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Abstract: High recurrence rate in HCC is the primary cause of the poor prognosis after hepatectomy. Therefore, in 
this study, we aimed to construct a gene signature for predicting the recurrence rate in HCC. The mRNA expression 
profiles and clinical information of HCC patients from GEO and TCGA databases were used, and ferroptosis-related 
gene list was obtained from the FerrDb database. We identified 39 ferroptosis-related genes (FDEGs) that were dif-
ferentially expressed between HCC samples and normal tissues from the GSE14520 dataset. The univariate and 
multivariate Cox regression analyses were employed to construct a prognostic signature. Seven FDEGs (MAPK9, 
SLC1A4, PCK2, ACSL3, STMN1, CDO1, and CXCL2) were included to construct a risk model, which was validated 
in the TCGA dataset. Patients in high-risk groups exhibited a significantly poor prognosis compared with patients in 
low-risk groups in both the training set (GSE14520 cohort) and the validation set (TCGA cohort). Multivariate cox re-
gression analyses demonstrated that the 7-gene signature was an independent risk factor for RFS in HCC patients. 
KEGG analysis showed that FDEGs were mainly enriched in Ferroptosis, Hepatocellular carcinoma pathway, and 
MAPK signaling pathway. GSEA analysis suggested that the high-risk group was correlated with multiple oncogenic 
signatures and invasive-related pathways. These results indicated that this risk model can accurately predict recur-
rence after hepatectomy and offer novel research directions for personalized treatment in HCC patients.

Keywords: Hepatocellular carcinoma, ferroptosis, gene signature, recurrence-free survival, nomogram, decision 
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Introduction

Primary liver cancer is one of the most common 
malignant tumors, in which hepatocellular car-
cinoma (HCC) accounts for about 85-90% of 
cases [1]. HCC causes more than 800,000 
deaths per year and imposes a huge economic 
and health burden worldwide [2, 3]. According 
to the data released by the American Cancer 
Society in 2021, the 5-year survival rate for 
HCC of all stages is only 20% [4]. With the 
improvement in diagnosis, the proportion of 
HCC receiving surgical resection has increased, 
but those who have undergone radical resec-
tion still have a 70% recurrence rate within 5 
years [5]. The high recurrence rate is the main 

cause of death in HCC. Therefore, establishing 
an effective model to predict the postoperative 
recurrence and identify the high-risk patients 
early is of great value to improve the prognosis 
in HCC. The traditional recurrence prediction 
model integrates data on tumor stage, tumor 
size, microvascular invasion, tumor differentia-
tion, and other relevant clinical characteristics 
supplemented by a single serum alpha-fetopro-
tein expression [6-8]. But the specificity and 
sensitivity of this model is not high enough to 
distinguish patients with heterogeneity.

Ferroptosis is a newly discovered form of cell 
death that results from severe lipid peroxida-
tion of intracellular iron overload and differs 
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from apoptosis, necrosis, and autophagy in 
terms of morphology [9, 10]. In recent years, an 
increasing number of studies have revealed 
that ferroptosis is crucial in regulating the initia-
tion and progression of some tumors [11-13]. 
Specifically, ferroptosis has a pivotal role in kill-
ing tumor cells and inhibiting tumor invasion 
and metastasis [14, 15]. A previous study has 
shown that ferroptosis is an effective method 
to induce HCC cell death and the cytotoxic 
effect of sorafenib in HCC [16]. At present, 
some ferroptosis-related genes such as NRF2, 
NQO1, HCAR1, MCT1, and ZFP36 have been 
proven as cancer-promoting or cancer-sup-
pressing factors in HCC [17-19]. However, few 
studies focus on the predictive value of these 
ferroptosis-related genes on the recurrence of 
HCC.

