptor; EMT, epithelial mesenchymal transition; EpCAM, epithelial cell adhesion molecule; EphA2, ephrin
type-A receptor 2; ERK1/2, extracellular signal-regulated kinases 1/2; FAK, focal adhesion kinase; GGT1, gamma-glutamyl transferase 1; GPC1, glypican 1; GRB2, growth
factor receptor-bound protein 2; GRKs, G-protein-coupled receptor kinases; HER2, human epidermal growth factor receptor-2; HIF-1a, hypoxia-inducible factor-1a; Hsp60,
heat shock protein-60; Hyal 1, hyaluronidase 1; IGF-1R, insulin-like growth factor 1 receptor; LRG1, leucine-rich alpha-2 glycoprotein 1; MIF, macrophage migration inhibi-
tory factor; MMP, metallopeptidase; MUC1, mucin-1; NFX1, nuclear transcription factor, X-box binding 1; PAI-1, plasminogen activator inhibitor 1; PCA-3, prostate cancer
gene-3; PCICs, pancreatic cancer-initiation cells; PDAC, pancreatic ductal adenocarcinoma; PKG1, cGMP-dependent protein kinase 1; PKM2, pyruvate kinase M2; PLD,
phospholipase D; PrP, prion protein; PSA, prostate specific antigen; PSMA, prostate specific membrane antigen; Rab27a, Ras-related protein; RALGAPA2, Ral GTPase-
activating protein subunit alpha-2; STX2, syntaxin 2; TIM-1, tissue inhibitor of metalloproteases 1; T)-Cld7, claudin7 in tight junction; TJP2, tight junction protein 2; TME,
tumor microenvironment; TNC, tenascin-c; TRAF3IP2, TRAF3 interacting protein 2; Treg, regulatory T cells; TSP1, thrombospondin-1; TSPANS, tetraspanin 8; TTLL4, tubulin
tyrosine ligase like 4; VEGF, vascular endothelial growth factor; ZIP4, zinc transporter.

can, cystatin-SA, transforming protein RhoA,
thrombospondin-1, protein lifeguard 3, azuroci-
din and several other exosomal proteins were
identified as potential biomarkers for detection
of lung cancer (reviewed in [72]). Furthermore,
exosome membrane-bound proteins NY-ESO-1,
PLAP, Alix and EpCam were verified to be highly
correlated to NSCLC overall survival, providing
evidence that these proteins may work as prog-
nostic biomarkers for lung cancer [73]. Exo-
somes from irradiated lung cancer cells regu-
lated the motility of recipient cells by accelerat-
ing glycolytic process, where the two metabolic
enzymes, exosomal fructose-bisphosphate al-
dolase (ALDOA) and aldehyde dehydrogenase
3-A1 (ALDH3A1) proteins are elevated and
work as important signaling regulators [74].
Moreover, exosomes from lung cancer bron-
choalveolar fluid (BALF) promote the migration
and invasion of A549 cancer cells by carrying
E-cadherin on the surface of exosomes, which
provides evidence that E-cadherin may act
through a vascular endothelial (VE)-cadherin
dependent mechanism to induce lung cancer
metastasis [75].

Breast cancer

Recently, female breast cancer has surpassed
lung cancer as the most commonly diagnosed
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cancer worldwide [1]. It is urgent developing
therapeutic strategies for early detection and
monitoring of breast cancer [76]. As a well-
known key regulator in breast cancer, human
epidermal growth factor receptor-2 (HER2) was
detected in the plasma exosomes and was
applied as a non-invasive biomarker in the
molecular classification of tumor tissues [77].
In addition, the levels of exosomal fibronectin
and developmental endothelial locus-1 (Del-1)
were significantly higher in breast cancer
patients [78, 79]. Strikingly, the plasma levels
of both Del-1 and fibronectin almost returned to
normal after tumor resection, which suggested
that fibronectin and Del-1 may serve as impor-
tant diagnostic markers to identify patients at
different stages and also as prognostic mark-
ers for breast cancer treatment (Table 1).

The universal markers CD24 in exosomes has
also emerged as a diagnostic indicator of
breast cancer [80]. CD24 may have the poten-
tial to be used in identification of breast can-
cer-derived exosomes in pleural effusions and
ascites of the patients. Notably, CD47 is
another cancer-related surface protein highly
expressed in circulating exosomes from breast
cancer patients, which facilitates tumor pro-
gression by preventing innate immune recogni-
tion of cancer cells [81]. Recently, another exo-
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somal tetraspanin CD82 was also detected to
be significantly abundant in the serum of breast
cancer patients and corresponding cancer tis-
sues [82]. Thus, CD82 may play a key role in
malignant breast cancer progression, and can
act as an exosome-based biomarker for breast
cancer monitoring and diagnosis.

