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Abstract: Pyroptosis plays important roles in various cancers. In this study, we focused on lung adenocarcinoma 
(LUAD) and aimed to develop new molecular subtypes based on pyroptosis signaling. Pyroptosis-related genes were 
used as a basis to classify molecular subtypes through unsupervised consensus clustering. Gene set enrichment 
analysis was performed to characterize tumor microenvironment (TME) and functional pathways. Univariate Cox 
regression and least absolute shrinkage and selection operator (LASSO) analysis were conducted to identify prog-
nostic genes for establishing a prognostic model. Three molecular subtypes were established with distinct overall 
survival, TME and enriched pathways. C3 subtype had the longest survival and the highest immune infiltration. 
11 prognostic genes were screened to build a prognostic signature for predicting LUAD prognosis. This study em-
phasized the important role of pyroptosis in LUAD development. Pyroptosis was considered to play critical roles in 
regulating TME. Moreover, the 11-gene signature could serve as an indicator for predicting LUAD prognosis, and was 
potential targets for developing targeted drugs.

Keywords: Lung adenocarcinoma, pyroptosis, molecular subtypes, tumor microenvironment, prognostic genes

Introduction

Lung adenocarcinoma (LUAD) is the most com-
mon histological type in non-small cell lung 
cancer (NSCLC), contributing to about 40% of 
lung cancer [1]. Lung cancer is a frequently 
diagnosed cancer worldwide, with 2,206,771 
newly reported cases in 2020 [2]. According to 
global cancer statistics, 1,796,144 lung cancer 
deaths occurred, consisting of 18% of all can-
cer deaths in 2020 [2]. Over half of lung cancer 
patients would die within one year, mostly due 
the fact that patients were already at the 
advanced stage when diagnosed, and the 
5-year overall survival (OS) is lower than 18% 
[1]. Although therapeutic drugs have been 
developed, drug resistance will reduce treat-
ment efficiency. Numerous studies have illus-
trated that mutated oncogenes and dysregu-
lated signaling pathways lead to tumor cell pro-
gression, which encourages the studies on 
novel therapeutic drugs for lung cancer [3, 4]. 

Programmed cell death is a physiological pro-
cess of cell proliferation for maintaining homeo-
stasis, and it is also considered as an anti-
tumor mechanism. Tumor cells have the ability 
to evade cell death, which impairs the homeo-
stasis of cell proliferation and cell death, and 
leads to malignant transformation. Therefore, 
targeting cell death pathway is an effective 
strategy against tumor cell growth [5]. Pyrop- 
tosis is one of the mechanisms leading to cell 
death, and will result in the release of intracel-
lular proinflammatory contents [6]. Evidence 
supports that the cleavage of gasdermin D 
(GSDMD) activates caspase-1/4/5/11, thereby 
causing pyroptosis [7-9]. In oesophageal squa-
mous cell carcinoma, GSDMD overexpression 
can switch apoptosis into pyroptosis [10]. 
Inhibition of GSDMD expression delays pyropto-
sis and accelerates tumor cell proliferation in 
gastric cancer through promoting the transition 
from S to G2 phase [11]. Therefore, pyroptosis 
is a potential therapeutic target for inhibiting 
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tumor cell growth through promoting pyropto-
sis. In NSCLC, Wang et al. discovered that  
simvastatin may function against tumor cells 
through inducing pyroptosis [12]. Pseudoalte- 
romonas haloplanktis TAC125 has been dem-
onstrated to have antiproliferative activity by 
inducing pyroptosis in LUAD cells [13].

To further understand the role of pyroptosis in 
LUAD, pyroptosis-related genes were selected 
for classifying molecular subtypes. We explor- 
ed the association between tumor microenvi-
ronment (TME) and molecular subtypes, and 
discovered differentially enriched pathways 
among the subtypes. Furthermore, based on 
differentially expressed genes (DEGs) among 
the subtypes, we established a prognostic sig-
nature that could serve as an indicator to pre-
dict prognosis for LUAD patients. In addition, 
these prognostic genes may be new drug tar-
gets in LUAD treatment.

