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Abstract: RNA methylation has been known to promote the initiation and progression of many types of cancer, 
including hepatocellular carcinoma (HCC). To fully understand the importance of this post-transcriptional modifica-
tion in HCC, a thorough investigation that combines different patterns of RNA methylation is urgently needed. In 
this study, we investigated the regulators of the three most common types of RNA methylation: m6A, N1-methyl-
adenosine (m1A) and 5-methylcytosine (m5C). Based on the genomic and proteomic data, we constructed a clas-
sifier consisting of seven RNA methylation regulators. This classifier performed well and robustly predicted the 
prognosis of HCC patients. By analysis using this classifier, we found that the primary bile acid biosynthesis pathway 
was mostly downregulated in high-risk HCC patients. Furthermore, we found that the gene expression patterns regu-
lated by several bile acids were similar to those regulated by some well-defined anti-tumor compounds, indicating 
that bile acid metabolism plays a crucial role in the progression of HCC, and the related metabolites can be used 
as the potential agents for HCC treatments. Moreover, our study revealed a crosstalk between RNA methylation and 
bile acid regulators, demonstrating a novel mechanism of the downregulation of bile acid metabolism in HCC and 
providing new insights into how RNA methylation regulators affect the oncogenesis of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the 
most prevalent malignancies and is currently 
the seventh and fifth leading cause of cancer-
related deaths in men and women worldwide, 
respectively [1]. Despite the advancement in 
early diagnosis, surgical treatment and immu-
notherapy, the long-term prognosis of HCC is 
still poor. Therefore, constructing an effective 
prognostic model to identify high-risk HCC 
patients with poor prognoses is crucial for the 
personalized treatment and improved progno-
sis of HCC patients.

Recently, increasing evidence indicates that 
RNA modification is an important mechanism 
for the epigenetic regulation of gene expression 
and plays a key role in a variety of physiological 
and pathological processes. There are current- 
ly more than 170 distinct RNA modifications.  
Of these, RNA methylation, including m6A, 
N1-methyladenosine (m1A), 5-methylcytosine 
(m5C), and 2’-O-methylation (Nm), represents 
more than half of the RNA modifications [2]. 
RNA methylation plays a critical role in regulat-
ing gene expression via regulating transcription 
and translation. This post-transcriptional mo- 
dification is controlled by regulators known as 
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“writers” (methyltransferases), “readers” and 
“erasers” (demethylase). RNA methylation has 
been found to be associated with the occur-
rence and progression of various cancers, and 
some of the regulators have been identified as 
cancer biomarkers [3-5]. However, most stud-
ies focus only on m6A and several other com-
mon types of RNA methylation [6].

m6A, which refers to the addition of a methyl 
group at the N6 position of adenosine, is the 
most abundant RNA modification in eukaryotic 
cells. m6A modification is mediated by three 
classes of proteins: m6A-modified site recog-
nizing proteins, methyl group transferring pro-
teins, and methyl group removing proteins, 
respectively. The m6A methyl group transfer 
process is mediated by methyltransferases, in- 
cluding METTL3, METTL14, RBM15, RBM15B, 
WTAP, KIAA1429, CBLL1, VIRMA and ZC3H13, 
while the methyl group removal process is ca- 
talyzed by demethylases, including FTO and 
ALKBH5. A group of proteins, including YTH- 
DC1/2, YTHDF1/2/3, HNRNPA2B1, HNRNPC, 
LRPPRC, FMR1 and ELAVL1, can specifically 
recognize m6A modification sites to initiate the 
m6A modification process [7]. m6A modifica-
tion plays crucial roles in the carcinogenesis  
of many cancer types, including HCC [7]. For 
example, Chen et al. has reported that methyl-
transferase METTL3 promotes HCC progres-
sion through mediating m6A modification at  
the 3’ end of the mRNA encoding suppressor  
of cytokine signaling 2 (SOCS2), leading to 
SOCS2 mRNA degradation through a YTHDF2-
dependent manner [8]. In addition, METTL3 
also regulates the process of epithelial-mesen-
chymal transition (EMT), promoting the inva-
sion and metastasis of HCC [9]. Compared with 
normal liver tissues, demethylase FTO is over-
expressed in HCC, which is associated with a 
poor prognosis. The knockdown of FTO leads  
to cell cycle arrest and suppresses the prolifer-
ation of HCC cells partially through stimulat- 
ing the demethylation of pyruvate kinase M2 
(PKM2) mRNA [10]. Other m6A regulators,  
such as IGF2BPs [11], YTHDF2 [12] and ME- 
TTL14 [13], also act as significant oncogenes 
and participate in the development of HCC.

Another common RNA methylation is m1A, 
which is formed by attaching a methyl group to 
the N1 position of adenosine, and is found in 
mRNA, tRNA, rRNA and mitochondrial tran-

scripts [14]. The regulators of m1A methylation 
are composed of “writers” (TRMT6, TRMT61A, 
TRMT61B and TRMT10C), “erasers” (ALKBH1 
and ALKBH3), and “readers” (YTHDF1/2/3  
and YTHDC1) [15, 16]. The dysregulation of 
m1A affects a variety of biological processes, 
including cell proliferation, apoptosis, and self 
renewal, all of which have been linked to the 
progression of various malignancies. For ex- 
ample, eraser ALKBH3 promotes colony-stimu-
lating factor 1 (CSF1) mRNA expression throu- 
gh the demethylation of m1A, resulting to the 
enhanced invasion of ovarian and breast can-
cer cells [17]. Additionally, ALKBH3 contributes 
to the progression of urothelial carcinomas by 
promoting the survival and invasion of tumor 
cells through Tweak/Fn14-VEGF and NOX-2-
ROS signaling [18]. Recently, Shi et al. have 
found that m1A regulators, such as YTHDF1, 
TRMT6, TRMT61A and TRMT10C, effectively 
predict the prognosis of HCC patients and 
mediate some important biological processes. 
The PI3K/Akt and MYC signaling pathways  
have also been implicated in modifying m1A in 
HCC cells [19].

Another common methylation in mammalian 
RNA is m5C, which is found in both mRNAs  
and non-coding RNAs (ncRNAs: lncRNAs, 
rRNAs, tRNAs, eRNAs, etc.) [20]. The m5C  
modification involves “writers” (NOP2, NSUN1-
7, DNMT1/2, DNMT2, DNMT3A and DNMT3B), 
“erasers” (TET1/2/3 and ALKBH1), and “read-
ers” (ALYREF and YBX1) [21]. Increasing evi-
dence has demonstrated that m5C modifica-
tion plays a vital role in regulating important 
biological and pathological processes, includ-
ing cancer [21]. NSUN2, TETs and ALKBH1 are 
frequently overexpressed in various cancers, 
suggesting a oncogenic role of m5C in tumori-
genesis [22-25]. In addition, Chen et al. have 
reported that NSUN2 and YBX1 stabilize onco-
gene hepatoma-derived growth factor (HDGF) 
mRNA by targeting the m5C modification site in 
its 3’ UTR and, therefore, play oncogenic roles 
in bladder cancer [26].

To thoroughly understand the importance of 
RNA methylation in HCC, a comprehensive 
analysis that includes different patterns of  
RNA methylation is essential. In this study, we 
established a classifier consisting of 7 RNA 
methylation regulators for predicting the prog-
nosis of HCC patients. Based on the risk score 
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calculated by the classifier, our study samples 
were divided into low- and high-risk group. We 
found that the primary bile acid biosynthesis 
pathway was mostly downregulated in the high-
risk group. Since bile acid metabolism and 
related metabolites play vital roles in the initia-
tion and development of HCC, they could serve 
as potential targets for anti-HCC treatments. 
Furthermore, our study identified a crosstalk 
between RNA methylation and bile acid regula-
tors, suggesting a novel mechanism of the 
downregulation of bile acid metabolism in HCC 
and providing new insights into how RNA meth-
ylation regulators affect the oncogenesis of 
HCC.