In this study, we constructed a 7-gene HCC 
recurrence model by using differentially ex- 
pressed ferroptosis-related genes (FDEGs) 
extracted from the gene expression omnibus 
(GEO) [20] and FerrDb database [21]. We fur-
ther validated the reliability of this 7-gene HCC 
recurrence model in an independent cohort of 
The Cancer Genome Atlas (TCGA) [22]. The pre-
dictive nomogram and decision curve analysis 
(DCA) were built to estimate the recurrence  
predictive capacity of this 7-gene signature. In 
addition, we investigated the correlation 
between the genetic alteration of this 7-gene 
signature and the recurrence-free survival 
(RFS) in the cBioPortal database [23]. Finally, 
Gene ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and gene set 
enrichment analyses (GSEA) were used to 
explore the intrinsic regulatory mechanisms of 
these ferroptosis-related genes [24, 25]. 
Together, our results suggest that the ferropto-
sis-related 7-gene signature and nomogram 
have the potential to effectively predict the RFS 
for patients with HCC.

Methods

Gene datasets and data collection

We downloaded the mRNA expression data and 
the corresponding clinical characteristics data 
from the GEO and TCGA databases. The ferrop-
tosis-related gene list was obtained from the 
FerrDb database and literature in PubMed. In 
the GEO database, we searched the keywords 
“hepatocellular carcinoma”, “HCC”. In addition, 

“Homo sapiens” and “Expression profiling by 
array” were included in the next round of 
screening. The datasets we would select must 
meet the following criteria: (1) they are human 
hepatocellular carcinoma samples; (2) the 
number of tumor and non-tumor liver control 
tissue samples is more than 100; (3) complete 
clinicopathological and survival data are avail-
able. At the end, the GSE14520 dataset con-
taining RNA sequencing of 242 HCC samples 
and 246 normal liver samples was chosen to 
construct the predictive model for recurrence. 
The liver hepatocellular carcinoma (LIHC) co- 
hort from the TCGA database, containing the 
gene expression and the clinical data of 372 
HCC patients, was used as the validation set. 
All the gene expression and the clinical data 
were obtained from the publicly available data-
base; hence, no additional ethical approval was 
required.

Identification of the differentially expressed 
ferroptosis-related genes (FDEGs)

The R software (version 4.0.2) and built-in 
limma package were utilized to perform the 
analysis for differentially expressed genes 
using RNA sequence data between the HCC 
tumor tissues and the paired normal tissues, 
which were downloaded from the GSE14520 
dataset. The selection of the differentially 
expressed genes must meet two standards: 
log2 fold change (FC) >1.0 or log2 fold change 
(FC) <-1.0, adjusted P-value <0.05. Next, the 
overlapping gene between the ferroptosis-relat-
ed genes obtained from the FerrDb database 
and the differentially expressed genes identi-
fied from the GSE14520 dataset were extract-
ed as FDEGs.

Establishment and validation of the ferropto-
sis-related gene signature

We performed the univariate proportional  
hazards Cox regression on FDEGs to identify 
the prognostic value of the ferroptosis-relat- 
ed genes for RFS, and genes with a P value 
<0.05 were considered statistically significant. 
Subsequently, FDEGs identified by univariate 
Cox regression were included in the multivari-
ate Cox’s proportional hazard model with for-
ward LR model to identify the genes which were 
independent risk factors for RFS of patients 
with HCC. In addition, the regression coeffi-
cients of FDEGs were also obtained from the 
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multivariate Cox regression. Finally, these 
genes were used to establish a prognostic risk 
signature. Next, the 242 HCC patients from the 
GSE14520 dataset were divided into high-risk 
and low-risk groups based on the median Risk 
score, which was calculated based on the fol-
lowing formula: Risk score = vi i1i

n/ b#=  (v rep-
resent the expression value of the gene and β 
represent the corresponding regression coeffi-
cients). In addition, the Kaplan-Meier survival 
analysis and the time-dependent receiver oper-
ating characteristic (ROC) curve were used to 
evaluate the predictive performance of this 
gene signature for RFS. Moreover, to validate 
the independent prognostic role of this gene 
signature for RFS and to identify independent 
prognostic parameters, the univariate and mul-
tivariate Cox regression analyses were per-
formed in the GSE14520 dataset based on  
this prognostic gene signature and some clini-
cal characteristics such as age, gender, tumor 
stage, tumor size, serum Alpha-fetoprotein 
(AFP) level, TNM stage, cirrhosis, and alanine 
aminotransferase (ALT). P<0.05 was consid-
ered statistically significant. Those characteris-
tics with P<0.05 from the univariate analysis 
were further included in the multivariate Cox’s 
proportional hazard model with forward LR 
model. Finally, we validated the reliability of  
this risk score model using an independent 
LIHC cohort in the TCGA database.

