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Abstract: Chemokine and chemokine receptors (CCRs) play a significant role in tumor infiltration of immune cells, 
tumor angiogenesis and distant metastasis. In this study, we explored the importance of CCRs in gastric cancer 
(GC) by analyzing the datasets from TCGA database. First, we analyzed the characteristics of the CCRs mutations. 
Then, we screened the differentially expressed CCRs and performed GO functional annotation and KEGG pathway 
analyses to explore their potential biological functions. Using multivariate Cox regression analyses, we constructed 
a prediction model based on four-CCRs (CCL15, CCL21, CCR3 and ACKR3) signature, and we found that the risk 
score of the model was an independent prognostic factor of GC. Next, a nomogram was constructed to assess the 
prognosis of GC patients. GSEA indicated that the high-risk group was significantly enriched in immune response 
and immune system process. Moreover, GSVA was employed to investigate the up- and down-regulated signaling 
pathways in the high- and low-risk groups. The correlation between risk score and immune-cell infiltration indicated 
that the four-CCRs signature might play a pivotal role in GC immune microenvironment. In conclusion, we revealed 
the potential molecular mechanisms of CCRs in GC and constructed a prediction model which might guide personal-
ized treatment and prognosis for GC patients.

Keywords: Chemokine, chemokine receptors, gastric cancer, prognosis, immune infiltrates

Introduction

Gastric cancer (GC) is the third leading cause of 
cancer deaths around the world [1, 2]. About 
two-third GC patients were diagnosed as 
advanced GC, and many patients will have local 
recurrence and distant metastasis even after 
receiving the radical resection [3]. The 5-year 
survival rate of advanced GC patients is only 
about 5%-20%, with 10 months of the overall 
survival (OS) [4, 5]. Although some biomarkers 
related to the tumorigenesis and prognosis of 
GC have been evaluated [6], the methods that 
could accurately predict the prognosis of GC 
patients remain limited. Therefore, it is an 
urgent need to develop predictive models for 
the improved prognosis and treatment of GC 
patients.

Chemokines are small, secreted chemoattrac-
tant molecules that can regulate immune and 
inflammatory response, cell migration, prolifer-

ation and survival, which play an important role 
in various biological and pathological process-
es including cancer [7]. So far, more than 50 
chemokines and 20 chemokine receptors have 
been identified [8]. According to the primary 
structure of the peptide chain, chemokines are 
classified into 4 subfamilies: CC, CXC, XC, and 
CX3C. The typical chemokine receptors are also 
divided into four subfamilies based on their 
binding ligand specificity: CCR (CCR1-CCR11 
and CXCR (CXCR1-CXCR6)) [9]. Recently, some 
atypical chemokine receptors (ACKRs), e.g., 
ACKR1/2/3/4, have also been identified [10]. 
Unlike the typical chemokine receptors, ACKRs 
cannot trigger the canonical G protein mediat-
ed signaling, but they can combine with typical 
cytokines and regulate the chemokine network 
[11].

Many studies have revealed that tumor and its 
microenvironment (TME) contain a complex 
chemokine network [12]. Chemokine and che-
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mokine receptors (CCRs) may affect the degree 
of immunocyte infiltration and phenotype [13-
15], angiogenesis [16, 17], tumor cell growth 
[18, 19], metastasis [20, 21], and survival [22], 
which, in turn, affect the patient’s prognosis. 
For example, CC and CXC (e.g., CCL2, CCL5, 
CXCL1 and CXCL5) chemokines can recruit 
monocytes and neutrophils to the tumor micro-
environment where monocytes and neutrophils 
can promote or inhibit tumor progression [13-
15, 23]. CXCL12 and CCL2 have been found to 
promote angiogenesis in ovarian cancer [24, 
25]. CCL28 can modulate MAPK/ERK pathway 
to promote breast cancer cell growth and 
metastasis [21]. ACKR3 promotes epithelial to 
mesenchymal transition (EMT) and tumor 
growth by mediating TGF-β1 function in lung 
cancer [26]. Indeed, some monoclonal antibod-
ies and chemokine receptor inhibitors have 
already been used in the clinical practice for 
malignant tumor treatment. For example, 
CXCR4 antagonist (AMD3100) is used to treat 
relapsed or refractory acute myeloid leukemia 
(AML) [27]. CCL2 inhibitor (CNTO 888) is used 
to treat metastatic prostate cancer [28, 29], 
and anti-CCR4 monoclonal antibody (Mogamu- 
lizumab) is used to treat T-cell leukemia-lym-
phoma [30]. They have shown some therapeu-
tic effects, and more clinical studies targeting 
CCRs are in progress. Nevertheless, although 
some CCRs (e.g., CCR5 and its ligand) were 
found differentially expressed in GC, and their 
expression is associated with a poor prognosis 
[31], the role of most CCRs in GC progression 
has not been reported. Therefore, our current 
studies aimed to identify the potential biologi-
cal function and signature of CCRs to improve 
prognostic evaluation of GC. By multivariate 
Cox regression analysis, a novel four-CCRs 
(CCL15, CCL21, CCR3 and ACKR3) signature 
was constructed. 