Materials and methods

Data acquisition and data analysis

The workflow of our bioinformatics analyses 
was shown in Figure S1. HCC cohorts with 
patient survival data were obtained from sev-
eral databases, including GEO (Gene Expres- 
sion Omnibus: GSE14520, GSE10143, GSE- 
76427 and GSE54236), ICGC (International 
Cancer Genome Consortium), TCGA (The Can- 
cer Genome Atlas), and CPTAC (Clinical Pro- 
teomic Tumor Analysis Consortium). In total, 
three cohorts were selected, including TCGA-
Liver Hepatocellular Carcinoma (TCGA-LIHC), 
ICGC-Liver Cancer-RIKEN-Japan (LIRI-JP), and 
CPTAC-HCC cohort.

The mRNA expression (raw counts), somatic 
mutation, and the clinical information of HCC 
tissues (n=374) and normal liver tissues (n=50) 
were downloaded from the TCGA database 
(https://portal.gdc.cancer.gov and https://xen-
abrowser.net/datapages/). For validation, the 
RNA-seq and the clinical information of 232 
HCC tumor samples were obtained from the 
ICGC portal (https://dcc.icgc.org/projects/LIRI-
JP). Additionally, the proteogenomics data and 
the clinical information of HCC tissues (n=165) 
and their corresponding normal tissues (n= 
165) were downloaded from the CPTAC da- 
tabase (https://cptac-data-portal.georgetown.
edu/). We also used the microarray data and 
the clinical data of other 81 HCC tumor sam-
ples from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/geo2r/?acc=GSE54236). The 
RNA-seq data of the ICGC cohort were trans-

formed by using log2 (counts+1). The RNA-seq 
data of the TCGA and ICGC cohorts and the pro-
teogenomics data of the CPTAC cohort were 
shown in Table S1.

A metabolomics dataset of HCC serum meta- 
bolites, MTBLS17, was downloaded from Euro- 
pean Bioinformatics Institute (EMBL-EBI), which 
contains 158 samples from HCC patients and 
368 samples from non-HCC individuals.

Identification of RNA methylation regulators 
with prognostic value

A univariate Cox regression was conducted for 
all RNA methylation regulators based on the 
expression level of each regulator. Genes with 
P<0.05 were identified as prognostic RNA me- 
thylation regulators.

Generation of RNA methylation regulators-
based classifier

The most significant prognostic RNA methyla-
tion regulators were selected by the 10-fold 
least absolute shrinkage and selection opera-
tor (LASSO) Cox regression analysis. LASSO is  
a penalized regression method that estimates 
regression coefficients by maximizing the log-
likelihood function (or the sum of squared re- 
siduals). By the L1-penalty, the LASSO does 
variable selection and shrinkage, only retaining 
the most important variables in the final  
model. In 10-fold cross validation, the samples 
were divided into 10 subsets (folds); 9 subsets 
were used to train the model each time, and 
then the remaining subset was used as the vali-
dation set. Finally, the 10 results were com-
bined to determine the final coefficients [27]. 
The prognostic risk scores were calculated 
based on a formula as follows: Risk Score = Σ 
(GenesCox coefficient × Genesexpression levels).

We then divided the HCC patients into low- and 
high-risk group by using the median risk score 
as the cut-off value. For validation, the risk 
scores of samples in ICGC were also calculated 
by the above formula. According to the cut-off 
value, ICGC samples were divided into high- 
and low-risk group. Next, the predictive capa- 
bility of the classifier for the training and vali- 
dation cohorts was evaluated using the Ka- 
plan-Meier log-rank test, Receiver Operating 
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gene expression changes, while negative scor- 
es indicate opposing patterns. The gene regu- 
lation pattern in HepG2, an HCC cell line, 
induced by bile acids treatment was obtain- 
ed from cMap. Compounds with connectivity 
scores of more than 90 when compared to  
bile acids were defined as highly similar com- 
pounds.

The regulation of bile acid metabolism path-
way by RNA methylation regulators

To further explore the relationship between 
RNA methylation regulators and bile acid me- 
tabolism, the potential RNA methylation sites  
in bile acid metabolism related genes were 
searched from the RMBase v2.0 databa- 
se (http://rna.sysu.edu.cn/rmbase/). RMBase 
v2.0 contains about 1397000 RNA modifica-
tion sites, including m6A, m1A, pseudouridine 
(Ψ) and m5C, 2’-O-methylations (2’-O-Me), 
among 13 species [30]. Next, the potential reg-
ulatory role of m6A regulators on bile acid 
metabolism genes was explored by the m6A- 
2Target database (http://m6a2target.cancer-
omics.org/). The m6A2Target database con-
tains the validated and potential interactions 
between genes and m6A regulators through 
extracting all published m6A-related articles 
and collecting high-throughput sequencing da- 
ta of CHIP-seq, CLIP-seq, RIP-seq, mass spec-
trometry, MeRIP-seq and RNA-seq [31]. The 
regulatory network was constructed by Cyto- 
scape software. Finally, the correlation between 
the key prognostic RNA methylation regulators 
and the bile acid metabolism related genes in 
protein level was calculated by Pearson’s test.

Statistical analysis

All statistical analyses were performed using  
R (http://www.R-project.org). The ROC curve 
and the area under the curve (AUC) were quan-
tified using the “survivalROC” and the “timeR-
OC” R packages. Kruskal-Wallis test and One-
way ANOVA test were used to compare the 
difference among three or more groups. The 
statistical significance of two sample groups 
was estimated by the Wilcox test or the Stu- 
dent t-test. The forest plot was depicted using 
the Sangerbox tools, a free online platform  
for data analysis (http://www.sangerbox.com/
tool). The Chi-square test was used to analyze 
the correlation between risk score and the clini-
copathological parameters. Pearson’s correla-

Characteristic (ROC) curve analysis, univariate, 
and multivariate Cox regression analysis.

Identification of differentially expressed genes 
(DEGs) and functional annotation

The “limma” package of R was used to identify 
the differentially expressed gene (DEGs) bet- 
ween high- and low-risk group with the cut-off 
criteria of |log2 fold change (FC)| >1 and ad- 
justed P-value <0.05. Functional enrichment 
analysis of DEGs was performed using Meta- 
scape (https://metascape.org/). P<0.005 was 
considered statistically significant.

Gene Set Enrichment Analysis (GSEA) and Gene 
Set Variation Analysis (GSVA) were performed 
to explore the difference in metabolic pathways 
between high- and low-risk group. The cluster-
Profiler R package [28] was employed to per-
form GSEA analysis based on the Kyoto En- 
cyclopedia of Genes and Genomes (KEGG) 
database. P<0.01 was considered statistically 
significant. The GSVA analysis was conduct- 
ed based on c2.cp.kegg.v7.4.symbols.gmt and 
c5.go.bp.v7.4.symbols.gmt reference gene set 
files. After that, we used the “ComplexHeat- 
map” package to display the distinct pathways 
between the high- and low-risk groups.

Unsupervised clustering of RNA methylation 
regulators

Consensus clustering is an unsupervised clus-
tering method that provides quantitative and 
visual stability for estimating the number of 
unsupervised categories in a dataset [29]. To 
deduce the RNA methylation status of a sam-
ple, we utilized the Consensus ClusterPlus R 
packages to classify HCC samples into differ-
ent categories based on the expression of RNA 
methylation regulators.