The events of protein phosphorylation usually
provide clues about disease status [83].
However, few phosphoproteins in biofluids have
been reported as disease markers due to their
highly dynamic nature as well as the presence
of active phosphatases in biofluids [77]. Seve-
ral exosome encapsulated phosphoproteins,
such as cGMP-dependent protein kinase 1
(PKG1), Ral GTPase-activating protein subunit
alpha-2 (RALGAPA2), nuclear transcription fac-
tor, X-box-binding protein 1 (NFX1) and tight
junction protein 2 (TJP2) are significantly upreg-
ulated in breast cancer patients [84], suggest-
ing that they may be employed as a novel type
of biomarkers for breast cancer.

Glypican 1 (GPC1) is a lipid raft heparan sulfate
proteoglycan located on the cell surface that
induces cellular division, differentiation and
morphogenesis. GPC1 is specifically enriched
on cancer cell-derived exosomes. It was ob-
served that GPC1 levels were elevated on exo-
somes from breast cancer cells, suggesting a
potential use of this exosomal biomarker to
identify early breast cancer [85]. As an anti-
apoptosis protein, survivin was proved to have
diagnostic significance in breast cancer. While
survivin-2B, an alternative splice variant of sur-
vivin, is a pro-apoptotic protein. Differential
expression of both survivin and survivin-2B
proteins was found in exosomes from breast
cancer patient serum, representing the splice
variant pattern in breast cancer tissues [86].
Furthermore, high expression level of exo-
somal annexin A2 (exo-AnxA2) in triple-negative
breast cancer (TNBC) is proved to be closely
related to tumor grade, poor overall and dis-
ease-free survival, which is attributed to the
effect of exo-AnxA2 in promoting angiogenesis.
Therefore, exo-AnxA2 represents another po-
tential prognostic biomarker and therapeutic
target of TNBC [871].

Recently, a number of specific biomarkers
emerged as a new category of potential breast
cancer related exosomal protein markers.
Tubulin tyrosine ligase like 4 (TTLL4)-mediated
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microtubule polyglutamylation alters exosome
homeostasis by regulating trafficking of MVBs.
The TTLL4-derived exosomes produced a pre-
metastatic niche for breast cancer cells [88].
Ras-related protein Rab27a, a key player in exo-
some release, and TRAF3 Interacting Protein 2
(TRAF3IP2), an inflammatory mediator, were
both involved in development and metastasis
of breast cancer in vivo [89]. While thrombos-
pondin-1 (TSP1) was found to be highly
expressed in MDA-MB-231-derived exosomes,
which facilitates the trans-endothelial migra-
tion of breast cancer cells via disrupting the
intercellular integrity of endothelial cells [90].

Pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) is
a type of exocrine pancreatic cancer that
accounts about 95% of all pancreatic tumors
[91]. PDAC remains one of the most devastat-
ing gastrointestinal malignancies with poor
prognosis and an overall 5-year survival rate of
8%-9% [92]. The lack of accurate diagnostic
tests and failure of conventional treatment
brings great challenges for developing effective
pancreatic cancer therapeutic strategies [92].
Pancreatic cancer-derived exosomes contain
various protein molecules (Table 1) that can
activate surrounding stromal cells and induce
extracellular matrix (ECM) remodeling [93, 94].
This further establishes a TME to facilitate
metastasis.

Macrophage migration inhibitory factor (MIF) is
highly expressed in PDAC-derived exosomes to
initiate liver pre-metastatic niche formation
and subsequent liver metastasis [95]. These
findings suggest that exosomal MIF may be a
prognostic marker for the development of
hepatic metastasis in pancreatic cancer [96].
Additionally, GPC1 was also isolated from
serum exosomes of pancreatic cancer mouse
models and pancreatic cancer patients through
flow cytometry, exhibiting potentials as both a
serological marker and a preoperative and
postoperative prognostic index at early and ter-
minal stages of PDAC [97]. This provides high
accuracy and sensitivity, thus can be further
applied as a detection index for related
therapies.

CD44 variant isoform 6 (CD44v6) is a trans-
membrane protein that was highly expressed in
exosomes released by pancreatic cancer-initia-
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tion cells (PCICs). PCICs-derived CD44v6-po-
sitive exosomes could activate Wnt/B-catenin
signaling and up-regulate the expression of
plasminogen activator inhibitor 1 (PAI-1) and
tissue inhibitor of metalloproteases 1 (TIM-1),
thus promoting the migration and invasion of
pancreatic cancer cells [98, 99]. In another
study, exosome-delivered CD44v6/comple-
ment C1qg binding protein (C1QBP) complex
drives pancreatic cancer liver metastasis
by promoting fibrotic liver microenvironment
[100]. Another potential biomarker is tet-
raspanin 8 (Tspan8), which belongs to tet-
raspanin protein family. Tspan8-enriched exo-
somes produced by pancreatic cancer cells
can induce VEGF-independent angiogenesis
around tumor tissues [101]. In addition, CD151-
and Tspan8-postive exosomes were proved to
induce EMT, ECM remodeling and pro-inflam-
matory effect [102] further promote pancreatic
tumor progression and metastasis [103].