Materials and methods

Data source

TCGA-LUAD dataset containing gene expres-
sion profiles, single nucleotide variation (SNV) 
and copy number variation (CNV) data were 
obtained from The Cancer Genome Atlas  
(TCGA) database. After removing samples with-
out survival time or survival status, a total of 
472 samples (413 tumor samples and 59 nor-
mal samples) containing expression data re- 
mained. GSE31210 and GSE50081 datasets 
were obtained from Gene Expression Omnibus 
(GEO) database. Probes were converted to 
gene symbol. One probe corresponding to mul-
tiple genes was removed, whereas the median 
value was selected when multiple probes cor-
responding to one gene. Finally, 226 samples 
and 21,655 genes from GSE31210 dataset 
remained, and 181 samples and 21,655 genes 
from GSE50081 dataset remained. Pyroptosis-
related genes in pyroptosis pathway were 
obtained from Molecular Signatures Database 
(MSigDB, v7.4) [14]. 

Assessment of gene alternations on pyropto-
sis-related genes

To delineate CNVs of 27 pyroptosis-related 
genes in TCGA-LUAD dataset, copy numbers 
were classified into three groups by segment_
mean value, including amplification (Segment_

Mean > 0.2), diploid (-0.2 < Segment_Mean < 
0.2), deletion (Segment_Mean < -0.2). Expres- 
sion of 27 pyroptosis-related genes corre-
sponding to different CNVs was analyzed. For 
analyzing SNVs of 27 genes, SNV data  
in TCGA-LUAD dataset were included and 
mutect2 algorithm was applied to detect gene 
mutations [15]. 

Unsupervised consensus clustering

To classify molecular subtypes based on pyrop-
tosis-related genes, expression profiles of 27 
genes were normalized through scale function 
(center = T and scale = F). ConsensusCluster- 
Plus R package was employed to conduct un- 
supervised consensus clustering [16] in TCGA-
LUAD dataset. Parameters of clusterAlg = 
“pam”, distance = “maximum” and pItem = 0.8 
were set, and cumulative distribution function 
(CDF) and CDF delta area were used to deter-
mine the optimal cluster number k (2 to 10). 
The effectiveness of molecular subtyping was 
verified by GSE31210 and GSE50081 data- 
sets. 

Analysis on immune infiltration

CIBERSORT was introduced for assessing 
immune cell distribution in complex tissues 
from their gene expression profiles [17]. For 
characterizing the degree of immune infiltra- 
tion and stromal infiltration, Estimation of 
STromal and Immune cells in MAlignant 
Tumours using Expression data (ESTIMATE) 
was applied to calculate immune score and 
stromal score [18]. CIBERSORT and ESTIMATE 
both rely on gene set enrichment analysis 
(GSEA) according to a series of gene signa- 
tures [19], and have been widely used to char-
acterize TME for tumor tissues.

Gene set enrichment analysis

GSEA is a powerful analytic tool for interpreting 
gene expression profiles based on gene sets 
with different biological function [19]. It has 
been popularly applied for identify meaningful 
biological pathways. Single-sample gene set 
enrichment analysis (ssGSEA) is a method 
based on GSEA but uses a novel algorithm for 
calculating enrichment score for each sample 
[20]. We conducted ssGSEA in GSVA R pack- 
age to calculate enrichment score of “c2.cp.
kegg.v7.0.symbols.gmt” pathways for each 
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sample in TCGA-LUAD dataset grouping by 
molecular subtypes [21]. 

Construction and validation of a prognostic 
model

Limma R package was employed to identify dif-
ferentially expressed genes (DEGs) between 
two subtypes [22]. DEGs were screened with 
conditions of false discovery rate (FDR) < 0.05 
and |log2(fold change)| > 1. Univariate Cox 
regression analysis was conducted to identify 
DEGs that were significantly associated with 
overall survival in TCGA-LUAD dataset, with 
DEGs with P < 0.01 being considered as prog-
nostic genes. Then least absolute shrinkage 
and selection operator (LASSO) regression 
analysis was performed to shrink the number 
of prognostic genes and simplify the prognos- 
tic model [23]. By increasing the lambda value, 
coefficients of prognostic genes close to zero, 
and the optimal lambda value was selected 
according to partial likelihood deviance. Final- 
ly, the prognostic model was defined as: risk 
score = Σ (gene expression i) * (gene coeffi-
cient i), where i represented prognostic genes.