Establishment and validation of a predictive 
nomogram 

We established a nomogram that integrated  
all the independent risk factors identified from 
the multivariate Cox regression analysis to pre-
dict 1-, 3-, and 5-year RFS rate. We calculated 
the concordance index (C-index) using the “sur-
vival” R package to assess the predictive per-
formance of the nomogram. We next plotted 
the calibration curve of RFS at different year 
points. In addition, the time-dependent ROC 
curve was plotted via the “timeROC” R package 
to assess the performance of the nomogram. 
Furthermore, we performed the DCA analysis 
via the “ggDCA” R package to select the best 
model with the highest clinical net benefit.

Genetic alteration and protein expression 
analysis of gene signature

To investigate the effect of gene alterations on 
the aberrant expression, we queried the genet-

ic alterations and mutation hotspot of gene sig-
nature using the liver Hepatocellular Carcinoma 
dataset (TCGA, Firehose Legacy) in the cBio-
Portal database. We then compared the prob-
ability in overall survival (OS), disease-free, 
progression-free survival, and disease-specific 
survival between the alteration groups and the 
no alteration groups. Furthermore, we investi-
gated the differential protein expression of the 
7-gene signature between the HCC tissues and 
the adjacent normal liver tissues in the Human 
Protein Atlas database. 

Functional enrichment analysis via GO, KEGG, 
and GSE

We performed the GO and KEGG enrichment 
analyses on the FDEGs using the DAVID data-
base to explore the potential mechanisms by 
which these genes regulate the tumorigenesis 
and progression of HCC [26]. The results were 
visualized using the “clusterProfiler”, “enrich-
plot”, and “ggplot2” R packages.

RNA sequence (RNA seq) data in the TCGA 
database were selected to perform the GSEA 
enrichment analysis using the GSEA software 
(version 4.1.0). We divided the 372 HCC 
patients into high-risk and low-risk groups 
based on the median Risk score. In the pro- 
cess of GSEA, the KEGG gene set (c2.cp.kegg.
v7.0.symbols.gmt) was selected as the func-
tional gene set, and the number of permuta-
tions was set as 1000. Other parameters were 
set to default values. The adjusted p-value 
<0.05 and false discovery rate (FDR) q-value 
<0.25 were considered statistically significant.

Statistical analysis

The R software (version 4.0.2) was utilized to 
perform the statistical analysis and plot the 
statistical diagram. The association between 
the risk score and the clinicopathological char-
acteristics was analyzed using Pearson’s chi-
square test. Univariate and multivariate cox 
regression analyses were used to identify the 
risk factors or independent risk factors for  
RFS. Kaplan-Meier analysis with the log-rank 
test was employed to compare the RFS be- 
tween the high-risk group and the low-risk 
group. The area under the curve (AUC) of ROC 
was utilized to estimate the predictive perfor-
mance of the gene signature. Two-sided P< 
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0.05 was considered as a statistically signifi-
cant difference.

Results

FDEGs identification in HCC

Figure 1 showed the schematic diagram of  
our study (Figure 1). A total of 1014 differen-
tially expressed genes, including 539 down-
regulated and 375 up-regulated genes, were 
identified by comparing 242 HCC tissues with 
246 adjacent normal liver tissues from the 
GSE14520 dataset. Meanwhile, we extracted 
254 ferroptosis-related genes from the FerrDb 
database. The overlapping 39 genes between 
the 1014 differentially expressed genes and 
the 254 ferroptosis-related genes were identi-
fied as FDEGs.