Screening of similar functional compounds to 
bile acids

The Connectivity Map (cMap) touchstone data-
base (https://clue.io/) includes the gene ex- 
pression signatures derived from 9 cancer cell 
lines treated with 2429 well-defined compo- 
unds. All compounds are assigned a connectiv-
ity score (ranging from -100 to 100) based on 
the similarity of the gene expression changes 
they induce, when compared to the others. 
Positive connectivity scores indicate similar 
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tion analysis was used to compute the correla-
tion coefficients. P<0.05 was considered 
statistically significant.

Results

Landscape of gene expression and genetic 
variation of RNA methylation regulators in HCC

A total of 48 RNA methylation regulators, 
including 9 m6A writers, 2 m6A erasers, 13 
m6A readers, 4 m1A writers, 2 m1A erasers, 3 
m1A readers, 12 m5C writers, 4 m5C erasers 
and 2 m5C readers, were identified in this stu- 
dy through systematic literature search [7, 15, 
16, 21]. Among them, ALKBH acts as the eras-
er for both m1A and m5C, while YTHDC1, 
YTHDF1, YTHDF2 and YTHDF3 act as the read-
ers for both m6A and m1A (Figure 1A). Figure 
1B summarized the top 20 incidences of 
somatic mutations of these 48 RNA methyla-
tion regulators in HCC. Among 364 samples, 
60 samples had mutations in RNA methylation 
regulators, with a frequency of 16.48%. TET1 
exhibited the highest somatic mutation rate 
(2%), followed by DNMT3A, HNRNPC, LRPPRC, 
DNMT1, FMR1, HNRNPA2B1, TET2/3, YTHD- 
C1/2, ZC3H13, IGF2BP3, NSUN4, TRMT10C, 
WTAP and YTHDF1 with 1% mutation frequen-
cy. The other regulators did not exhibit any 
mutation in HCC samples. These results sug-
gested that the somatic mutation frequency of 
RNA methylation regulators was low in HCC. 
Since copy number variation (CNV) is prevalent 
in RNA methylation regulators, we analyzed the 
CNV of RNA methylation regulators in these 
samples. We found that regulators, such as 
ALYREF, VIRMA, HNRNPC, METTL3, YTHDF3, 
IGF2BP2, DNMT3A, NSUN2, YTHDF1 and TR- 
MT61B, showed gain of CNV in most cases, 
while other regulators, such as ZC3H13, 
TRMT61A, METTL16, YTHDF2, ALKBH1, WTAP, 
TET2, YBX1, NSUN4 and DNMT1, were mainly 
characterized by loss of CNV (Figure 1C). Fi- 
gure 1D showed the chromosome location of 
these CNV.

In addition, we compared the mRNA levels of 
RNA methylation regulators between normal 
and HCC samples and found that the occur-
rence of CNV might be an important factor per-
turbating the expression of the RNA methyla-
tion regulators. RNA methylation regulators, 
such as ALYREF, HNRNPC, METTL3, YTHDF3, 
IGF2BP2, DNMT3A, NSUN2 and YTHDF1, that 

had gains of CNV expressed at markedly higher 
level in HCC tissues than in normal tissues 
(Figure 1E). Notably, the expression of most of 
these regulators was significantly higher in the 
late stages of HCC patients than in early stag- 
es of HCC patients (Figure 1F). Consistently, 
the gene expression and protein level of most 
of these regulators were also found significant-
ly elevated in HCC tissues, especially in the  
late stages of HCC tissues, in ICGA and CPTAC 
cohorts (Figure S2). These results presented 
the changes in the expression landscape of 
RNA methylation regulators between normal 
liver and HCC tissues, as well as among vari- 
ous tumor stages, indicating that the upregula-
tion of RNA methylation regulators played a 
vital role in the initiation and progression of 
HCC.

Identification of RNA methylation regulators 
with prognostic value

Univariate Cox regression was conducted for 
43 regulators that had expression data. The 
results showed that 33 of the 43 regulators 
were markedly related to the overall survival 
(OS) of HCC patients (P<0.05) and were thus 
identified as prognostic RNA methylation regu-
lators. The list of these 33 RNA methylation 
regulators was YTHDF1/2/3, TRMT6/61A/ 
61B, TRMT10C, NSUN2/3/4/5, ALYREF, LR- 
PPRC, KIAA1429, HNRNPC, DNMT3A, DNMT1, 
HNRNPA2B1, ELAVL1, WTAP, METTL3, ALKB- 
H1, RBM15/15B, IGF2BP1/2/3, DNMT3B, 
TET3, YBX1, NOP2, CBLL1 and YTHDC1. 
Furthermore, we found that all these 33 regula-
tors were associated with the poor prognosis of 
HCC and were positively correlated with each 
other (Figure 2A).

Construction of a prognostic RNA methylation 
regulators-based classifier

A total of 7 regulators (ALYREF, IGF2BP1, 
IGF2BP2, TRMT10C, TRMT61A, YTHDF2 and 
NSUN5) were selected as the most significant 
prognostic biomarkers based on the LASSO 
Cox regression analysis results (Figure 2B). The 
coefficient of each biomarker was also derived 
from the LASSO algorithm (Figure 2C).

We divided the patients into low- and high-risk 
group by using the cutoff value of the median 
risk score that was calculated by formula 
described above. When examining the gene 
expression of these 7 regulators in the low- and 
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Figure 1. Expression and genetic landscapes of RNA methylation regulators in hepatocellular carcinoma (HCC). A. Members of RNA methylation (m6A, m1A, and 
m5C) regulators (“writers”, “erasers” and “readers”). B. Top 20 somatic mutations of RNA methylation regulators in the TCGA cohort. Each column stood for a pa-
tient with an RNA methylation regulator mutation, and the upper panel shows the tumor mutation burden. The mutation frequency of each regulator was listed on 
the right of the columns. The barplot in the right showed the proportion of each variant type. The stacked barplot below showed a fraction of conversions in each 
sample. C. The top 20 CNV variation frequency of RNA methylation regulators in TCGA cohort. The height of the column stood for the alteration frequency. The blue 
dot stood for the deletion frequency, while the red dot stood for the amplification frequency. The right barplot shows the proportion of each variant type. The stacked 
barplot below shows the proportion of DNA base conversions in each sample. C. The CNV variation frequency of RNA methylation regulators in TCGA cohort. The 
height of the column stood for the alteration frequency. The blue dot stood for the deletion frequency, while the red dot stood for the amplification frequency. D. The 
location of CNV alteration of RNA methylation regulators on 23 chromosomes. E. Expression levels of RNA methylation regulators in HCC and adjacent normal tis-
sues by Wilcox test. F. Expression levels of RNA methylation regulators in different tumor stages of HCC by Kruskal-Wallis test. *P<0.05; **P<0.01; ***P<0.001. CNV: 
copy number variations; TCGA: The Cancer Genome Atlas.
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Figure 2. Construction of RNA methylation regulators-based prognostic classifier. A. The interaction between RNA methylation regulators in HCC. The circle size stood 
for the effect of each regulator on the prognosis of HCC, and the range of values were P<0.0001, P<0.001, P<0.01, and P<0.05, respectively. Green in the right of 
the circle stood for favorable factors of prognosis; Blue in the right of the circle stood for risk factors of prognosis. The lines linking regulators show their interactions, 
in which a negative correlation is marked with blue and a positive correlation with pink. The different types of the regulators are marked with different colors in the 
left of the circle. B. Results of the LASSO Cox regression screened 7 regulators that are essential for the prognosis of HCC. The left panel was the shrinkage profile 
of LASSO coefficients. It represented the relationship between the logarithm of lambda and coefficients of every gene. Each curve represented a coefficient (labeled 
on the right). The right panel was the cross-validation plot of LASSO, it represented the relationship between the logarithm of lambda and the partial likelihood devi-
ance (or mean square error). The vertical dashed line in the figure represented the log lambda of the minimum partial likelihood deviance. C. The HR and coefficient 
of the 7 regulators in the prognostic classifier. D. Gene expression levels of all 7 regulators of the classifier in the high- and low-risk groups from the TCGA and ICGC 
cohorts. *P<0.05; **P<0.01; ***P<0.001. HR: hazard ratio.
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Prognostic value of the classifier for assessing 
the overall survival of HCC patients

We further evaluated the prognostic signifi-
cance of the classifier we identified above. As 
shown in Figure 3A, 3B, patients in the high-
risk group had a shorter OS time (P=1.338× 
10-5) and recurrence-free survival (RFS) time 
(P=5.886×10-3) in the TCGA cohort by Kaplan-
Meier test. Moreover, the Area under the  
Curves (AUCs) for 1-, 3-, and 5-year OS were 
0.759, 0.704 and 0.719 in the TCGA cohort, 
respectively (Figure 3D). More importantly, the 
predictive ability of the classifier was superior 
to tumor grade (TNM stage) and histologic 
grade, the two well-defined, major risk factors 
for patient prognosis.