As for other types of membrane proteins, for
instance, by modulating the composition of
exosomal transporters and affecting the func-
tion of PCICs-derived exosomes, claudin7 in
tight junction (TJ-Cld7)-positive exosomes are
capable to induce cell migration [104]. While
myoferlin can mediate the inclusion of VEGF
into exosomes to promote tumor growth and
angiogenesis [105]. In addition, integrins-con-
taining exosomes cause pancreatic cancer or-
ganotropic metastasis [48]. Integrin B, medi-
ates the transfer of plectin into exosomes lead-
ing to the proliferation, migration, and invasion
of pancreatic cells [106]. Zinc transporter ZIP4-
positive exosomes, produced by highly meta-
static pancreatic cancer cells, can stimulate
the proliferation, migration, and invasion of
non-metastatic pancreatic cancer cells [107].

Recently, cell survival protein survivin was also
found in PDAC cells-derived exosomes to en-
hance PDAC cell survival and was also highly
enriched in exosomes isolated from the serum
of PDAC patients [108]. In addition, high ex-
pression of exosomal ephrin type-A receptor 2
(Exo-EphA2) in recurrent pancreatic cancer was
associated with shorter recurrence-free surviv-
al, indicating that high expression of serum
Exo-EphA2 represents a novel indication for
poor prognosis in patients [109]. Exosomal
Tenascin-c (Exo-TNC) was observed to be close-
ly associated with malignant features of pan-
creatic cancer cells by inducing local invasion
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and distant metastasis [110]. Moreover, cyto-
skeleton-associated protein 4 (CKAP4), a novel
Dickkopfl (DKK1) receptor, can also work as a
candidate for PDAC diagnosis and therapy pre-
diction. As observed, the secretion of CKAP4-
containing exosomes is mediated by DKK1-
dependent endocytosis routes [111].

Colorectal cancer

Colorectal cancer is a heterogeneous malig-
nancy with complex carcinogenic mechanisms
and aggressive metastasis at later stages,
which is the third most common malignancy
and the third-leading cause of cancer-related
deaths globally [1]. Although great efforts have
been made to promote the management of this
cancer type, the prognosis of colorectal cancer
patients is far from satisfactory. Plenty of
experiments demonstrated that colorectal can-
cer exosomes played a critical role in maintain-
ing cancer cell survival, proliferation and inva-
sion of microenvironment. Therefore, identifica-
tion of promising diagnostic exosome-related
biomarkers (Table 1) would help to explore the
underlying mechanisms of colorectal cancer
and further promote the development of opti-
mal therapeutic strategies.

Tumor suppressor, adenomatous polyposis coli
(APC) is the most commonly mutated protein in
colorectal cancer [112], which leads to cancer
occurrence and progression. Based on a com-
parative study of the exosomal proteome be-
tween APC overexpression and normal SW480
cells, dickkopf-related protein 4 (DKK4) was
identified as a potential exosomal biomarker
specifically related to irregulated APC function
[112]. While in another study, Wnt4 containing
vesicles was delivered to normoxic colorectal
cells which activated Wnt/B-catenin pathway
to induce cancer cell migration and invasion
[113]. Additionally, copine 3 (CPNE3), a mem-
brane-binding protein, is highly expressed in
tissues and plasma of patients with colorectal
cancer [114]. Moreover, heat shock protein-60
(Hsp60) was observed to be accumulated on
the membrane of colorectal cancer cell derived
exosomes as well as in peri-cancerous tissues
[115], which suggests that Hsp60 positive exo-
somes may be a novel marker of colorectal
cancer [116].

GPC1 is a well-established biomarker in can-
cer-derived exosomes [97]. Application of GPC1
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as a diagnostic marker for colorectal cancer
has also been reported. It turned out that GPC1
protein expression in exosomes from plasma
of colorectal cancer patients was significantly
decreased after surgery [117]. Similarly, CD9
and CD147 positive exosomes were abundant
in colorectal cancer patient serum by “Exo-
Screen” (a tool for detection of exosomes) and
the CD147 level dropped after surgery of tumor
resection [118]. In another study, serum exo-
somal carcinoembryonic antigen (CEA) was
shown to predict metastatic colorectal cancer
with a superior sensitivity and accuracy than
serum CEA [119].