Methods

Data extraction and data processing

Genetic mutation data, transcriptome data, 
and clinical data of GC samples were obtained 
from the TCGA database (https://portal.gdc.
cancer.gov/). Mutation data were visualized 
using the “maftools” package in R (4.1.0).

CCRs expression in GC

Differentially expressed CCRs between tumor 
and normal samples were analyzed and visual-

ized using the “limma” and “pheatmap” pack-
age in R (4.1.0). The threshold of adjusted  
false discovery rate was <0.05 with |log2 (fold 
change)| >1. P-values less than 0.05 were con-
sidered statistically significant. Spearman cor-
relation analysis was used to evaluate the cor-
relation of CCRs expressions. P<0.05 was 
selected as statistically significant.

Enrichment analysis of CCRs

To explore the functional mechanisms of  
CCRs in GC, we performed GO functional anno-
tation and KEGG pathway enrichment analysis 
in R (4.1.0) by employing the packages “GO 
plot”, “Cluster Profiler”, “ggplot2”, “DOSE” and 
their dependency packages. The enriched GO 
terms, KEGG pathways and PPI network were 
further annotated and visualized by Metascape 
[32].

Establishment and verification of the prognos-
tic model

First, Kaplan-Meier analysis was performed to 
screen CCRs with prognostic values. Then, mul-
tivariate Cox regression was performed to con-
struct CCRs-related prognostic signature and 
calculate the risk score of each patient. Risk 
scores were generated based on the expres-
sion of genes multiplied by a linear combination 
of regression coefficients obtained from the 
multivariate Cox regression analysis (P<0.01 
was considered statistically significant). The 
formula used in CCRs model was: risk score=

vi ci1i
n #=/ . (n: the quantity of independent 

indicators, vi: the expression quantity of gene, 
ci: the regression coefficient of gene i in multi-
variate Cox regression analysis). All GC patients 
were divided into two groups by the median  
risk score. We plotted K-M survival curve which 
was tested by log rank to portion statistical sig-
nificance for evaluating the discrepancy of OS 
between the two groups. Besides, we plotted 
ROC curves by the “survival ROC” package in R 
(4.1.0) to verify the accuracy of this model. 
Principal component analysis (PCA) was con-
ducted based on the “prcomp” package in R 
(4.1.0). To verify whether the risk score could 
be used as an independent prognostic factor 
for GC, univariate and multivariate analyses 
were performed by adopting the Cox regression 
method. A nomogram was built to investigate 
the probability of prognosis in GC patients.
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Immunohistochemistry

The immunohistochemistry images for the 
expression of ACKR3, CCR3, and CCL21 in GC 
tissues and normal tissues were downloaded 
from the Human Protein Atlas (https://www.
proteinatlas.org/).

RNA extraction and real-time PCR

Total RNA was extracted by Trizol reagent 
(Invitrogen, Carlsbad, CA, United States) 
according to the manufacturer’s protocol. 
Subsequently, the extracted RNA was reverse 
transcribed using PrimeScript RT reagent Kit 
with gDNA Eraser (Takara, Japan). The cDNAs 
were subjected to SYBR Green-based real-time 
PCR analysis. The primers used in real-time 
PCR assays were listed in Table S1.