To determine the robustness of this classifier, 
we compared the prognosis of the HCC pati- 
ents in low- and high-risk group from the ICGC 
cohort based on the classifier. As shown in 
Figure 3C, patients in the high-risk group had  
a poor prognosis (P=2.86×10-3) in the ICGC 
cohort. In addition, in the ICGC cohort, the AUCs 
for 1-, 3-, and 5-year OC were 0.727, 0.686 and 
0.639, respectively (Figure 3E).

Moreover, we used the proteomics data from 
CPTAC and the microarray data from GEO data-
base to validate our classifier. Integrating the 
protein level into the formula, we calculated 
and set a new median cutoff value to predict 
the prognosis of HCC in CTPAC cohort. As 
shown in Figure S3A, we found the protein lev-
els of the 7 regulators were also upregulated in 
high-risk HCC samples. Patients in the high- 
risk group had a poor prognosis (P=1.179×10-2) 
in the CTPAC cohort (Figure S3B). Similarly, we 
calculated and set a new median cutoff value 
to predict the prognosis of HCC in GSE54236 
cohort. Consistently, as shown in Figure S3C, 
most of the 7 regulators were also upregulated 
in high-risk HCC samples, and the risk score 
had significantly negative correlation with the 
survival time (R=-0.47, P=9.8×10-6) of HCC 
patients (Figure S3D). These results showed 
that our classifier performed equally well in dif-
ferent datasets we examined, which further 
demonstrated the predictive power and the reli-
ability of our classifier for HCC prognosis.

The results of univariate and multivariate Cox 
regression analysis further confirmed the prog-
nostic significance of the classifier and showed 

Table 1. Correlations between risk score of the 
RNA methylation regulators-based classifier 
with clinicopathological parameters in the TCGA 
cohort

Parameters
TCGA cohort

High risk Low risk X2 P
Age (y) 0.003 0.995
    <60 84 85
    ≥60 102 102
Gender 0.559 0.439
    Male 123 130
    Female 64 57
Child grade 0.001 0.980
    A 89 130
    B and C 9 13
BMI 5.486 0.019
    <28 125 118
    ≥28 35 59
Histologic grade 4.831 0.028
    1-2 106 127
    3-4 78 58
pT 9.887 0.002
    1-2 127 151
    3-4 60 33
pN 1.076 0.300
    0 124 130
    1 3 1
pM 0.008 0.929
    0 128 140
    1 2 2
Tumor stage 10.928 0.001
    1-2 115 145
    3-4 58 32
Bold values are statistically significant.

high-risk group, we found that the mRNA levels 
of all 7 regulators were significantly higher in 
the high-risk group than in the low-risk group in 
both TCGA and ICGC cohorts, further support-
ing their potential application as prognostic bio-
markers (Figure 2D).

Correlation between the classifier and the 
clinicopathologic characteristics

As shown in Table 1, the clinical parameters  
of BMI (χ2=5.468, P=0.019), histologic grade 
(χ2=4.831, P=0.028), pathologic T (pT) (χ2= 
9.887, P=0.002), and tumor stage (χ2=10.928, 
P=0.001) were significant different between 
the low- and high-risk group. 
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Figure 3. The prognostic value of the RNA methylation-based classifier. Kaplan-Meier survival analysis of OS (A) and 
recurrence-free survival (B) between the high- and low-risk patients from the TCGA cohort. Kaplan-Meier survival 
analysis of OS between the high- and low-risk patients from the ICGC cohort of HCC (C). The time-dependent ROC for 
1-, 3-, and 5-year OS predictions for the classifier in comparison with clinical parameters in the TCGA (D) and ICGC 
(E) cohorts. OS: overall survival.

that the risk score based on the classifier was 
an independent risk factor for the survival of 
HCC patients (Figure 4A). Importantly, our clas-
sifier also performed better than other previ-
ously published classifiers in predicting long-
term HCC prognosis. As shown in Figure 4C,  
the AUC of our classifier for 1-yar OS was higher 
than other classifiers constructed based on the 
genes associated with HIF-1 signaling [32], 
RNA binding protein (RBP) [33], metabolism 
[34], immune response [35], ferroptosis [36], a 
6-gene-based classifier [37] and m6A regula-
tors [38]. For 3-year OS, the AUC of our classi-
fier was higher than the classifiers using genes 

related to immune response, ferroptosis, me- 
tabolism, a 6-gene, mitochondrial [39] and 
m6A-based classifier. Similar superior perfor-
mance was also observed with our classifier for 
5-year OS compared with other classifiers that 
were related to immune response, ferroptosis, 
RBP, metabolism, a 6-gene, mitochondrial and 
m6A-based classifier. Moreover, as shown in 
Figure 4D, the AUCs of our classifier were su- 
perior to others in predicting the long-term OS 
(more than 4 years). Collectively, these results 
suggested that our RNA methylation regulator-
based classifier is a useful prognostic tool for 
categorizing patients with HCC.
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Figure 4. The independent prognostic significance of the classifier. A and B. Univariate and multivariate Cox regres-
sion analyses of the classifier with OS in the TCGA cohort. C and D. The time-dependent ROC for 1-, 3-, and 5-year 
OS predictions for the classifier in comparison with other classifiers published previously.

Identification of differentially expressed genes 
(DEGs) and functional annotation between 
high- and low-risk groups

To understand the differences in the molecular 
and biological processes between the high- 
and low-risk groups, we investigated 1575 
DEGs (1537 upregulated and 38 downregulat-
ed) using the “limma” package (Figure 5A; 
Table S2). Next, we conducted a functional 
annotation analysis by Metascape database  
to reveal the different biological processes 
between the two groups. As shown in Figure 
5B, the upregulated genes were most enrich- 
ed in the processes associated with the cell 
cycle, e.g., mitotic cell cycle process, meiotic 
cell cycle, positive regulation of cell cycle, regu-
lation of mitotic nuclear division, nuclear divi-
sion, and regulation of cell division. In contrast, 
the downregulated genes were most enriched 
in metabolic processes, e.g., fatty acid metabo-
lism, carbon metabolism, lipid modification,  
triglyceride metabolic process, bile secretion, 
farnesoid X receptor pathway, alpha-amino 
acid metabolic process, and monocarboxylic 
acid metabolic process.