Recently, cellular prion protein (PrP)-expressing
exosomes were found to promote the microen-
vironment of metastasis via increase of endo-
thelial permeability and angiogenic cytokine
secretion. The hypoxic TME of colorectal can-
cer increased the PrP-expressing exosome
secretion, and the expression of PrP in turn
regulated the colorectal tumor progression
[120]. Another potential biomarker, calcium-
dependent activator protein secretion factor 1
(CAPS1), was detected to be overexpressed in
exosomes secreted by colorectal cancer cells
that promoted normal epithelial cell migration
to regulate metastasis [121]. In addition, syn-
taxin 2 (STX2), a type of membrane integrated
SNARE proteins participating in exocytosis, was
found to play a regulatory role on increasing
expression of Exosome Complex 4 (EXOSC4),
which further drives the proliferation of colorec-
tal cancer [122].

Prostate cancer

Prostate cancer is the most common solid
tumor in men and patients with metastatic
prostate cancer have relatively high mortality
rates [1]. The proteins transferred by exosomes
(Table 1) derived from cancer cells to weakly
invasive cells have been characterized to play a
crucial role in monitoring prostate cancer pro-
gression and metastasis increase [123]. For
instance, prostate cancer progression was
linked to hypoxia and the induction of hypoxia-
inducible factor (HIF). The exosomal HIF-1a pro-
motes the occurrence and progression of
metastasis via repression of E-cadherin [124].

Integrins on exosomes secreted by prostate
cancer cells (integrin o, B,, o B, B, etc.)
induced the progression and invasion of integ-
rin-negative cells (with no integrin secretion) or
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epithelial cells [125, 126]. For example, exo-
some-mediated integrin o, was found to pro-
mote the migration and invasion of prostate
cancer cells by inducing EMT [127], while integ-
rin o, could promote inflammation, migration
and invasion [128], and similar effect was
observed for integrin B, [129]. In addition, inte-
grin o B, was delivered to TME to activate Src
phosphorylation in recipient cells. Integrin o B,
present in prostate cancer-derived exosomes
may also induce formation of metastatic niche
to alter angiogenesis and cell signaling [48].

Exosomal pyruvate kinase M2 (Exo-PKM2) was
observed to induce the occurrence of a pre-
metastatic niche, thus promoting the bone
metastasis of prostate cancer [130]. Similarly,
phospholipase D (PLD) in prostate cancer-
derived exosomes stimulated the osteoblast
activity of exosomes, which may be considered
as a potent regulator in bone metastasis
establishment [131]. Another prostate cancer-
derived exosomal protein, hyaluronidase 1
(Hyal 1) stimulates the mobility of prostate stro-
mal cells thereby enhances the metastatic
potential [132]. Exosomal caveolin-1 promotes
the invasion and metastasis of prostate can-
cer cells in an endocrine manner through the
NF-kB signaling pathway [133], and exosomal
matrix metallopeptidase 9 and 14 (MMP-9 and
MMP-14) act by stimulating ERK1/2 phosphor-
ylation [134, 135]. Other exosomal proteins,
such as Src, insulin-like growth factor 1 recep-
tor (IGF-1R), G-protein-coupled receptor kinas-
es (GRKs) and focal adhesion kinase (FAK),
induce prostate cancer angiogenesis via VEGF
transcription stimulation in the TME [136].

Recently, serum exosomal gamma-glutamyl
transferase 1 (GGT1), a cell surface enzyme,
was present with high expression and activity
in prostate cancer patients, which may serve
as a novel diagnostic marker to screen this can-
cer type [137]. Investigation of the urinary exo-
some proteome from prostate cancer patients,
identified [-catenin, prostate cancer gene-3
(PCA-3), prostate specific antigen (PSA), and
prostate specific membrane antigen (PSMA),
which shows the potential for diagnosis and
monitoring of prostate cancer [138]. The
expression of epithelial cell adhesion molecule
(EpCAM), epidermal growth factor receptor
(EGFR), survivin, were also observed to be sig-
nificantly increased in exosomes derived from
prostate cancer cells [139].
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Table 2. Functions of exosomal proteins in transmitting related drug resistance in cancer

Drug name Cancer Type Exosomal Protein  Related Mechanism Ref.