Establishment of the prognostic 7-gene signa-
ture

The univariate Cox regression and multivariate 
Cox regression on 39 FDEGs were performed 
sequentially to identify the independent prog-
nostic genes for RFS. After the Multivariate Cox 
regression analysis, seven genes were identi-
fied to construct a predictive gene signature 
(Table 1). These seven genes were mitogen-
activated protein kinase 9 (MAPK9), solute car-
rier family 1 member 4 (SLC1A4), phosphoenol-
pyruvate carboxykinase 2 (PCK2), acyl-CoA syn-
thetase long-chain family member 3 (ACSL3), 
stathmin 1 (STMN1), cysteine dioxygenase type 
1 (CDO1), and chemokine ligand 2 (CXCL2).  
The risk score = (-0.167) * expressionMAPK9 + 
(-0.086) * expressionSLC1A4 + (-0.167) * expres-

Figure 1. Schematic diagram showing the construction of ferroptosis-related gene signatures for clinically predicting 
recurrence after hepatectomy of hepatocellular carcinoma patients.
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sionPCK2 + 0.203 * expressionACSL3 + 0.201 * 
expressionSTMN1 + (-0.003) * expressionCDO1 + 
0.109 * expressionCXCL2.

Internal validation of the prognostic gene sig-
nature

We calculated the 7-gene-based risk score  
for each HCC patient in the training set 
(GSE14520). Next, the 242 patients were divid-
ed into high-risk and low-risk groups based on 
the median Risk score (Figure 2A). The Kaplan-
Meier survival analysis and the time-depen- 
dent ROC curve were used to evaluate the pre-
dictive performance of this gene signature for 
RFS. The ROC curve revealed that AUCs of 1-, 
3-, and 5-year RFS rate were 0.68, 0.64, and 
0.61, respectively (Figure 2B). Furthermore, 
The Kaplan-Meier survival analysis revealed 
that patients in the high-risk group exhibited a 
worse RFS than patients in the low-risk gro- 
up (Figure 2C). In addition, the correlation anal-
ysis demonstrated that high-risk score corre-
lated with tumor-node-metastasis (TNM) stage 
(P=0.020), serum AFP level (P<0.001), alanine 
aminotransferase (ALT) (0.025), predicted risk 
metastasis signature (PRMS) (P<0.001), recur-
rence (P=0.001), and death (P=0.002) (Table 
2). Moreover, we explored the independent 
prognostic value of the gene signature for RFS 
by the univariate and multivariate Cox regres-
sion analyses. Univariate cox regression analy-
sis showed that gender (P=0.009), PRMS 
(0.006), tumor size (P=0.045), TNM stage 
(P<0.001), and high-risk score (P<0.001) were 
risk factors for recurrence-free survival. The 
multivariate Cox regression analysis confirmed 
that gender (aHR (95% CI): 2.092 (1.081-
4.049); P=0.028), TNM stage (aHR (95% CI): 
2.608 (1.262-3.389); P=0.004), and high-risk 

score (aHR (95% CI): 1.879 (1.215-2.906); 
P=0.005) were independent risk factors for 
RFS (Figure 3). These results demonstrated  
the feasibility of this 7-gene signature for RFS 
prediction.

Validation of the prognostic gene signature in 
the TCGA database

We download the RNA seq and the corre- 
sponding clinical characteristic data in the 
TCGA database to validate the performance of 
this 7-gene signature for RFS prediction. We 
calculated the 7-gene-based risk score for  
each HCC patient in the validation set (TCGA 
HCC cohort). The 372 patients were divided 
into high-risk and low-risk groups based on the 
median Risk score (Figure 4A). The ROC analy-
sis showed that the AUCs of 1-, 3-, and 5-year 
RFS rate were 0.69, 0.73, and 0.74, respec- 
tively (Figure 4B). Furthermore, consistent with 
the result from the GSE14520 dataset, the 
Kaplan-Meier survival analysis revealed that 
patients in the high-risk group exhibited a 
worse RFS than patients in the low-risk group 
(Figure 4C). In addition, correlation analysis 
demonstrated that high-risk score correlated 
with tumor grade (P=0.026), preoperative  
pharmaceutical (P=0.036), T 3/4 (P=0.002), 
lymph node invasion (P=0.001), metastasis 
(P=0.048), recurrence (P<0.001), and death 
(P=0.048) (Table 3). Moreover, we explored the 
independent prognostic value of this gene sig-
nature for RFS by the univariate and multivari-
ate Cox regression analyses. Univariate Cox 
regression analysis revealed that preoperative 
pharmaceutical (P=0.044), pathologic stage 
(0.003), stage 3/4 (P<0.001), lymph node inva-
sion (P=0.040), and high-risk score (P<0.001) 
were risk factors of recurrence-free survival. 
The multivariate Cox regression analysis con-
firmed that T 3/4 (aHR (95% CI): 2.056 (1.320-
3.204); P=0.001) and high-risk score (aHR 
(95% CI): 1.779 (1.286-2.462); P=0.001) were 
independent risk factors for RFS (Figure 5). 
Together, these results validated our construc-
tion of the 7-gene signature for RFS prediction.