To identify the altered biological processes 
between normal and HCC samples as well as 
among HCC samples, we conducted the GSVA 
analysis. As shown in Figure 5C, in line with the 

above results, many metabolism pathways, in- 
cluding primary bile acid biosynthesis, glycine 
serine and threonine metabolism, fatty acid 
metabolism, butanoate metabolism, beta ala-
nine metabolism, valine leucine and isoleucine 
degradation, propanoate metabolism, trypto-
phan metabolism, retinol metabolism, meta- 
bolism of xenobiotics by cytochrome p450, 
tyrosine metabolism, arginine and proline me- 
tabolism and oxidative phosphorylation, were 
significantly downregulated in HCC samples 
compared with normal liver tissues. Moreover, 
these metabolism pathways were much lower 
in high-risk HCC than in low-risk HCC. On the 
other hand, cell cycle and RNA degradation pa- 
thways were significantly upregulated in HCC 
samples and expressed at much higher level in 
the high-risk group than in the low-risk group. 
Together, these results indicate that the regula-
tors of RNA methylation negatively regulate the 
metabolic processes in HCC.

Metabolic characteristics among different RNA 
methylation modification patterns

To determine the alteration of metabolic pro-
cesses in HCC among different RNA methyla-
tion modification patterns, we conducted an 
unsupervised clustering analysis by the “Con- 
sensusClusterPlus” package based on the ex- 
pression of the RNA methylation regulators. At 

http://www.ajcr.us/files/ajcr0142213suppltab2.xlsx
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Figure 5. Functional enrichment analysis between high- and low-risk groups. A. The volcano plot showed DEGs 
between high- and low-risk groups, and red stood for upregulated DEGs and blue stood for downregulated DEGs. 
B. Barplot was used to visualize the result of functional enrichment analysis of the DEGs, and purple stood for acti-
vated pathways and blue stood for inhibited pathways. C. GSVA analysis showed the activation states of biological 
pathways based on the KEGG database in normal, low- and high-risk HCC samples. DEGs: differentially expressed 
genes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

the end, as shown in Figure 6A, 6B, three dis-
tinct clusters were identified in the TCGA co- 
hort: cluster 1 with 132 cases in, cluster 2 with 
124 cases, and cluster 3 with 118 cases. 
Cluster 2 had the highest risk score, while clus-
ter 1 had the lowest risk score (Figure 6C). 
Kaplan-Meier analysis also showed that pa- 
tients with the highest risk score in cluster 2 
had the worst prognosis, and patients in clus- 
ter 1 had the best prognosis. Furthermore, we 
explored the differences in the RNA methyla-
tion regulator modification patterns among 
these clusters. As shown in Figure 6D, consis-
tent with the results based on the risk score, 
cluster 2 had the highest expression level of 

most RNA methylation regulators, while cluster 
1 had the lowest regulator expression level.

Furthermore, we performed GSVA analysis of 
186 KEGG pathways to depict the metabolism 
characteristics of each cluster. As shown in 
Figure 7A, cluster 1 was hyperactive in carbo-
hydrate, lipid, and amino acid metabolism, 
while cluster 2 showed the opposite expres-
sion, lower in these metabolic processes. The 
univariate Cox regression analysis showed th- 
at the activities of some metabolic processes 
were protective for HCC prognosis; these pro-
cesses included linoleic acid metabolism, ara-
chidonic acid metabolism, primary bile acid bio-
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Figure 6. Unsupervised clustering based on RNA methylation regulators. A. Heatmaps of the consensus matrices for k=3. B. Differences of the risk score among 3 
clusters in the TCGA cohort by Wilcox test. C. Kaplan-Meier analysis of overall survival among 3 clusters in the TCGA cohort. D. Differences of the expression of RNA 
methylation regulators among 3 clusters in the TCGA cohort by Kruskal-Wallis test. E. GSVA analysis showed the activation states of metabolic pathways based on 
the KEGG database among 3 clusters in the TCGA cohort. F. Univariate Cox regression analysis of the activation of metabolic pathways with OS in the TCGA cohort. 
*P<0.05; **P<0.01; ***P<0.001.
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Figure 7. The alteration and potential therapeutic effect of bile acid metabolism on HCC. A. The enrichment of 
primary bile acid biosynthesis pathway between high- and low-risk HCC by GSEA analysis in both TCGA and ICGC 
cohorts. B. Differences of genesets associated with bile acid metabolism from GO-BP gene signature between high- 
and low-risk HCC samples by GSVA analysis in both TCGA and ICGC cohorts by Student t test. C. Differences of serum 
metabolites between normal and HCC patients by Wilcox test. D. The anti-tumor agents with similar gene expression 
patterns (connective score >90) with bile acids. GCDCA: glycochenodeoxycholic acid; GCA: glycocholic acid; GDCA: 
glycodeoxycholic acid; TCDCA: taurochenodeoxycholic acid; TCA: taurocholic acid; GO-BP: gene ontology-biological 
process; LPC: lysophosphatidylcholine. *P<0.05; **P<0.01; ***P<0.001.

synthesis, fatty acid metabolism, tyrosine me- 
tabolism and histidine metabolism.

To further validate the metabolic alteration pat-
terns among different RNA methylation clus-
ters, we used another cohort, ICGC, to conduct 
unsupervised clustering analysis based on the 
expression of the RNA methylation regulators 
and to perform GSVA enrichment analysis. 
Patients in ICGC were divided into 3 clusters, 
with 106 samples in cluster 1, 21 samples in 
cluster 2, and 105 samples in cluster 3 (Figure 
S4A). Consistent with the results from the TCGA 
cohort, cluster 2 with the highest risk score had 
the highest expression of RNA methylation reg-
ulators and the worst prognosis, while cluster 3 
was the opposite (Figure S4B-D). In addition, 
cluster 2 had reduced activity in carbohydrate, 
lipid, and amino acid metabolism. And the 
activity of some metabolic processes (e.g., lin-
oleic acid metabolism, arachidonic acid metab-
olism, fatty acid metabolism, primary bile acid 
biosynthesis, tyrosine metabolism and histi-
dine metabolism) had protective function for 
HCC prognosis in ICGC cohort too (Figure S4E, 
S4F). These observations further supported 
our conclusion that RNA methylation regulators 
negatively mediated the metabolic processes 
in HCC. The suppression of metabolisms by 
RNA methylation regulators may attribute to 
the unfavorable prognosis in the high-risk gr- 
oup.

Alteration and potential therapeutic effect of 
bile acids on HCC

Our previous study has revealed the prognostic 
role of the primary bile acid biosynthesis path-
way in HCC [39]. Given that bile acids are liver-
specific metabolic substances, and primary 
bile acid synthesis pathway is the most down-
regulated metabolism process in HCC sampl- 
es, we further investigated the dysregulation 
and the functional importance of bile acids in 
HCC. As shown in Figure 7A, the primary bile 
acid biosynthesis pathway was downregulated 
mostly in the high-risk group in both TCGA and 

ICGC cohorts by GSEA analysis. Furthermore, 
other bile acid metabolic processes derived 
from gene ontology-biological process (GO-BP) 
gene signatures were also downregulated in 
the high-risk group (Figure 7B). In addition, the 
levels of serum bile acids, including GCDCA, 
GCA, Fragment of GDCA/GCDCA, TCDCA, 
Fragment of GCA, GDCA and TCA, were signifi-
cantly lower in HCC patients than in normal 
patients (Figure 7C). These results suggested 
that these bile acids might inhibit the occur-
rence and progression of HCC. To prove this, we 
used the approach of screening similar com-
pounds in the cMap database to indirectly 
explore the anti-tumorigenic effects of bile 
acids. As shown in Figure 7D, bile acids, such 
as CDCA, CA, DCA, TDCA and TCA, exhibited 
similar (connective score >90) gene expres- 
sion regulation patterns to other well-defined 
anti-tumor compounds (e.g., erlotinib, bosuti-
nib, sunitinib, masitinib, gefitinib, veliparib, 
rucaparib, etc.), indicating the functional simi-
larity between these bile acids and other anti-
tumor compounds. In summary, the results 
above showed that bile acids metabolism was 
downregulated markedly in HCC, indicating the 
importance of bile acids in the progression, 
prognosis, and treatment of HCC.