Cisplatin Ovarian cancer AnxA3 Enhanced secretion of exosomes [151]

Ovarian cancer CLPTM1L Ectodomain-dependent way [152]

NSCLC PKM2 Promote glycolysis to neutralize ROS; inhibit apoptosis; reprogram [153]

CAFs to affect TME

5-Fluorouracil Colorectal cancer IDH1 Mediate NADPH decrease [154]
GDF15, DPP4 Induce POSTN-Smad signaling [155, 156]

p-STAT3 Related to caspase cascade [157]

PrP Hypoxic-exosomal tumor progression [120]

Gemcitabine Breast cancer EphA2 Activate ERK1/2 signaling [158]

Pancreatic cancer EphA2 Transmit related chemoresistance [159]

TNBC AnxA6 Inhibit EGFR ubiquitination and degradation [160]

Imatinib Leukemia IFITM3, CD146, CD36 Regulate surface localization [161]

Osimertinib NSCLC EGFR Induce intercellular transfer [162]

ALK-TKIs ALK-positive NSCLC Tim-3, Gal-9 Clinical data of plasma exosome [163]

Taxane Prostate cancer Integrin B, vinculin Enhance cancer cell migration and invasion [129]

Paclitaxel PDAC Survivin Compromised the effectiveness of paclitaxel with or without ERK [108]

inhibitor/chloroquine

Docetaxel Prostate cancer MDR-1/P-gp Transmit related chemoresistance [164]

Celecoxib Lung cancer COX-2 Increase PGE2 and VEGF production to affect TME [166]
Trastuzumab HER2* breast cancer HER2 HER2 overexpressing exosomes [167, 168]

Enzalutamide Prostate cancer Syntaxin 6 Increase CD63 colocalization [169]

Abbreviations: ALK, anaplastic lymphoma kinase; ALK-TKIs, ALK-tyrosine-kinase-inhibitors; AnxA3, annexin 3; AnxA6, annexin A6; CAFs, cancer-associated fibroblasts;
CLPTMAL, cleft lip and palate transmembrane protein 1-like; COX-2, cyclooxygenase-2; DPP4, dipeptidyl peptidase IV; EphA2, ephrin type-A receptor 2; ERK1/2,
extracellular signal-regulated kinases 1/2; Gal-9, galectin-9; GDF15, growth/differentiation factor 15; HER2, human epidermal growth factor receptor 2; IDH1, isocitrate
dehydrogenase 1; IFITM3, interferon-induced transmembrane protein 3; MDR-1, multidrug-resistance gene 1; MT, microtubule; PDAC, pancreatic ductal adenocarcinoma;
PGE2, prostaglandin E2; P-gp, P-glycoprotein; POSTN, periostin; PrP, prion protein; p-STAT3, phosphorylated signal transducer and activator of transcription 3; ROS, reac-
tive oxygen species; Tim-3, T-cell immunoglobulin- and mucin-domain-containing molecule 3; TKls, tyrosine kinase inhibitors; TNBC, triple-negative breast cancer; VEGF,

vascular endothelial growth factor.

Exosome protein profiling as therapeutic tar-
gets for cancer treatment

The above-mentioned exosomal proteins (Table
1) play an important role in cancer invasion and
metastasis through different mechanisms of
action. Thus, it is conceivable that these exo-
somal proteins could serve as promising thera-
peutic targets. Based on these strategies,
numerous agents, diagnostic protocols and
clinical assays for anti-tumoral therapy were
under development to regulate the exosome
functions for therapeutic applications (Table 2)
[140, 141].

Inhibiting the production of cancer-derived
exosomes

The internalization of exosomes by recipient
cells often depends on the source and amount
of secreted exosomes. A number of compounds
have been developed to inhibit TDEs produc-
tion by targeting different proteins or different
stages of exosome biogenesis process, such as
RAB27A inhibitors, protein-protein interaction
(PPI) inhibitors and calcium channel blocking
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agents. The mechanisms of these inhibitors are
diverse. In addition, further research showed
that some clinical therapies for other diseases,
like tipifarnib, ketoconazole, cambinol and sim-
vastatin, are also capable to inhibit exosome
release in cancer [142]. It is worthy to note that
these compounds only affect the exosome
release from tumor cells but not from normal
cells, which may intrigue a new direction of drug
development [143].

Blocking the uptake of cancer-derived exo-
somes

Besides inhibiting exosome release, another
promising strategy for exosome-targeted thera-
py is blocking the uptake of exosomes by recipi-
ent cells via inhibition of membrane fusion,
endocytosis, and micropinocytosis [144]. That
can efficiently reduce the pro-tumorigenic
effect of exosomes. In a cervical cancer model,
annexin V treatment prevented phosphatidyl-
serine assisted internalization of exosomes
[145]. In addition, targeting protein ligands on
exosome surface, such as integrins, tetraspan-
ins, immunoglobulins, lectins, and glycopro-
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teins is another effective strategy to block exo-
some uptake [146]. For example, TDEs often
regulate the formation of pre-metastatic niches
through the binding of integrins on TDEs mem-
brane to target cells. Therefore, targeting integ-
rins a8, and o B, can decrease exosome
uptake and repress lung and liver metastasis
[48]. Another type of biomarker, heparan sul-
fate proteoglycans (HSPGs) serve as internal-
ization receptors for TDEs to induce exosome
internalization and other functional activity. The
uptake of these internalized HSPGs enriched
exosomes could be specifically inhibited by free
heparan sulfate (HS) chains. This suggests that
targeting key biomarker (i.e., HSPGs) could ev-
entually inhibit TDEs transport further repress
the TDEs-related cancer progression [147].