Correlation between the risk score and im-
mune cell infiltration

The Tumor Immune Estimation Resource 
(TIMER) database [33] was employed to ana-
lyze the correlation between the risk score and 
tumor-infiltrating immune cells (B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, macrophages 
and dendritic cells). The abundance of the six 
immune infiltrates was estimated by the TIMER 
algorithm in R (4.1.0).

GSEA and GSVA functional annotation

We performed GSEA by using the software 
Gene Set Enrichment Analysis (GSEA) v4.0.3. 
The Gene Set Variation Analysis (GSVA) an- 
alysis was performed using “GSVA” package in 
R (4.1.0) using C2 gene sets (KEGG) from 
MSigDB (http://www.gsea-msigdb.org/gsea/
index.jsp).

Statistical analysis

All statistical analyses were performed by R 
(version 4.1.0). P<0.05 was considered statisti-
cally significant except for special notes.

Results

Ccrs mutation analysis in GC samples

The incidence of copy number variations and 
somatic mutations of 63 CCRs in GC samples 
were summarized in Figure 1. Among the 132 
samples we examined, 82 samples contained 

mutations of CCRs, with the frequency of 
62.88%. The top 30 frequently mutated gen- 
es were shown in the waterfall plot, and the top 
10 commonly mutated genes were CX3CL1, 
XCR1, CCR1, CXCR1, CXCR2, CCR3, CCR5, 
CCR7, CXCL16 and ACKR4. Among them, 
CX3CL1 and XCR1 were the highest mutated 
genes with more than 5% mutation rates 
(Figure 1A). Besides, the three most common 
mutation types were missense mutation, fol-
lowed by frameshift deletions and frameshift 
insertions (Figure S1A). In addition, we found 
that there were some co-occurring mutations 
(e.g., CXCR6/CCR9, CCL1/CXCR1, ACKR1/
CCR7 and ACKR4/CXCL16) of CCRs in GC sam-
ples (Figure 1B).

Expression of CCRs between GC and normal 
tissues

Since genetic variations could be the promi-
nent factor influencing the expression of CCRs, 
we further compared the differential expres-
sion of 63 CCRs between cancer and normal 
tissues (Figure 2A). We found that 41 CCRs 
were differentially expressed between GC and 
normal tissues, and the expression of the 
majority of these genes were up regulated in 
GC (Figure 2B). The most differentially ex- 
pressed 24 CCRs (P<0.01, |logFC| >1) were 
shown in (Table 1). Moreover, spearman corre-
lation analysis was used to investigate the cor-
relation between the 63 CCRs and GC, and we 
observed both positive and negative correla-
tions between the expression of these genes 
and GC (Figure S2). The genes with the stron-
gest positive correlation were CXCL10 and 
CXCL11 (R=0.92), and the genes with strongest 
negative correlation were CXCL16 and CCL14 
(R=-0.27).

Functional annotation of the significant CCRs

To explore the biological functions and poten-
tial mechanisms of the CCRs, GO and KEGG 
pathway enrichment analyses were performed 
for the top 24 CCRs (Table 1) with the signifi-
cant expression change in GC. The GO analysis 
showed that these CCRs were mostly enriched 
in chemokine-mediated signaling pathways 
(BP), external side of plasma membrane (CC), 
and the chemokine activities (MF) (Figure 3A). 
From the KEGG pathway analysis, we found 
that these differentially expressed CCRs were 
mainly associated with viral protein interaction 
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with cytokine and cytokine receptor, chemo-
kine signaling pathway and cytokine-cytokine 
receptor interaction (Figure 3B). Annotation of 
GO, KEGG pathways enrichment analysis and 
PPI network of these top 24 CCRs were also 
performed using “Metascape” website (Figure 
3C; Figure S3). As shown in Figure 3D, 16 hub 

genes were identified in the protein - protein 
interaction network.