Regulatory effects of RNA methylation regula-
tors on bile acid metabolism genes

After identifying a negative regulation of bile 
acid metabolism by RNA methylation regula-
tors, we sought to depict the regulatory net- 
work between RNA methylation regulators and 
bile acid metabolism genes. Firs, we reviewed 
the incidence of somatic mutation of 15 prima-
ry bile acid biosynthesis genes in HCC. Among 
364 samples examined, 23 samples experi-
enced gene mutations, with a frequency of 
6.32%. ACOX2, CYP8B1, SCP2, AKR1D1 and 
CYP27A1 exhibited the highest mutation fre-
quency of 1%, while HSD17B4 did not show  
any mutation in HCC samples (Figure 8A). The 
low somatic mutation frequency suggested 
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Figure 8. The regulation of bile acid metabolism pathways by RNA methylation regulators. A. Somatic mutations in 
primary bile acid biosynthesis genes in TCGA cohort. Each column stood for a patient with a gene mutation, and 
the upper panel shows the tumor mutation burden. The mutation frequencies of each regulator are listed in the 
right of the columns. The right barplot shows the proportion of each variant type. The stacked barplot below showed 
a proportion of DNA base conversions in each sample. B. Differences in the expression level of primary bile acid 
biosynthesis genes among normal and different stages of HCC in the TCGA cohort by Kruskal-Wallis test. C. Differ-
ences in the protein level of primary bile acid biosynthesis regulators between normal and HCC in the CPTAC cohort 
by Student t test. D. The number of RNA methylation sites in bile acid metabolic genes. E. The regulatory network 
between m6A regulators and bile acid metabolic genes. The blue square stood for m6A regulators, the red circle 
stood for bile acid metabolic genes. The solid line stood for the m6A regulators mediated target genes by “Binding 
manner”, the dotted line stood for the m6A regulators mediated target genes by “Perturbation manner”. The red line 
stood for the regulation of m6A regulators on target genes is m6A dependent, while the blue line is m6A indepen-
dent. F. The correlation between the protein levels of RNA methylation regulators and bile acid metabolic regulators. 
*P<0.05; **P<0.01; ***P<0.001.

that the expression level of this gene was 
important for the activity of the primary bile 
acid synthesis pathway in HCC. As shown in 
Figure 8B, except for CYP7A1, all genes were 
downregulated in HCC compared to normal  
tissues. Moreover, the expression of BAAT, 
CYP27A1, CYP39A1, CYP7B1, CYP8B1 and 
SLC27A5 was decreased inversely with the 
increase of tumor stage. In addition, consistent 
with gene expression level, the protein levels of 
these bile acid biosynthesis regulators were 
downregulated markedly in HCC, except for 
CYP7A1 (Figure 8C). These results indicated a 
negative relationship between RNA methyla-
tion regulators and bile acid metabolism and 
that the downregulation of bile acid metabo-
lism genes, especially BAAT, CYP27A1, CYP8B1 
and SLC27A5, played a critical role in the 
tumorigenesis and poor prognosis of HCC.

We next explored the role of RNA methylation 
regulators on bile acid biosynthesis genes by 
analyzing the RNA methylation of these gen- 
es. As shown in Figure 8D, BAAT exhibited the 
most RNA methylation sites (29 m6A sites),  
followed by AKR1D1 (26 m6A sites), SLC27A5 
(18 m6A sites) and CYP27A1 (12 m6A sites). 
The detailed information on RNA methylation 
sites was summarized in Table S3. Further- 
more, we found that the relationship be- 
tween m6A regulators and bile acid metabo-
lism genes was complex. For example, METTL3 
regulated the expression of ACOX2, BAAT, 
CYP39A1, CYP46A1 and SLC27A5 through a 
“binding manner”; the interaction between 
m6A regulators and target genes was suggest-
ed by CHIP-seq, CLIP-seq, RIP-seq and mass 
spectrometry. However, METTL3 also regulated 
the expression of AKR1C4, AKR1D1, BAAT, 
CYP27A1, CYP7A1, CYP8B1 and HSD17B4 
through a “perturbation manner”; the interac-

tion between m6A regulators and target genes 
was suggested by MeRIPseq, and RNA-seq. 
Besides, the regulation of METTL3 on ACOX2, 
BAAT, CYP39A1, CYP7A1, CYP8B1, HSD17B4, 
SCP2 and SLC27A5 was m6A dependent; the 
gene region of the target gene had 1 bp over- 
lap with N6-Methyladenosin peak regions 
(Figure 8E). Since RNA methylation is one of 
the key mechanisms of post-transcriptional 
modification, which plays a crucial role in RNA 
translation and affects the biosynthesis of pro-
tein, we next explored the correlation between 
the protein level of RNA methylation regulators 
and the bile acid metabolism regulators. As 
shown in Figure 8F, most RNA methylation reg-
ulators were negatively correlated with bile acid 
metabolism regulators, except for ALKBH3, 
FTO, LRPPRC, NSUN6, TRMT61B and YTHDC2. 
These results indicated that the perturbation of 
RNA methylation was closely associated with 
the downregulation of bile acid metabolism, 
which might be related to the occurrence, 
development, and poor prognosis of HCC, pro-
viding a potential therapeutic target for HCC.

Discussion

In this study, for the first time, we constructed a 
7 RNA methylation regulators-based prognostic 
classifier for HCC and validated its value in pre-
dicting the prognosis of HCC patients in seve- 
ral datasets. This classifier performed well and 
robustly predicted the prognosis of HCC 
patients from the TCGA, ICGC, and CTPAC 
cohorts. More importantly, the predictive ability 
of this classifier was superior to tumor grade 
(TNM stage) and histologic grade, the two com-
monly used risk factors for tumor prognosis 
[40, 41]. Our classifier was also better than 
other previously published classifiers in pre-
dicting long-term HCC prognosis.

http://www.ajcr.us/files/ajcr0142213suppltab3.xlsx
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All the 7 RNA methylation regulators in this 
classifier, ALYREF, IGF2BP1, IGF2BP2, TRMT- 
10C, TRMT61A, YTHDF2 and NSUN5, were risk-
associated and overexpressed in the high-risk 
group. Both the gene expression and protein 
level of these regulators were significantly  
higher in HCC than in normal liver tissues, sug-
gesting that these genes play important roles 
in the occurrence and progression of HCC. 
ALYREF is a “reader” of m5C, which serves as  
a specific m5C-binding protein and promotes 
mRNA export and post-transcriptional regula-
tion [42, 43]. Wang et al. have reported that 
ALYREF drives glioblastoma (GBM) cell prolifer-
ation by stabilizing MYC mRNA and activating 
the Wnt/β-catenin signaling pathway, suggest-
ing that ALYREF-MYC signaling may be a poten-
tial therapeutic target for GBM treatment [44]. 
Moreover, in bladder cancer, ALYREF has been 
found to promote bladder cancer cell prolifera-
tion by modulating PKM2-mediated glycolysis 
via direct binding to PKM2 mRNA and regulat-
ing its stability [45]. Recently, Nagy et al. have 
revealed that ALYREF forms a complex with 
MYCN and promotes neuroblastoma tumori-
genesis through upregulating ubiquitin-specific 
protease 3 (USP3) expression [46]. Further- 
more, consistent with our results, Xue et al. 
have reported that ALYREF is significantly 
upregulated in HCC tissues and HCC cell lines, 
and the expression of ALYREF is significantly 
correlated with both advanced tumor stages 
and poor prognosis [47]. However, the mecha-
nism of the oncogenic effect of ALYREF on HCC 
is mainly unclear. IGF2BP1 and IGF2BP2 are 
two “readers” of m6A, which belong to the fam-
ily of insulin-like growth factor 2 (IGF2) mRNA-
binding proteins and regulate the localization, 
stability, or translation of their target RNAs 
through direct interaction [48]. Gutschner et  
al. first demonstrated the oncogenic role of 
IGF2BP1 on HCC through its interaction with 
c-MYC and MKI67 mRNAs to promote tumor 
progression [49]. In addition, IGF2BP1 has 
been reported to upregulate CD47 and contrib-
ute to sublethal heat treatment-induced HCC 
recurrence and metastasis [50]. IGF2BP1 is 
also known to facilitate the liver cancer stem 
cells phenotypes by promoting the stability  
of alpha-1,6-mannosylglycoprotein 6-beta-N-
acetylglucosaminyltransferase (MGAT5) mRNA 
through elevating its m6A modification [51]. 
IGF2BP2 has also been found to promote the 
growth of HCC by targeting flap structure-spe-