Establishment and validation of a predictive 
nomogram

We next established a nomogram that integrat-
ed all the independent risk factors including 
gender, risk score, and tumor stages identifi- 
ed from the multivariate Cox regression analy-

Table 1. Multivariate Cox regression analysis of 
the 7-gene signature

Gene Coef aHR Lower 
95% CI

Upper 
95% CI P-Value

MAPK9 -0.167 0.497 0.330 0.750 0.001
SLC1A4 -0.086 0.600 0.387 0.929 0.022
PCK2 -0.167 0.516 0.315 0.847 0.009
ACSL3 0.203 1.784 1.105 2.879 0.018
STMN1 0.201 1.851 1.102 3.112 0.020
CDO1 -0.003 0.593 0.379 0.926 0.022
CXCL2 0.109 1.606 1.027 2.512 0.038
aHR-adjusted hazard ratio; CI-confidence interval.
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sis to predict the 1-, 3-, and 5-year RFS (Figure 
6A). The C-index of the combined nomogram 
model was 0.872. The calibration curve of the 
nomogram representing the actual and the 
combined model in the training set (GSE14- 
520) exhibited an accurate prediction for the 
1-, 3-, and 5-year RFS (Figure 6B-D). Further- 
more, the ROC analysis showed that the AUCs 
for predicting 1-, 3-, and 5-year RFS were  
0.824, 0.807, and 0.762, respectively (Figure 
6E). From the DCA curve, we could see that the 
combined model was superior for 1-, 3-, and 
5-year RFS prediction compared with the indi-
vidual predictive factors (Figure 6F-H). In sum, 
these results demonstrated that the combin- 
ed model of nomogram exhibited an excellent 
predictive ability for 1-, 3-, and 5-year RFS of 

HCC patients, which might be useful in clinical 
practice.

Genetic alteration of gene signature correlated 
with poor survival

The genetic alteration of this 7-gene signature 
was explored in the Liver Hepatocellular 
Carcinoma cohort (TCGA, Firehose Legacy) of 
the cBioPortal database. Among 352 HCC pa- 
tients examined, 95 patients (27.0%) showed 
genetic alterations in this 7-gene signature 
(Figure 7A). In addition, the patients with  
genetic alteration had poor rate in overall sur-
vival (P=2.98e-3, Figure 7B), disease-free (P= 
0.0274, Figure 7C), progression-free survival 
(P=0.0474, Figure 7D), and disease-specific 

Figure 2. Risk score analysis, time-dependent ROC analysis, and Kaplan-Meier analysis for the 7-gene signature in 
HCC in the training set (GSE14520 HCC cohort). A. Risk score, heatmap of mRNA expression of the 7-gene signature 
in the training set of GSE14520 HCC cohort. B. AUC of the time-dependent ROC curves validated the prognostic 
performance of the risk score in the GSE14520 HCC cohort. C. Kaplan-Meier curves for the RFS of HCC patients in 
the high-risk group and low-risk group in the GSE14520 cohort.
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survival (P=0.0118, Figure 7E) than the pa- 
tients without genetic alterations. We further 

investigated the protein expression level of this 
7-gene signature in HCC tissues and their adja-

Table 2. Correlation between risk score and clinicopathological features of HCC patients for RFS in 
the GSE14520 HCC cohort