Construction of a prognostic risk model

To analyze the relationship between the expres-
sion of CCRs and the prognosis of GC, univari-

Figure 1. Mutation profile analysis of CCRs by using the TCGA datasets. A. Oncoplot displaying the somatic land-
scape of the top 30 CCRs in GC samples from TCGA database. B. The co-occurring mutations and the mutual exclu-
sivity analysis of the top 30 CCRs. Co-occurrence, green; Exclusion, brown.

Figure 2. Expression analysis of CCRs. A. The expression levels of CCRs in the TCGA datasets. Red indicates up-
regulated genes; green indicates down-regulated genes. B. Boxplot displaying the differentially expressed CCRs in 
GC. Blue, normal. Red, tumor. Not significant (ns), P<0.05 (*), P<0.01 (**), and P<0.001 (***).
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ate Cox regression analysis was performed for 
the 63 CCRs. The results indicated that 7 CCRs 
were significantly correlated with the survival  
of GC patients (Figure 4A). In addition, multi-
variate Cox regression analysis was performed 
to construct a prognostic risk model using four 
genes (CCL15, CCL21, CCR3 and ACKR3) and 
to calculate the risk score for each patient 
(Table 2). Based on the median risk score, 368 
GC patients were divided into high-risk group 
(n=184) and low-risk group (n=184). The sur-
vival overview and gene expression heatmaps 
of these two groups were presented in Figure 
4B. By analyzing the expression data of all 
genes (Figure 4C) and the risk-related genes 
(Figure 4D), principal component analysis  
(PCA) was performed, and we found that our 
risk score could accurately distinguish the high- 
and low-risk groups. Kaplan-Meier analysis 
indicated that, compared with the low-risk 
group, the prognosis of the high-risk group was 
significantly worse (P<0.01) (Figure 4E). The 
AUC of the ROC curve was 0.825, suggesting 
our model had a good performance in predict-

ing the prognosis of GC patients with high sen-
sitivity and specificity (Figure 4F).

Validation and application of the prognostic 
risk model

To evaluate the independent prognostic ability 
of our prognostic model, univariate (Figure 5A; 
Table 3) and multivariate (Figure 5B; Table 4) 
Cox regression analyses were performed to 
explore the relationship between clinicopatho-
logical characteristics and patient prognosis. 
The results showed that the risk score could be 
used as an independent predictor of the prog-
nosis of GC patients (P<0.001). To facilitate the 
clinical use of this model to obtain reliable prog-
nostic information of each patient, we con-
structed a nomogram that could predict the 1-, 
2- and 3-year OS probability of GC patients 
(Figure 5C).

Protein and mRNA expression of CCL15, 
CCL21, CCR3 and ACKR3

To reveal the protein expression profile of 
CCL15, CCL21, CCR3 and ACKR3 in normal tis-

Table 1. Expression of top 24 CCRs
gene normalMean tumorMean logFC P-value
CXCR2 3.77726971 1.112872577 -1.763055385 0.000365247
CXCL17 225.559568 73.02803964 -1.626986074 6.88E-05
ACKR1 25.204637 9.336958332 -1.432664629 4.25E-11
CCL21 118.318518 47.5927657 -1.313861685 1.02E-08
CCL14 0.98009266 0.411905058 -1.250606306 1.42E-07
CXCL12 17.373577 7.517509883 -1.208568054 1.03E-07
CCR10 1.56625757 0.688337184 -1.186134135 3.39E-06
CCR1 2.33214037 4.821027975 1.047686176 2.85E-05
CCL15 1.70143162 3.992240417 1.230449429 4.48E-06
CXCL16 28.7594958 72.58288985 1.335591117 3.20E-11
CXCL3 5.89865494 18.03349774 1.612221323 8.26E-07
CCL3 0.80032764 3.439417526 2.103501615 1.09E-09
CCL20 10.9999174 52.1466439 2.245081718 6.27E-05
CCL18 6.14431732 29.29875169 2.253514568 3.47E-05
CCL26 0.68780889 3.814495172 2.47141247 0.001664114
CXCL5 12.2286623 72.64480995 2.57059314 0.000747777
CCR8 0.08748828 0.585523355 2.742565112 6.26E-13
CXCL1 8.4535364 63.02696675 2.898342332 5.31E-11
CXCL6 0.50611615 4.143685123 3.033373974 3.59E-09
CXCL10 4.4314276 41.13843483 3.214643458 6.28E-10
CXCL11 1.00251453 10.61476438 3.404377294 5.41E-10
CXCL9 4.16285404 45.28027036 3.443237691 4.08E-11
CXCL8 4.26019156 49.03128271 3.524712298 4.08E-11
CCL7 0.03366889 0.777061946 4.528541442 7.91E-13
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Figure 3. Functional Annotation of the significant 
CCRs. (A) GO functional annotation and (B) KEGG 
pathway enrichment analysis of the top 24 CCRs. (C) 
Metascape website analysis. Nodes with the same 
cluster ID are typically close to each other, and the 
same color indicates the same cluster ID. (D) The 
key module of PPI network. 16 hub genes, which 
are labeled with red circles. The lines between the 
circles indicate the interaction among genes.