cific endonuclease 1 (FEN1) through an m6A-
dependent mechanism [52]. YTHDF2 is also a 
“reader” of m6A, which is involved in the devel-
opment of various cancers, including HCC [53]. 
For example, the YTHDF2-dependent m6A of 
SOCS2 mRNA plays a vital role in METTL3-
induced HCC progression [8]. In addition, 
YTHDF2 promotes the liver cancer stem cell 
phenotype and HCC metastasis by mediating 
the m6A methylation of OCT4 mRNA [54]. On 
the contrary, YTHDF2 can also function as a 
tumor suppressor in HCC. Hou et al. have 
reported that the deficiency of YTHDF2 pro-
motes HCC cell growth, metastasis, inflamma-
tion, and vasculature remodeling through 
enhancing the decay of IL11 and serpin family 
E member 2 (SERPINE2) mRNAs [12]. TRMT- 
10C, TRMT61A and NSUN5 have been found 
significantly involved in the progression of vari-
ous cancers [55-58]. However, to date, the role 
of these regulators in HCC has not been clearly 
defined.

In the present study, we found that the meta-
bolic pathways associated with fatty acid, 
amino acid and carbohydrate metabolism we- 
re downregulated markedly in high-risk HCC 
patients, indicating that these metabolic pro-
cesses play an important role in the progres-
sion of HCC. Furthermore, based on the ex- 
pression of RNA methylation regulators, we 
defined 3 distinct RNA methylation modifica-
tion clusters in HCC that were correlated with 
different metabolic patterns. The cluster with 
the highest risk score and highest expression 
level of RNA methylation regulators is the least 
active in carbohydrate, lipid, and amino acid 
metabolism. These results indicated that meta-
bolic processes were the major targets of RNA 
methylation regulators in HCC.

Recently, increasing evidence has demonstrat-
ed the critical roles of RNA methylation regula-
tors on metabolism. Li et al. found that METTL3 
expression and m6A level increased in the liver 
of high-fat diet (HFD) mice, and the overexpres-
sion of METTL3 aggravated liver metabolic dis-
orders and hepatogenous diabetes [59]. In con-
trast, YTHDC2 was markedly down-regulated in 
NAFLD patients, and the overexpression of liver 
YTHDC2 reduced liver steatosis and insulin 
resistance through binding to mRNA of lipo- 
genic genes, thereby leads to decreasing their 
mRNA stability and inhibiting the expression of 
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lipogenic genes, including sterol regulatory ele-
ment-binding protein 1c (SREBP1c), fatty acid 
synthase (FASN), stearoyl-CoA desaturase 1 
(SCD1) and acetyl-CoA carboxylase 1 (ACACA1) 
[60]. FTO has been found to regulate carbohy-
drate metabolism via modulating the expres-
sion of forkhead box O1 (FOXO1) and activat- 
ing transcription factor 4 (ATF4), which subse-
quently affects glucose-6-phosphatase (G6PC) 
expression in an m6A-dependent manner when 
exposed to pathological conditions. However, 
under physiological conditions, FTO regulates 
transcription factors, such as signal transducer 
and activator of transcription 3 (STAT3), CC- 
AAT enhancer binding protein-β (C/EBP-β) and 
CAMP responsive element binding protein 1 
(CREB1), and affects carbohydrate metabolism 
in an m6A-independent manner [61]. Further- 
more, FTO also regulates lipid metabolisms 
through affecting cell cycle and increasing the 
m6A levels of cyclin A2 (CCNA2) and cyclin-
dependent kinase 2 (CDK2) in a YTHDF2-
dependent m6A manner [62]. As for the func-
tion of METTL3 in HCC, it has been report- 
ed that METTL3-mediated m6A modification 
leads to the elevation of LINC00958 via stabi-
lizing its RNA transcript, thereby facilitating 
HCC lipogenesis and progression [63]. MET- 
TL3 also promotes glycolysis metabolism and 
improves the sensitivity to glycolytic stress in 
HCC, partially mediated by an m6A modifica-
tion of HIF-1α mRNA [64, 65]. Similarly, ALYREF 
can directly bind to PKM2 mRNA and regulate 
its stability; thus, promote bladder cancer cell 
proliferation by PKM2-mediated glycolysis [45].

Another finding in our current study revealed 
that the processes of bile acid metabolism 
were markedly downregulated in the high-risk 
group HCC patients. The levels of serum bile 
acids, such as GCDCA, GCA, GDCA, Fragment 
of GDCA/GCDCA, TCDCA, Fragment of GCA and 
TCA, were also significantly decreased in HCC 
patients. Consistent with the recent study by 
Han et al., we also observed that the serum 
chenodeoxycholic acid (CDCA), TCA, GCA, TCD- 
CA, GCDCA and deoxycholic acid (DCA) were 
significantly decreased in HCC patients, which 
might serve as biomarkers for the diagnosis of 
HCC (AUC >0.8) [66]. In addition, we found that 
CDCA, CA, DCA, TCDCA and TCA showed simi- 
lar (connective score >90) expression patterns 
with some well-defined anti-tumor compounds, 

suggesting the potential anti-tumor capacity of 
these bile acids on HCC. Previous studies have 
shown that TCDCA, GCDCA, GCA and DCA 
induce reactive oxygen species (ROS) and cell 
apoptosis in liver cancer cells [67]. A high con-
centration of bile acids can induce cell death  
by membrane disruptions via their hydrophobic-
ity, receptor-mediated pathways, activation of 
caspase pathway, or induction of NF-κB [68, 
69]. Moreover, a recent study found that DCA 
treatment inhibited tumor progression by  
blocking cell proliferation through decreasing 
miR-92b-3p expression in an m6A-dependent 
posttranscriptional modification manner [70]. 
Therefore, several synthetic bile acid deriva-
tives, such as HS-1183, HS-1199, HS-1200, 
LCA-TMA1 LCA-TMA3, have been designed and 
found useful to cancer therapy [71].

To date, the mechanism of the downregulation 
of bile acid metabolism in HCC remains largely 
unclear. It is also not clear if bile acid metabo-
lism can be regulated by an RNA methylation-
dependent mechanism. In our current study, 
we found that bile acid metabolic genes, such 
as BAAT, AKR1D1, SLC27A5 and CYP27A1, pos-
sessed RNA methylation sites. Furthermore, we 
revealed a complex crosstalk between m6A 
regulators and bile acid metabolism genes. We 
also observed a negative correlation between 
most RNA methylation regulators and bile acid 
metabolism regulators in HCC. These results 
indicated that the perturbation of RNA methyla-
tion was tightly associated with the downregu-
lation of bile acid metabolism.