Targeting tumor exosomal proteins to over-
come drug resistance

The progression of multidrug resistance is the
major obstacle to maintain effective chemo-
therapy in cancer [148]. Exosome secretion
has remarkable influence on numerous signal-
ing networks, which plays a pivotal role in the
cancer sustenance. According to the large-
scale proteomic analysis of tumor derived exo-
somes, the important roles of tumor stroma-
derived exosomes in inducing both de novo and
acquired anti-tumor drug resistance have been
uncovered [149]. Thus, targeting specific func-
tions of exosomes provides a proof of concept
to prevent and reverse the drug resistance
[150].

Exosomes protect cancer cells from the cyto-
toxic effects of chemotherapy drugs and trans-
fer chemoresistance properties to nearby cells.
In particular, exosomal membrane protein or
receptors induce drug resistance mainly th-
rough regulating specific signal pathway. For
example, chemoresistance in castration-resis-
tant prostate cancer was attributed to exosom-
al caveolin-1 that can elicit NF-kB cascade to
affect EMT and cancer stem cell phenotype
[133]. The exosomal proteins may act as trans-
mitters or drivers of drug resistance in a variety
of cancer types, which provides a promising
way to optimize drug response and also encour-
ages implications for the use of new targeted
biologics in the treatment of therapy-resistant
tumors.
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Alkylating agent resistance: In a cisplatin resis-
tant ovarian cancer model, the development of
cisplatin resistance was directly correlated with
enhanced exocytosis and release of exosomes
due to annexin 3 protein expression in exo-
somes [151]. In the same cell model, the
increased levels of exosomal cleft lip and pal-
ate transmembrane protein 1-like (CLPTM1L)
upon chemotherapy treatment may also con-
fer cisplatin resistance [152]. While in NSCLC,
hypoxia-induced exosomes transmit cisplatin
resistance to drug-sensitive cells by delivering
PKM2, so that exosomal PKM2 may serve as a
promising biomarker and therapeutic target for
cisplatin resistance [153].

Antimetabolites drug resistance: Exosomes
secreted from 5-fluorouracil (5-FU)-resistant
colorectal cancer cells transfer a high level of
isocitrate dehydrogenase 1 (IDH1, also named
NADP*) protein which initiates the resistance of
5-FU-sensitive cells. This effect was attributed
to a decreased level of NADPH mediated by
IDH1 [154]. In another study, exosomal growth/
differentiation factor 15 (GDF15) increased
periostin (POSTN) level via Smad signaling to
enhance angiogenesis [155]. Subsequent stud-
ies found that exosomal dipeptidyl peptidase
IV (DPP4) was also a potent inducer of POSTN-
Smad signaling pathway. Both GDF15 and
DPP4 can be targets for anti-angiogenic thera-
pies [156]. In a similar study, phosphorylated
STAT3 (p-STAT3) packaged by exosomes con-
tributed to acquired 5-FU resistance in vitro
and in vivo [157]. While in another colorectal
cancer murine xenograft model, the expression
of Exo-PrP was found to be the key factor relat-
ed to 5-FU resistance in vivo [120].

The increase of EphA2 in drug-resistant cell-
derived exosomes may support an additional
mechanism of gemcitabine resistance. As
observed in breast cancer cells, the EphA2-
Ephrin Al reversed activated ERK1/2 signaling
to promote breast cancer progression [158]. In
another model of pancreatic cancer, EphA2
expression could transmit gemcitabine chemo-
resistance and may serve as a minimally-inva-
sive predictive biomarker for the treatment
response [159]. In addition, exosomal annexin
A6 (AnxAB) levels in the serum of TNBC patients
can be another predictor for gemcitabine resis-
tance with a mechanism regarding to the inhibi-
tion of EGFR ubiquitination and degradation
[160].
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Tyrosine kinase inhibitors (TKIs) resistance: In
a study of TKI resistance in chronic myeloge-
nous leukemia (CML), TKI drug (imatinib) resis-
tance was attributed to three surface markers
on exosomes released by imatinib-resistant
leukemia cells, which were interferon-induced
transmembrane protein 3 (IFITM3), CD146
and CD36 [161]. In a NSCLC model, the inter-
cellular transfer of exosomal EGFR represented
a novel resistant mechanism of a type of EGFR-
TKI, osimertinib [162]. While in anaplastic lym-
phoma-kinase (ALK)-positive NSCLC patients,
a decreased plasma exosome Tim-3 and
Galectin-9 levels was shown to be an indication
of the resistance response of first generation
ALK-TKIs [163].