TCGA-LUAD dataset served as a training datas-
et. GSE31210 and GSE50081 datasets were 
independent validation datasets. Risk score 
was converted to z-score, and z-score = 0 was 
the cut-off to divide samples into high-risk and 
low-risk groups. Kaplan-Meier survival analysis 
was performed to evaluate prognosis of the  
two groups. Receiver operating characteristic 
curve was used to assess the efficiency of the 
prognostic model for predicting 1-year, 3-year 
and 5-year overall survival.

Functional analysis related to risk score

In TCGA-LUAD dataset, GSEA was performed to 
analyze hallmark pathways “h.all.v7.4.symbols.
gmt” from MSigDB for high-risk and low-risk 
groups. Norminal P value (NP) < 0.01 was 
selected to screen enriched pathways. To  
identify genes associated with risk score, 
Pearson correlation analysis in Hmisc R pack-
age (https://hbiostat.org/R/Hmisc/) was con-
ducted. Pearson |R| > 0.4 and P < 0.05 were 
determined to screen genes significantly asso-
ciated with risk score. WebGestaltR package 
was implemented to annotate Gene Ontology 
(GO) terms and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways [24]. 

Statistical analysis

All statistical analysis was performed in R 
(v4.1.1) software. Parameters not showing 
were default. Statistical methods were des- 
cribed in the corresponding sections. P < 0.05 
was considered as significant. ns, no signifi-
cance. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.

Results

Using pyroptosis-related genes to construct 
molecular subtypes

As pyroptosis has both suppressive and pro- 
motive roles in tumor development and the 
release of many pro-inflammatory factors, we 
first assessed whether there was a difference 
of pyroptosis-related genes between tumor  
and normal tissues in LUAD patients. A total of 
27 genes in pyroptosis pathway were included. 
Based on CNV degree, three groups including 
amplification, diploid and deletion were classi-
fied. We found that 26 pyroptosis-related ge- 
nes had significant copy number variations 
(CNVs) apart from CHMP2A (Supplementary 
Table 1). The expression level among the three 
groups showed a significant difference with 
relatively higher expression in amplification 
group (Supplementary Figure 1). In the single 
nucleotide variations, TP53 was the most mu- 
tated, accounting for a proportion of 48% in 
TCGA-LUAD samples (Supplementary Figure 2). 
Missense mutations consisted of majority of 
samples, followed by nonsense mutations.

Given that these pyroptosis-related genes were 
greatly altered, we then built a molecular sub-
typing system based on the gene expression. 
By using unsupervised consensus clustering, 
we set cluster number k from 2 to 10, and 
obtained consensus CDF curve of different 
cluster numbers (Figure 1A). According to the 
CDF and consensus matrix, cluster number k = 
3 was selected to classify samples into three 
molecular subtypes (Figure 1B). Kaplan-Meier 
survival analysis showed differential overall 
survival (OS) among three subtypes (C1, C2  
and C3) in all three datasets including TCGA-
LUAD (P = 0.035, Figure 1C), GSE31210 (P = 
0.0039, Figure 1D) and GSE50081 (P = 0.036, 
Figure 1E). C3 subtype had a better OS  
than C1 and C2 subtypes. The distinct OS 
among the three subtypes suggested that this 
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molecular subtyping based on pyroptosis-relat-
ed genes was effective.

Differential TME among the three subtypes

Evidence supported that pyroptosis can pro-
mote the infiltration of immune cells and the 
generation of inflammatory TME [25, 26]. 
Therefore, we evaluated the infiltration of vari-
ous immune cells through CIBERSORT. 15 of 
22 immune cells were found to be differentially 
distributed among the three subtypes (P < 
0.05, Figure 2A). Notably, CD8 T cells, activat-
ed memory CD4 T cells and M1 macrophages 
were more enriched in C3 subtype compared  
to other two subtypes. Simultaneously, C3 sub-
type had higher immune score and stromal 
score, indicating a high immune and stromal 
infiltration (Figure 2B and 2C).