In conclusion, in the present study, we estab-
lished and validated a classifier consisting of 7 
RNA methylation regulators with independent 
prognostic value for HCC patients. Further- 
more, we found that the primary bile acid bio-
synthesis pathway was downregulated in high-
risk HCC patients, and the related metabolites 
(CDCA, CA, DCA, TDCA, and TCA) may be used 
as therapeutic targets for anti-HCC treat- 
ments. Moreover, our research revealed a 
potential crosstalk between bile acid and RNA 
methylation, uncovering a novel mechanism of 
the downregulation of bile acid metabolism in 
HCC and advanced our understanding on the 
oncogenic effect of RNA methylation regulators 
that contribute to the poor prognosis of HCC 
and are associated with the suppression of bile 
acid metabolism.
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CCNA2, cyclin A2; CDCA, chenodeoxycholic 
acid; CDK2, cyclin-dependent kinase 2; CH- 
25H, cholesterol 25-hydroxylase; cMap, Con- 
nectivity Map; CPTAC, Clinical Proteomic Tumor 
Analysis Consortium; CREB1, CAMP responsive 
element binding protein 1; CSF1, colony stimu-
lating factor 1; CYP27A1, cytochrome P450 
family 27 subfamily A member 1; CYP39A1, 
cytochrome P450 family 39 subfamily A mem-
ber 1; CYP46A1, cytochrome P450 family 46 
subfamily A member 1; CYP7A1, cytochrome 
P450 family 7 subfamily A member 1; CYP7B1, 
cytochrome P450 family 7 subfamily B me- 
mber 1; CYP8B1, cytochrome P450 family 8 
subfamily B member 1; DCA, deoxycholic acid; 
DNMT1, DNA (cytosine-5-)-methyltransferase 
1; DNMT3A, DNA methyltransferase 3 alpha; 
DNMT3B, DNA methyltransferase 3 beta; EL- 
AVL1, ELAV like RNA binding protein 1; FMR1, 
fragile X mental retardation 1; FOXO1, Fork- 
head Box O1; FTO, fat mass and obesity associ-
ated; G6PC, glucose-6-phosphatase; GCA, gly-
cocholic acid; GCDCA, glycochenodeoxycholic 
acid; GDCA, glycodeoxycholic acid; GSEA, gene 
set enrichment analysis; GSVA, gene set varia-
tion analysis; HCC, hepatocellular carcinoma; 
HDGF, hepatoma-derived growth factor; HNR- 

NPA2B1, heterogeneous nuclear ribonucleo-
protein A2/B1; HNRNPC, heterogeneous nucle-
ar ribonucleoprotein C (C1/C2); HSD17B4, 
hydroxysteroid 17-beta dehydrogenase 4;  
ICGC, International Cancer Genome Consor- 
tium; IGF2BP1, insulin like growth factor 2 
mRNA binding protein 1; IGF2BP2, insulin like 
growth factor 2 mRNA binding protein 2; 
IGF2BP3, insulin like growth factor 2 mRNA 
binding protein 3; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; LASSO, Least Absolute 
Shrinkage and Selection Operation; LRPPRC, 
leucine rich pentatricopeptide repeat contain-
ing; m1A, N1-methyladenosine; m5C, 5-me- 
thylcytosine; m6A, N6-methyladenosine; ME- 
TTL14, methyltransferase like 14; METTL3, 
methyltransferase like 3; NOP2, NOP2 nucleo-
lar protein; NSUN2, NOP2/Sun RNA methyl-
transferase family member 2; NSUN3, NOP2/
Sun RNA methyltransferase family member 3; 
NSUN4, NOP2/Sun RNA methyltransferase 
family member 4; NSUN5, NOP2/Sun RNA 
methyltransferase family member 5; NSUN6, 
NOP2/Sun RNA methyltransferase family  
member 6; NSUN7, NOP2/Sun RNA methyl-
transferase family member 7; PKM2, pyruvate 
kinase M2; RBM15, RNA binding motif protein 
15; RBM15B, RNA binding motif protein 15B; 
ROC, receiver operating characteristic; SCD1, 
stearoyl-CoA desaturase 1; SCOS2, Suppres- 
sor of cytokine signaling 2; SCP2, sterol carrier 
protein 2; SLC27A5, solute carrier family 27 
member 5; SOCS2, suppressor of cytokine sig-
naling 2; SREBP1c, sterol regulatory element-
binding protein 1c; STAT3, signal transducer 
and activator of transcription 3; TCA, taurocho-
lic acid; TCDCA, taurochenodeoxycholic acid; 
TCGA, The Cancer Genome Atlas; TDCA, tauro-
deoxycholic acid; TET1, tet methylcytosine  
dioxygenase 1; TET2, tet methylcytosine dioxy-
genase 2; TET3, tet methylcytosine dioxygen-
ase 3; TRMT10C, tRNA methyltransferase 10C, 
mitochondrial RNase P subunit; TRMT6, tRNA 
methyltransferase 6; TRMT61A, tRNA methyl-
transferase 61A; TRMT61B, tRNA methyltrans-
ferase 61B; USP3, ubiquitin-specific protease 
3; WTAP, Wilms tumor 1 associated protein; 
YBX1, Y-box binding protein 1; YTHDC1, YTH 
domain containing 1; YTHDC2, YTH domain 
containing 2; YTHDF1, YTH N6-methyladeno- 
sine RNA binding protein 1; YTHDF2, YTH 
N6-methyladenosine RNA binding protein 2; 
YTHDF3, YTH N6-methyladenosine RNA bind-
ing protein 3; ZC3H13, zinc finger CCCH-type 
containing 13.
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Figure S1. Flowchart of the construction of the RNA methylation regulators-based prognostic classifier. ROC: receiv-
er operating characteristic; TCGA: The Cancer Genome Atlas; CPTAC: Clinical Proteomic Tumor Analysis Consortium; 
ICGC: International Cancer Genome Consortium; LASSO: The least absolute shrinkage and selection operation; 
GSVA: Gene set variation analysis; GSEA: Gene set enrichment analysis.
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Figure S2. Expression landscape of RNA methylation regulators in HCC. A. Expression levels of RNA methylation 
regulators in HCC and adjacent normal tissues in the ICGC cohort by Student t test. B. Expression levels of RNA 
methylation regulators in different tumor stages of HCC in the ICGC cohort by Kruskal-Wallis test. C. Protein levels of 
RNA methylation regulators in HCC and adjacent normal tissues in the CPTAC cohort by Student t test.

Figure S3. The prognostic value of the RNA methylation-based classifier in CPTAC cohort and GSE54236 cohort. A. 
Protein levels of all 7 regulators of the classifier in the high- and low-risk groups from the CPTAC cohort. *P<0.05; 
**P<0.01; ***P<0.001. B. Kaplan-Meier survival analysis of OS between the high- and low-risk patients from the CP-
TAC cohort. C. mRNA levels of all 7 regulators of the classifier in the high- and low-risk groups from the GSE54236 
cohort. *P<0.05; **P<0.01; ***P<0.001. D. The relationship between survival time and risk score of HCC patients in 
the GSE54236 cohort.
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Figure S4. Unsupervised clustering based on RNA methylation regulators. A. Heatmaps of the consensus matrices for k=3. B. Differences of the risk score among 
3 clusters in ICGC cohort by Wilcox test. C. Kaplan-Meier analysis of overall survival among 3 clusters in ICGC cohort. D. Differences in the expression of RNA meth-
ylation regulators among 3 clusters in ICGC cohort by Kruskal-Wallis test. E. GSVA analysis showed the activation states of metabolic pathways based on the KEGG 
database among 3 clusters in the ICGC cohort. F. Univariate Cox regression analysis of the activation of metabolic pathways with overall survival in the ICGC cohort.