Chemokine and chemokine receptors in gastric cancer

3041 Am J Cancer Res 2022;12(7):3034-3050

sues and GC tissues, we extracted the relevant 
data from the Human Protein Atlas (HPA) web-

site. As shown in Figure 6A-F, compared with 
normal tissue, ACKR3 was highly expressed, 

Figure 4. Prognostic value of CCRs in GC patients. (A) Univariate Cox regression analysis between CCRs expression 
and OS. (B) The distribution of prognostic signature-based risk scores. Principal component analysis between low-
risk and high-risk groups for all genes (C) and for risk genes (D). (E) Kaplan-Meier survival curve for the OS of GC 
patients. The red line represents the high-risk group, and the blue line represents the low-risk group. (F) AUC of time-
dependent ROC curve analysis for evaluating the prognostic performance of the risk score for 5-year OS.
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whereas the expression of CCR3 was lower in 
GC tissues. The expression of CCL21 was not 
detected in both normal and GC tissues, possi-
bly due to its low expression level. The protein 
expression data of CCL15 was inaccessible in 
HPA database; hence, CCL15 expression was 
not presented in this study. We also verified the 
mRNA expression of the four genes using our 
own clinical samples (paired gastric cancer tis-
sues, n=22). The results showed that CCL15, 

CCL21, CCR3, and ACKR3 were expressed dif-
ferentially between normal and tumor tissues 
(Figure 6G-J).

The risk score was related to immunocyte infil-
tration

As mentioned above, CCRs were closely related 
to inflammatory response and tumor immunity. 
To explore whether the risk score was related to 

Table 2. Four CCRs that constitute the CCRs-related prognostic model
Gene symbol Coef HR HR.95L HR.95H P-value
CCL15 0.03720978 1.03791073 1.00674268 1.070043714 0.016759
CCL21 0.00077528 1.00077558 1.000095965 1.00145566 0.025298
ACKR3 0.03137368 1.03187102 1.009468142 1.054771079 0.005088
CCR3 0.65784562 1.93062854 1.17316883 3.177144213 0.009644

Figure 5. Validation and application of the prognostic risk model. A. Univariate Cox regression analysis. B. Multivari-
ate Cox regression analysis. C. The nomogram for estimating the 1-, 2-, and 3-year overall survival of GC patients.
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immune cell infiltration in GC, correlation analy-
sis was carried out by using the TIMER 
Database. We found that the risk score was 
positively correlated with the infiltration of  
CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages and dendritic cells (P<0.001) (Figure 
7A-E), except for B cells (Figure 7F).

Functional enrichment analysis for different 
risk groups

GSEA was used to analyze the enrichment of 
high- and low-risk groups in two immune relat-
ed gene sets. The results indicated that the 
high-risk group with poor survival was signifi-
cantly enriched in these two immune related 
gene sets that included immune response and 
the process of immune system, while the low-
risk group did not show such significant enrich-
ment (Figure 8A). GSVA results indicated that, 
compared with the low-risk group, many meta-
bolic pathways in the high-risk group were up-
regulated or down regulated (Figure 8B, 8C). 
These metabolic pathways included cytokine 
and cytokine receptor interaction, cell adhe-
sion molecules (CAMs) and RNA degradation. 
The dysregulation of these pathways may be 
one of the factors affecting the prognosis of 
GC.