Chemokines and chemokine receptors are 
important mediators for assisting the infiltra-

tion of immune cells. Among 18 chemokine 
receptors and 41 chemokines, 16 out of 18 
and 36 out of 41 presented significantly differ-
ential expression among the three subtypes (P 
< 0.05, Figure 2D and 2E). Especially, a major-
ity of chemokines and chemokine receptors 
were the most enriched in C3 subtype, which 
contributed to immune-infiltrated tumor micro-
environment. In addition, we also assessed the 
expression of 47 immune checkpoints [27], 
and found that C2 subtype had the lowest 
expression level (Figure 2F). Apart from 
TNFSF18, other checkpoints were all differen-
tially expressed among the three subtypes, 
suggesting that pyroptosis played a certain  
role in modulating tumor microenvironment.

Different pathways enriched in the three sub-
types

To identify if there were different enriched path-
ways among the three subtypes, we firstly ana-

Figure 1. Constructing molecular subtypes for LUAD based on pyroptosis-related genes. A. Consensus CDF curve 
and delta area when cluster number k = 2 to 10 in TCGA-LUAD dataset. B. Consensus matrix when k = 3 by unsuper-
vised consensus clustering in TCGA-LUAD dataset. C-E. Kaplan-Meier survival curves of three molecular subtypes 
in TCGA-LUAD, GSE31210 and GSE50081 datasets. Log-rank test was conducted. CDF, cumulative distribution 
function. 
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Figure 2. Characterization of TME in three molecular subtypes in TCGA-LUAD dataset. (A) Enrichment score of 22 immune cells through CIBERSORT. (B, C) Immune 
score (B) and stromal score (C) of three subtypes calculated by ESTIMATE. (D, E) Expression of chemokine receptors (D) and chemokines (E) in three subtypes. (F) 
Expression of 41 immune checkpoints in three subtypes. ANOVA was conducted among three groups. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001.
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lyzed the DEGs between each of two groups  
(C1 vs. C2, C2 vs. C3 and C1 vs. C3) through 
limma R package [22]. By comparing C1 with 
C2 (C1 vs. C2), we screened 112 upregulated 
genes and 62 downregulated genes (Figure 
3A). In C1 vs. C3, 47 upregulated and 30 down-
regulated genes were screened (Figure 3B). In 
C2 vs. C3, we identified 48 upregulated and 
124 downregulated genes (Figure 3C). Venn 
plot of DEGs showed that only 2 same DEGs 
were identified in all the three subtypes (Figure 
3D), indicating that the distinctly altered genes 
may lead to different enriched pathways. 

Then ssGSEA was applied to investigate  
the enrichment of pathways in “c2.cp.kegg.
v7.0.symbols.gmt” for each sample. The three 
subtypes manifested differential enrichment of 
the top 15 enriched pathways (Figure 3E). 
O-glycan biosynthesis, hedgehog ignaling path-
way and renin angiotensin system were the 
most enriched pathways in C1 subtype, but 
showed a significantly lower enrichment in C2 
and C3 subtypes. Metabolism-related path-
ways such as cytochrome P450, tyrosine me- 
tabolism and ascorbate and aldarate metabo-
lism were highly enriched in C2 subtype, but 

Figure 3. Enriched pathways of three subtypes in TCGA-LUAD dataset. (A-C) Identification of DEGs in C1 vs. C2 (A), 
C1 vs. C3 (B) and C2 vs. C3 (C). Blue indicates downregulated genes and red indicates upregulated genes. Horizon-
tal dashed line indicates FDR < 0.05. Vertical dashed line indicates |fold change| > 2. (D) Venn plot of common 
DEGs between different subtypes. (E) Enrichment analysis of KEGG pathways in “c2.cp.kegg.v7.0.symbols.gmt” for 
three subtypes through ssGSEA. (F) Enrichment of oncogenic pathways in three subtypes. ANOVA was conducted. 
FDR, false discovery rate. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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they were all downregulated in C1 and C3 sub-
types. In addition, only cytokine-cytokine re- 
ceptor interaction and primary immunodefi-
ciency were obviously enriched in C3 subtype. 
Furthermore, we also compared the enrich-
ment of 10 oncogenic pathways in the three 
subtypes. Six pathways of them were found to 
be differentially enriched among the three sub-
types, including cell cycle, Hippo signaling, 
Notch signaling, PI3K signaling, TGF-beta sig-
naling and Wnt signaling pathways (Figure 3F). 
Especially, cell cycle pathway was significantly 
downregulated in C2 subtype.