Characteristics N
Risk score level

X2 P-Value
Low High

Age >55 117 64 53 2.370 0.124
≤55 125 56 69

Gender Male 211 106 105 0.279 0.598
Female 31 14 17

Main tumor size >5 cm 88 36 52 0.131 0.064
≤5 cm 154 84 70

TNM stage I/II 174 97 77 5.400 0.020
III 51 19 32

Serum AFP level >300 ng/ml 110 41 69 12.393 <0.001
≤300 ng/ml 128 77 51

ALT >50 U/L 100 41 59 5.027 0.025
≤50 U/L 142 79 63

Multinodular Yes 52 22 30 1.404 0.236
No 190 98 92

Cirrhosis Yes 223 107 116 2.926 0.087
No 19 13 6

PRMS classification High 121 25 96 80.997 <0.001
Low 121 95 26

Recurrence Yes 136 55 81 10.389 0.001
No 106 65 41

Death Yes 96 36 60 9.299 0.002
No 146 84 62

TNM-tumor, node, metastasis, AFP-alpha fetoprotein, ALT-alanine aminotransferase, PRMS-Predicted risk Metastasis Signa-
ture. P-Value <0.05 were considered statistically significant.

Figure 3. Forrest plot of the univariate and multivariate Cox regression analyses in GSE14520 HCC cohort.
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cent normal liver tissues deposited in the 
Human Protein Atlas database. In HCC tissues, 
the expression of MAPK9, SLC1A4, ACSL3, and 
STMN1 proteins increased, while the expres-
sion of PCK2 and CDO1 proteins decreased 
(Figure 7F). The information for CXCL2 protein 
expression was not available in the Human 
Protein Atlas database.

GO and KEGG enrichment analyses and pro-
tein-protein interaction (PPI) network construc-
tions of FDEGs

We performed the GO and KEGG enrichment 
analyses on the 39 FDEGs to explore the po- 
tential mechanisms by which these genes regu-
late the tumorigenesis and progression of HCC. 
GO analysis revealed that the FDEGs were sig-

nificantly enriched in the signaling pathways 
involved in responding to nutrient levels, the 
metal ion, starvation, and oxidative stress 
(Figure 8A). Interestingly, the FDEGs were also 
found enriched in neuron projection cytoplasm, 
pigment granules, and melanosome (Figure 
8B). At the molecular level, the FDEGs were 
associated with protein serine kinase activity 
and decanoate-CoA ligase activity (Figure 8C). 
Further KEGG analysis showed that the FDEGs 
were significantly enriched in the pathways of 
Ferroptosis, Hepatocellular carcinoma, MAPK 
signaling pathway, and other growth-related 
pathways (Figure 8D). Additionally, we con-
structed a PPI network of these FDEGs in the 
STRING database and visualized it utilizing the 
Cytoscape software (Figure 8E).

Figure 4. Risk score analysis, timedependent ROC analysis, and Kaplan-Meier analysis for the 7-gene signature in 
HCC in the validation set (TCGA HCC cohort). A. Risk score, heatmap of mRNA expression of the 7-gene signature 
in the validation set of TCGA HCC cohort. B. AUC of the time-dependent ROC curves validated the prognostic perfor-
mance of the risk score in the TCGA HCC cohort. C. Kaplan-Meier curves for the RFS of HCC patients in the high-risk 
group and low-risk group in the TCGA cohort.
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Table 3. Correlation between risk score and clinicopathological features of HCC patients for RFS in 
the TCGA HCC cohort

Characteristics N
Risk score level

X2 P-Value
Low High

Age >60 180 83 97 1.971 0.160
≤60 191 102 89

Gender Male 250 128 122 0.546 0.460
Female 121 57 64

Race White 192 91 101 0.971 0.325
Other 179 94 85

Tumor grade G1/G2 236 128 108 4.959 0.026
G3/G4 135 57 78

Radiation Yes 10 3 7 1.600 0.203
No 361 182 179

Pharmaceutical Yes 24 7 17 4.397 0.036
No 247 178 169

Pathologic stage I/II 266 137 129 1.009 0.315
III/ IV 105 48 57

T T1/T2 260 143 117 9.165 0.002
T3/T4 111 42 69

N Yes 15 1 14 11.669 0.001
No 156 184 172

M Yes 13 3 10 3.867 0.048
No 358 182 176

Recurrence Yes 171 62 109 23.496 <0.001
No 200 123 77

Death Yes 130 55 75 4.572 0.032
No 241 130 111

Figure 5. Forrest plot of the univariate and multivariate Cox regression analyses in TCGA HCC cohort.
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GSEA enrichment analysis