Microtubule-interfering drug resistance: In tax-
ane-resistant prostate cancer cells, integrin 3,
and vinculin were upregulated in exosomes.
This provides a basis to develop integrin 8, and
vinculin as useful markers for cancer progres-
sion with taxane-resistance and further poten-
tiates the establishment of an exosome-based
diagnostic system [129]. In KRAS-dependent
cancer cells (such as PDAC), survivin enriched
exosomes significantly compromised the effec-
tiveness of paclitaxel and the combination of
ERK inhibitor with chloroquine (a novel clinical
trial for PDAC) [108]. Moreover, transfer of
multi-drug resistant proteins to drug-sensitive
cells could confer the drug-resistant properties,
such as P-glycoprotein (P-gp) [164]. Using a
prostate cancer model, resistance to docetaxel
was attributed to the enhanced exosome secre-
tion and transporter protein P-glycoprotein
(MDR-1/P-gp) exosomal transfer [165]. Exten-
sive and in-depth studies are required to fur-
ther explain how exosomes mediate and trans-
mit related chemoresistance of microtubule-
interfering agents in cancer.

Other drug resistance: The induced expression
of COX-2 in lung cancer-derived exosomes by
celecoxib treatment was transferred to other
cells, resulting in an increased prostaglandin
E2 (PGE2) and VEGF production further affect-
ing the tumor microenvironments [166]. In a
HER2-positive breast cancer cell model, the
resistance to trastuzumab was linked to the
secretion of HER2 overexpressing exosomes
[167]. Meanwhile, removal of HER2 positive
exosomes improved patient responses to tra-
suzumab [168]. These studies indicated that
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HER2 could be a useful biomarker for anticipat-
ing drug-resistance during treatment. In anoth-
er enzalutamide-resistant prostate cancer cell
model, the upregulation of syntaxin 6 and the
increased CD63 colocalization suggested that
syntaxin 6 modulated secretion of exosomes to
enhance the enzalutamide resistance [169].

Conclusion and future perspectives

As an important tool for intercellular communi-
cation and transport, exosomes mediate cell-
to-cell information exchange by transmitting
their cargos (RNAs, proteins, etc.) to recipient
cells and affect several physiological functions
of recipient cells. Exosomes provide abundant,
stable and specific biological information
and are considered as an attractive liquid biop-
sy specimen with high application values.
Exosome-shuttled proteins and nucleic acids
have been suggested as novel diagnostic and
prognostic indicators for a variety of cancers.
Apart from the genetic molecules, exosome-
associated proteins have also been broadly
examined as potential disease-related bio-
markers.

Currently, exploring biomarkers in TDEs has
shown great potential but still with obvious limi-
tations. The first and most important limitation
is the lack of standardized exosome isolation
and characterization techniques to ensure a
consistent and reproducible exosome supply.
Due to the lack of adequate analysis platforms,
the comprehensive assessment of clinically rel-
evant exosomes among miscellaneous popula-
tions of cells or body fluid remains challenging.
Most of identified functional roles of exosomes
are based on in vitro results of isolated exo-
somes that have limited physiologically rele-
vance under pathological conditions in vivo.
Thus, exploring the precise physiological func-
tion of exosomes in vivo will be critical to deter-
mine their roles in cancer. To establish the diag-
nostic accuracy of exosomes, the observational
properties of identified exosome-derived pro-
teins biomarkers need to be further validated in
large, longitudinal studies. More tools are being
exploited to uncover the molecular nature of
exosomes. Further development of cancer exo-
somal proteomics, microfluidic techniques and
other techniques for exosomal protein isolation
and detections will be highly required for the
improvement of cancer diagnosis.
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Targeting exosomal cargos expresses high
diagnostic and prognostic potential in cancer.
However, a great deal of research is needed to
understand the mechanisms involving in how
exosome or exosomal proteins mediate tumor
progression. For instance, the majority of these
studies analyzed one type of exosome biomark-
er at a specific stage without tracing across dif-
ferent stages of cancer. Indeed, exosomes can
transfer both tumor-promoting molecules (e.g.,
oncoproteins) and tumor suppressors, indicat-
ing their complex roles in cancer biology.
Further knowledge is needed to elucidate the
signaling pathways and the exact mechanism
of involvement of exosomes in tumorigenesis.