Establishing a prognostic model based on 
DEGs among three subtypes

Based on 90 DEGs (34 DEGs identified in both 
C1 vs. C2 and C1 vs. C3, 38 DEGs in C1 vs. C2 
and C2 vs. C3, 16 DEGs in C1 vs. C2 and C1 vs. 
C3, and 2 DEGs in all three subtypes) among 
three subtypes (Figure 4D), we established a 
prognostic model. Univariate Cox regression 
analysis was performed to identify the genes 
significantly associated with overall survival, 
and 51 DEGs were screened with P < 0.01. To 
shrink the number of genes in the model, we 
applied LASSO Cox regression analysis to 
deduct gene numbers by increasing lambda 
value. The coefficients close to zero with the 
increasing lambda value (Figure 4A). According 
to the confidence interval of each lambda, the 
model was the optimal when lambda = 0.0404 
(Figure 4B). Finally, 11 genes, including IL1A, 
CLDN1, ANLN, PKIB, GJB3, MUC16, TNS4, 
DKK1, CPS1, HAS3 and CYP4B1, were re- 
tained. The prognostic model was defined as: 
risk score = 0.083*IL1A + 0.152*CLDN1 + 
0.051*ANLN + 0.036*PKIB + 0.006*GJB3 + 
0.041*MUC16 + 0.004*TNS4 + 0.028*DKK1 
+ 0.095*CPS1 - 0.084*HAS3 - 0.022*CYP4- 
B1.

We calculated the risk score for each sample  
in TCGA-LUAD dataset, and converted risk 
score to z-score. Samples were classified into 
high-risk and low-risk groups according to the 
cut-off of z-score = 0. Samples with dead sta-
tus were more in high-risk group (Figure 4C). 
The 11 genes were significantly differentially 
expressed in high-risk and low-risk groups. 
Apart from HAS3 and CYP4B1, other genes 
were all relatively higher-expressed in high-risk 
group (Figure 4C). ROC analysis showed that 
1-year, 3-year and 5-year survival predicted  
by the prognostic model had favorable AUC 

score, with 0.70, 0.65 and 0.60, respectively 
(Figure 4D). Kaplan-Meier survival curve dem-
onstrated that two groups had obviously differ-
ent OS (P < 0.0001, Figure 4E), and risk score 
was a risk factor for survival (HR = 1.63, 95%  
CI = 1.42-1.88). To verify the effectiveness and 
robustness of the prognostic model, we exam-
ined it in the other two independent datasets 
(GSE31210 and GSE50081). The results indi-
cated that the samples could be clearly classi-
fied into high-risk and low-risk groups with dis-
tinct prognosis (P = 0.00077 and P < 0.0001, 
Supplementary Figure 3). 

Risk score was associated with clinical fea-
tures

In the above section, we demonstrated that the 
11-gene prognostic model was effective to 
classify LUAD samples into high-risk and low-
risk groups with distinct OS. Next, we examin- 
ed the robustness in samples with different 
clinical features including different ages, gen-
ders and stages. Except for T3 and T4, stage III 
and IV, samples with other clinical features 
could be all clearly divided into the two groups 
(P < 0.05, Figure 5A). Furthermore, to evaluate 
the independence of risk score as a risk factor, 
univariate and multivariate Cox regression 
analysis was conducted. Univariate analysis 
showed that T stage, N stage, stage and risk 
score (risk type) were risk factors for LUAD,  
with the risk score presenting the highest HR = 
2.09 (95% CI = 1.55-2.80, P < 0.0001, Figure 
5B). Multiple analysis revealed that only risk 
score was the independent risk factor with HR 
= 2.01 (95% CI = 1.39-2.89, P < 0.0001, Figure 
5C). The results proved that the 11-gene prog-
nostic model was reliable in predicting LUAD 
prognosis.