GSEA analysis was carried out to further inves-
tigate the significant signaling pathways in 
which the genes of the high-risk score and low-
risk score patients were enriched. We found 
that the high-risk score group was significantly 
correlated with pathways critical for cancer 
development including cell cycle (NES=1.5, 

P<0.001), notch signaling (NES=1.5, P<0.001), 
pathway in cancer (NES=1.5, P<0.001), and 
VEGF signaling pathway (NES=1.7, P<0.001) 
(Figure 8F). In contrast, the low-risk score 
group was negatively correlated with the sig- 
naling pathways for lysine degradation (NES=-
2.2, P<0.001), peroxisome (NES=-2.1, P< 
0.001) and propanoate metabolism (NES=-1.9, 
P<0.001) (Figure 8G).

Figure 6. Nomogram predicting recur-
rence-free survival for HCC patients. 
(A) Nomogram was established based 
on gender, TNM stage, and risk score 
as predictive factors to predict 1-, 3-, 
and 5-year recurrence-free survival 
probability. (B-D) The calibration plot 
for the recurrence-free survival prob-
ability at 1 year (B), 3 years (C), and 5 
years (D) for internal validation of the 
nomogram. The Y-axis and X-axis rep-
resented actual survival and nomo-
gram-predicted survival, respectively. 
(E) The time‑dependent ROC curves 
for 1-, 3-, and 5-year recurrence-free 
survival prediction of the nomogram. 
(F-H) DCA curves of gender, TNM 
stage, risk score and combined mod-
el to evaluate the clinical application 
of different decision strategies. The 
blue line represented the combined 
nomogram and exhibited the best net 
benefit for predicting the recurrence-
free survival probability at 1 year (F), 
3 years (G), and 5 years (H).
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Figure 7. The genetic alterations and protein expression analysis of the 7-gene signature in HCC. (A) The genetic alteration profiles of the seven genes in the TCGA 
liver cancer RNA-seq (n=352) dataset from the cBioPortal database. (B-E) Patients with genetic alteration had poorer overall survival probability (B), disease-free 
probability (C), progression-free survival probability (D), and disease-specific survival probability (E) than the patients without genetic alterations. (F) The represen-
tative protein expression of MAPK9, SLC1A4, PCK2, ACSL3, STMN1, and CDO1 in HCC and normal liver tissue. Data were from the Human Protein Atlas database 
(×400 magnification).
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Figure 8. Representative results of functional enrichment analysis via GO, KEGG, and GSEA. (A-D) The 39 differentially expressed ferroptosis-related genes were 
mainly enriched in pathways based on the biological process (A), cellular component (B), molecular function (C) and KEGG pathway (D). (E) Protein-protein interac-
tion network showed the interactions between these 39 ferroptosis-related genes. (F, G) The signaling pathways in which genes of the high-risk score (F) and low-risk 
score patients (G) were significantly enriched in the GSEA.
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Discussion

Cancer is a broad public health issue and has 
brought a tremendous economic and health 
burden worldwide. HCC, a highly aggressive 
cancer, was the primary cause of cancer-relat-
ed death in many areas of the world, especially 
in East Asia and sub-Saharan Africa [27, 28]. 
Although the improvement in physical exam- 
ination has increased the early detection and 
subsequent curative surgery in HCC patients, 
studies reveal that those who have undergone 
radical resection still have a 70% recurrence 
rate within 5 years [5, 29-31]. The high recur-
rence rate is the main cause for the short over-
all survival and poor prognosis of HCC pa- 
tients. Therefore, it is urgent to establish an 
effective model for predicting postoperative 
recurrence and identifying high-risk patients 
early to improve the prognosis of HCC. The tra-
ditional predictive model of recurrence uses 
information about tumor stage, tumor size, 
microvascular invasion, tumor differentiation, 
and other relevant clinical characteristics, and 
supplemented by a single serum alpha-feto- 
protein expression. But its specificity and sen-
sitivity were not high enough to distinguish 
patients with heterogeneity. In recent years, 
the gene signature based on the mRNA aber-
rant expression has been reported to address 
the heterogeneity; thereby, there are many 
studies on establishing gene signature to 
improve the diagnosis and prognosis in HCC 
[32]. Wang et al. established an RNA-binding 
proteins-related gene signature to predict the 
overall survival and found that this gene signa-
ture could be an independent risk factor for 
HCC patients [33]. Yang and colleagues con-
structed a two-gene signature (HNRNPA2B1 
and RBM15) to identify and treat HBV-related 
HCC patients and showed the predictive value 
for OS [34]. However, few studies were design- 
ed to investigate the recurrence-related gene 
signature of HCC [35]. In our current study, we 
for the first time established a novel ferropto-
sis-related 7-gene signature for HCC RFS 
prediction.