Despite many challenges, the non-invasive
property features exosomes the next genera-
tion of biomarkers in cancer diagnosis.
Exosomal proteins play key roles in monitoring
exosome-mediated tumor migration, invasion
and metastasis and tumor angiogenesis, thus
possess a great potential in the transition of
more relevant applications in clinic. There is
still a long road ahead to revolutionize cancer
diagnosis by exciting the potential of exosome
biomarkers. By translating the knowledge of
experimental and clinical observations into the
clinical field, it will open up new therapeutic
avenues in personalized diagnosis and preci-
sion medicine, and likely bring an optimistic
future to cancer patients.
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secretion factor 1; CD44v6, CD44 variant iso-
form 6; CEA, Carcinoembryonic antigen; CKA-
P4, Cytoskeleton-associated protein 4; CLPT-
M1L, Cleft lip and palate transmembrane pro-
tein 1-like; COX-2, Cyclooxygenase-2; CPNE3,
Copine 3; Del-1, Developmental endothelial
locus-1; DKK1, Dickkopf-related protein 1;
DKK4, Dickkopf-related protein 4; DPP4,
Dipeptidyl peptidase 1V; EGFR, Epidermal
growth factor receptor; EM, Electron microsco-
py; EMT, Epithelial mesenchymal transition;
EpCAM, Epithelial cell adhesion molecule;
EphA2, Ephrin type-A receptor 2; ERK1/2,
Extracellular signal-regulated kinases 1/2;
ESCRT, Endosomal sorting complexes required
for transport; EVs, Extracellular vesicles; FAK,
Focal adhesion kinase; FGF, Fibroblast growth
factor; Gal-9, Galectin-9; GDF15, Growth/differ-
entiation factor 15; GGT1, Gamma-glutamyl
transferase 1; GPC1, Glypican 1; GRB2, Growth
factor receptor-bound protein 2; GRKs, G-
protein-coupled receptor kinases; HER2,
Human epidermal growth factor receptor-2;
HIF-1a, Hypoxia-inducible factor-1a; Hsp60,
Heat shock protein-60; HRP, Horseradish per-
oxidase; Hyal 1, Hyaluronidase 1; IDH1,
Isocitrate dehydrogenase 1; IFITM3, Interferon-
induced transmembrane protein 3; IGF-1R,
Insulin-like growth factor 1 receptor; LRG1,
Leucine-rich alpha-2 glycoprotein 1; MDR-1,
Multidrug-resistance gene 1; MHC, Major histo-
compatibility complex; MIF, Macrophage migra-
tion inhibitory factor; miRNAs, MicroRNAs;
MMP, Metallopeptidase; MRNAs, Message
RNAs; MT, Microtubule; MUC1, Mucin-1; MVBs,
Multivesicular bodies; ncRNAs, Non-coding
RNAs; NFX1, Nuclear transcription factor, X-box
binding 1; nPES, Nanoplasmon enhanced scat-
tering; NTA, Nanoparticle tracking analysis;
PAI-1, Plasminogen activator inhibitor 1; PCA-3,
Prostate cancer gene-3; PCICs, pancreatic can-
cer-initiation cells; PDAC, Pancreatic ductal
adenocarcinoma; PGE2, Prostaglandin EZ2;
P-gp, P-glycoprotein; PKG1, CGMP-dependent
protein kinase 1; PKM2, Pyruvate kinase M2;
PLD, Phospholipase D; PMN, Pre-metastatic
niche; POSTN, Periostin; PrP, Prion protein;
PSA, Prostate specific antigen; PSMA, Prostate
specific membrane antigen; p-STAT3, Phos-
phorylated signal transducer and activator of
transcription 3; Rab27a, Ras-related protein;
RALGAPA2, Ral GTPase-activating protein sub-
unit alpha-2; ROS, Reactive oxygen species;
STX2, Syntaxin 2; TDEs, Tumor-derived exo-
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somes; TGF-B, Transforming growth factor f3;
TIM-1, Tissue inhibitor of metalloproteases 1;
Tim-3, T-cell immunoglobulin- and mucin-do-
main-containing molecule 3; TJ-CId7, Claudin7
in tight junction; TJP2, Tight junction protein 2;
TKls, Tyrosine kinase inhibitors; TME, Tu-
mor microenvironment; TNBC, Triple-negative
breast cancer; TNC, Tenascin-c; TRAF3IP2,
TRAF3 interacting protein 2; Treg, regulatory T
cells; TSP1, Thrombospondin-1; TSPANS, Te-
traspanin 8; TTLL4, Tubulin tyrosine ligase like
4; VEGF, Vascular endothelial growth factor;
ZIP4, Zinc transporter.
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