Functional pathways related to high-risk and 
low-risk score

The enriched pathways in high-risk and low-risk 
groups were assessed using GESA. Hallmark 
pathways in “h.all.v7.4.symbols.gmt” were in- 
cluded, and NP < 0.01 was set to screen 
enriched pathways. In low-risk group, metabo-
lism-related pathways were significantly en- 
riched, including taurine and hypotaurine 
metabolism (NES = 1.6, P = 0.034), alpha lino-
lenic acid metabolism (NES = 1.6, P = 0.038), 
and valine leucine and isoleucine degradation 
(NES = 1.7, P = 0.025) (Figure 6A). In high-risk 
group, tumor-related pathways were enriched, 
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Figure 4. Construction of the 11-gene prognostic model in TCGA-LUAD dataset. A. The trajectory of gene coefficients 
changing with lambda value. Dashed line indicates lambda = 0.0404. B. Partial likelihood deviance of different 
lambda value. Red dot indicates lambda = 0.0404. C. The distribution of each sample and expression of 11 prog-
nostic genes ranking by risk score from low to high. Of risk type, dark blue indicates high-risk group and orange 
indicates low-risk group. Of survival status, dark blue indicates alive samples and orange indicates dead samples. 
Of gene expression, relatively low to high expression was indicated from green to red. D. ROC curve of the prediction 
for 1-year, 3-year and 5-year by the prognostic model. E. Kaplan-Meier survival curve of high-risk and low-risk group 
in TCGA-LUAD dataset. Log-rank test was conducted. AUC, area under ROC curve. HR, hazard ratio. CI, confidence 
interval. 
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Figure 5. The relation between risk score and clinical features. (A) Kaplan-Meier survival plots of high-risk and low-risk groups grouping by different clinical features. 
Log-rank test was conducted. (B, C) Univariate (B) and multivariate (C) Cox regression analysis on clinical features and risk score. Log-rank test was conducted. HR, 
hazard ratio. CI, confidence interval. 
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Figure 6. Functional analysis on pathways related to risk score in TCGA-LUAD dataset. (A, B) GSEA of low-risk (A) and high-risk (B) groups on “h.all.v7.4.symbols.gmt” 
hallmark pathways. Horizontal axis represents samples. Enriched pathways were labeled with different colors. (C) A heatmap of gene expression significantly associ-
ated with risk score based on Pearson correlation analysis. Horizontal axis represents samples labeled with different groups. Vertical axis of each line represents 
each gene. (D-F) GO function analysis through WebGestaltR on biological process (D), cellular component (E) and molecular function (F). The top 10 enriched terms 
were listed. (G) Four KEGG pathways associated with risk score. Size indicates gene counts. ES, enrichment score. NES, normalized enrichment score. FDR, false 
discovery rate.
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for example, cell cycle (NES = -2.1, P < 0.0001), 
P53 signaling (NES = -1.9, P = 0.006), small cell 
lung cancer (NES = -1.8, P < 0.0001), and DNA 
replication (NES = -1.7, P = 0.018) (Figure 6B). 

In addition, according to Pearson correlation 
analysis, 300 genes positively correlated with 
risk score and 119 genes negatively correlat- 
ed with risk score in TCGA-LUAD dataset (|R| > 
0.4 and P < 0.05). A heatmap showing the rela-
tion of gene expression and risk score demon-
strated that high-risk and low-risk groups had 
obvious different expression patterns of these 
genes (Figure 6C). Furthermore, we performed 
KEGG and GO analysis on these genes to iden-
tify enriched pathways and GO terms. The top 
10 enriched terms of biological process, cellu-
lar component and molecular function were 
visualized (P < 0.05, Figure 6D-F). Cell cycle-
related terms, such as nuclear division, cell 
cycle phase transition and cell division, were 
enriched. Only four KEGG pathways containing 
two oncogenic pathways (P53 signaling path-
way and cell cycle) were significantly enriched, 
(Figure 6G).