Ferroptosis plays a significant role in inducing 
HCC cell death and inhibiting cell proliferation 
and metastasis. Furthermore, many ferropto-
sis-related genes have been identified in regu-
lating the activity of ferroptosis. Previous publi-
cations have reported that DAZAP1 is the fer-
roptosis suppressor gene and is significantly 

overexpressed in HCC cells. DAZAP1 also pro-
motes cell proliferation and significantly reduc-
es the cellular sensitivity to sorafenib [36]. 
Another study reports that metallothionein 
(MT)-1G increases the sorafenib-resistance of 
HCC cells by inhibiting the process of ferropto-
sis [37]. Furthermore, a recent study reveals 
that ACSL4, a positive-activating enzyme of fer-
roptosis, can increase the sensitivity of HCC 
patients to sorafenib by activating ferroptosis 
[38-40]. These studies focus on the predictive 
value of ferroptosis-related gene signature for 
overall survival of HCC patients; however, the 
significance of ferroptosis-related gene signa-
ture in predicting the RFS in HCC is largely 
unknown [41-44].

Here, we found that ferroptosis-related 7-gene 
signature (including MAPK9, SLC1A4, PCK2, 
ACSL3, STMN1, CDO1, and CXCL2) could pre-
dict RFS in HCC. The 7-gene signature exhibited 
an excellent predictive performance in the 
training set (GSE14520). The Kaplan-Meier  
survival analysis revealed that patients in the 
high-risk group exhibited a worse RFS than 
patients in the low-risk group. And the cor- 
relation analysis demonstrated that high-risk 
scores correlated with TNM stage, serum AFP 
level, ALT, predicted risk metastasis PRMS, 
recurrence, and death. Moreover, the multivari-
ate Cox regression analyses indicated that 
high-risk score was independent risk factors for 
RFS. More importantly, all these results were 
verified in the validation set (TCGA HCC cohort).

We further established a nomogram that inte-
grated all the independent risk factors to pre-
dict the 1-, 3-, and 5-year RFS. The results 
showed an accurate performance in predicting 
recurrence. In addition, the combined model of 
nomogram performed better than the individu-
al predictive factors, suggesting its potential  
in clinical application. We also examined the 
genetic alteration of this 7-gene signature in 
the cBioPortal database and found that 27% of 
the patients had genetic alterations in the 
7-gene signature. These genetic changes cor-
related with poor OS and RFS. Since genetic 
alteration is responsible for the dysregulation 
of gene expression [45, 46], the genetic altera-
tion of this 7-gene signature may have predic-
tive value for RFS. Moreover, the KEGG an- 
alysis revealed that the FDEGs were significant-
ly enriched in the pathways of Ferroptosis, 
Hepatocellular carcinoma, MAPK signaling pa- 
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thway, and other growth-related pathways,  
confirming the functional importance of these 
FDECs in cancer development. Finally, our 
GSEA analysis revealed several significantly 
enriched tumorigenic signaling pathways. Since 
the number of ferroptosis-related genes is 
small, GSEA identifies functions that are not 
related to ferroptosis but to cancer-related sig-
naling, which might explain the underlying 
molecular mechanisms of this gene signature.

Nonetheless, our study has several limitations. 
First, although the 7-gene signature and the 
predictive nomogram were built and validated 
by different databases, they need to be further 
tested in clinical trials. Second, in addition to 
examine the expression of this gene signature 
in HCC and normal tissues, the specific func-
tions and molecular mechanisms should be 
investigated by various in vitro and vitro 
approaches. In conclusion, our study construct-
ed a 7 ferroptosis-related gene signature and 
established a prognostic nomogram for clini-
cally predicting recurrence after hepatectomy 
and offered novel research directions for per-
sonalized treatment in HCC patients.
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