Discussion

In this study, we used consensus clustering to 
construct three molecular subtypes based on 
the expression of pyroptosis-related genes.  
The three subtypes displayed significantly dif-
ferential prognosis and TME, suggesting that 
pyroptosis played an important role in immune 
modulation and tumor development in LUAD. 
Similar to the complexity of TME in tumorigen-
esis, pyroptosis is also considered to play dual 
roles (promotive and suppressive) in tumor cell 
development. In one hand, during the alterna-
tion of immune microenvironment, pyroptosis 
presents tumor-promoting effects through acti-
vating inflammasome and the release of cyto-
kines [28], on the other hand, pyroptosis can 
be induced to eliminate tumor cells by using 
chemotherapeutic drugs [29].

Nod-like receptor protein 3 (NLRP3) signaling 
and caspase-1 signaling are two key compo-
nents of pyroptosis signaling. NLRP3 is a type 
of inflammsomes, whose expression in macro-
phages is associated with survival and metas-
tasis in the mouse model with breast cancer 
[28]. By knocking out NLRP3 and caspase-1 in 
THP1 monocytes, Pachathundikandi et al. 
found that pyroptotic cell death was inhibited 

along with suppressed interleukin-1β (IL-1β) 
expression [30]. In addition, Gao et al. pro-
posed that GSDMD-mediated pyroptosis may 
help escape the innate immune response 
through downregulating the expression of IL-1β 
in human NSCLC tissues [31]. Inflammasomes 
can stimulate caspase-1-mediated pyroptosis 
and the release of cytokines especially IL-1β 
and IL-18, thereby creating a chronic inflamma-
tory microenvironment [32].

Strong correlation between pyroptotic signaling 
and TME modulation has also been discovered 
in various cancers including in esophagus can-
cer [33], hepatocellular carcinoma [34], and 
pancreatic carcinoma [35]. Daley et al. reveal- 
ed that NLRP3 could accelerate the accumula-
tion of immunosuppressive macrophages in 
pancreatic carcinoma [35]. M2 macrophages 
express a high level of tumor-promoting NLRP3 
and IL-1β, which can actuate CD4 T cells differ-
entiating into T helper 2 cells (Th2 cells), Th17 
cells, and regulatory T cells but inhibit the  
polarization of Th1 cells and the activation of 
cytotoxic CD8 T cells [35]. This supported the 
observation in our study that C3 subtype with 
the most favorable prognosis had lower en- 
riched M2 macrophages and regulatory T cells, 
and higher enriched CD8 T cells. Simultane- 
ously, pyroptosis-direct granzyme (Gzm) induc-
es pyroptosis through activating caspases to 
cleave GSDM family [26]. It has been shown 
that Gzm-A and Gzm-B released from cytotoxic 
T lymphocytes (CTLs) induce pyroptotic cell 
death and enhance anti-tumor immune re- 
sponse through activating GSDMD cleavage 
[26, 36]. (CD8 T cells) in C3 subtype demon-
strated that pyroptosis-related genes played a 
critical role in activating immune response.

In addition to immune cell modulation, pyropto-
sis is also demonstrated to enhance anti-tumor 
response in the treatment of combining PD-1/
PD-L1 inhibitors with chemotherapy [37]. Hou 
et al. have found that chemotherapeutic drugs 
can induce pyroptosis mediated by gasdermin 
C (GSDMC)/Caspas-8 and nuclear PDL1 in 
breast cancer, which indicates that breast can-
cer patients with PD-L1+ or GSDMC+ may ben-
efit much from chemotherapeutic drugs [37]. 
Therefore, PD-L1 is considered to control py- 
roptosis leading to tumor necrosis [38]. In the 
current study, we observed significantly high 
expression of PDCD1 (PD-1) and CD274 (PD-
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L1) in C3 subtype. To some extent, the superior 
prognosis of C3 subtype may partially result 
from PD-L1-mediated pyroptosis, and C3 sub-
type may also exhibit more favorable outcome 
if treated by combined therapy.

Among the three subtypes, functional path- 
ways were distinctly enriched. Especially, onco-
genic pathways were differentially accumulat-
ed, such as cell cycle, Hippo signaling, TGF-β 
signaling and WNT signaling pathways. MST1 is 
one of vital components in Hippo pathway, and 
its overexpression can increase cellular reac-
tive oxygen species (ROS) and activate cas-
pase-1 to induce pyroptosis [39]. Orning et al. 
have demonstrated that blocking TGF-β acti-
vated kinase-1 (TAK1) or IKK kinases elicits 
non-inflammatory caspase-8 to cleave GSDMD 
and leads to pyroptosis-mediated cell death 
[40]. Wellenstein et al. have revealed that sup-
pressing WNT secretion can inhibit IL-1β re- 
lease from macrophages, and hinder metasta-
sis in breast cancer cells [41]. The differential 
enrichment of these pathways in the three sub-
types further supported close associations 
between pyroptosis and these oncogenic path- 
ways.

Based on DEGs among the three subtypes, we 
identified 11 prognostic genes that could serve 
as biomarkers to predict prognosis for LUAD 
patients. Tumor-related pathways such as cell 
cycle and p53 signaling were enriched in high-
risk group, which may contribute to its unfavor-
able prognosis. Distinct expression patterns 
between the two groups ranked by risk score 
demonstrated that these 11 genes may play 
important roles in regulating pathways and 
gene expression. Furthermore, the risk score 
showed a stronger performance as an inde- 
pendent risk factor compared with clinical 
features.

Conclusions

In conclusion, this study showed that pyropto-
sis was a critical factor in tumor development  
in LUAD. According to the expression of pyrop-
tosis-related genes, we developed three mo- 
lecular subtypes with different OS, TME and 
enriched pathways. Pyroptosis as one of  
important cell death process plays essential 
roles in modulating immune microenviron- 
ment. Notably, the 11-gene signature related  
to pyroptosis could be an indicator to predict 

LUAD prognosis. The 11 prognostic genes may 
be new directions for revealing pyroptosis 
mechanism in tumorigenesis, or new targets 
for exploiting therapeutic drugs.
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Supplementary Table S1. The distribution of CNVs in 27 pyroptosis-related genes
gene amplification deletion diploid amplification % deletion % diploid %
CHMP3 67 14 474 12.07 2.52 85.41
IL1A 56 9 490 10.09 1.62 88.29
IL1B 56 9 490 10.09 1.62 88.29
CHMP2B 29 109 420 5.2 19.53 75.27
TP63 89 77 400 15.72 13.6 70.67
IRF2 19 118 420 3.41 21.18 75.4
CASP3 19 118 417 3.43 21.3 75.27
IRF1 38 140 377 6.85 25.23 67.93
BAK1 106 34 421 18.89 6.06 75.04
GSDME 216 17 323 38.85 3.06 58.09
CYCS 216 17 321 38.99 3.07 57.94
CHMP7 29 228 297 5.23 41.16 53.61
CHMP4C 202 20 332 36.46 3.61 59.93
GSDMD 227 17 310 40.97 3.07 55.96
CASP4 69 63 422 12.45 11.37 76.17
CASP5 69 63 424 12.41 11.33 76.26
CASP1 69 63 423 12.43 11.35 76.22
IL18 62 74 419 11.17 13.33 75.5
HMGB1 13 190 358 2.32 33.87 63.81
CHMP4A 91 47 416 16.43 8.48 75.09
GZMB 91 46 417 16.43 8.3 75.27
TP53 12 204 338 2.17 36.82 61.01
CHMP6 150 12 392 27.08 2.17 70.76
ELANE 15 187 350 2.72 33.88 63.41
BAX 22 119 413 3.97 21.48 74.55
CHMP4B 105 30 421 18.88 5.4 75.72

Supplementary Figure S1. The distribution of amplifications, deletions and diploid in 27 pyroptosis-related genes. 
TPM, transcript per million.
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Supplementary Figure S2. Gene mutations of 27 pyroptosis-related genes ranking by mutation frequency.
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Supplementary Figure S3. Validation of the prognostic model in GEO datasets. (A, B) ROC curve and Kaplan-Meier 
survival curve in GSE50081 dataset. (C, D) ROC curve and Kaplan-Meier survival curve in GSE31210 dataset. AUC, 
area under ROC curve. HR, hazard ratio. CI, confidence interval.