Discussion

Tumor immune microenvironment plays a very 
important role in anti-tumor activity [34, 35]. 
CCRs can affect the state of tumor immune 
microenvironment by regulating inflammatory 
response and immune cell infiltration [12, 
36-38]. GC is a solid tumor which consists of 
stromal cells, e.g., endothelial cells and fibro-
blasts, and is infiltrated by various immune 
cells, e.g., CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages, and dendritic cells. All 
these cells are involved in chemokine produc-
tion [39]. Although some CCRs, e.g., CCR5 and 
its ligand, have been found differentially 
expressed in GC, and their expression is asso-
ciated with aggressive tumor behavior and a 
poor prognosis [31], the role of most CCRs  
in GC progression has not been reported. 
Therefore, a comprehensive analysis and the 
molecular characterization of CCRs in GC will 
advance our understanding of the antitumor 
immune response and prognosis of GC.

In our current studies, we first systematically 
analyzed the mutation frequency and CNV 
alteration of CCRs by using the information 
from TCGA database. We found that the ex- 
pression of most CCRs was dysregulated in GC. 

Table 3. Univariate analyses of overall survival of GC patients by using TCGA datasets
Variables HR HR.95L HR.95H P-value
age 1.026965748 1.007829689 1.046465151 0.00556017
gender 1.483828302 0.979779065 2.247186647 0.062392212
grade 1.367875492 0.946580494 1.976676441 0.095375967
stage 1.535478376 1.221185829 1.930659353 0.000242497
T 1.297541887 1.023344886 1.645207762 0.031516711
M 2.048306027 1.096196896 3.827375896 0.024581693
N 1.267206892 1.068895108 1.5023114 0.006386528
riskScore 1.654379281 1.277259284 2.142846671 0.00013678

Table 4. Multivariate analyses of overall survival of GC patients by using TCGA datasets
Variables HR HR.95L HR.95H P-value
age 1.038699482 1.017970559 1.059850508 0.000222768
gender 1.523418052 0.996272439 2.329485862 0.052048908
grade 1.496553445 1.018153473 2.199739307 0.040217331
stage 1.346751999 0.869066971 2.086997905 0.182848275
T 1.061399022 0.768680251 1.465587131 0.717388532
M 1.822690208 0.80192462 4.142782887 0.151850095
N 1.096270464 0.854173045 1.406985312 0.470335302
riskScore 1.664082404 1.286237132 2.152923577 0.000106385
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Next, we selected the top 24 CCRs that exhib-
ited significantly differential expression be- 
tween normal and GC tissue for further investi-
gation of their potential mechanisms and bio-
logical functions. As expected, these CCRs 
were significantly enriched in chemokine relat-
ed gene sets and signaling pathways such as 
chemokine-mediated signaling pathway (BP), 
external side of plasma membrane (CC), che-
mokine activity (MF), viral protein interaction 
with cytokine (KEGG) and NF-kappa-B signaling 
pathway (KEGG). Consistent with our findings, it 
has recently been reported that the therapeutic 

concentration of 3,3’-Diindolylmethane (DIM) 
can upregulate the expression level of chemo-
kines such as CCL-2 and activate NF-kappa-B 
signaling pathway in gastric cancer-derived 
mesenchymal stem cells, thus promoting the 
progression of GC [40]. In addition, we also 
conducted PPI analysis and found 16 hub 
genes that might play a key role in regulating 
the chemotaxis related molecular networks in 
GC.

Through multivariate Cox regression analyses, 
four CCRs (CCL15, CCL21, CCR3 and ACKR3) 

Figure 6. Immunohistochemical and qPCR analysis of ACKR3, CCR3, and CCL21. The expression of ACKR3 was 
higher in GC tissues than in normal tissues (A, B). The expression of CCR3 was lower in GC tissues than in normal tis-
sues (C, D). The expression of CCL21 was not detected in both GC tissues and normal tissues (E, F). All results were 
obtained from HPA database. (G-J) mRNA relative expression of genes in the risk model by the method of qPCR.
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were identified to be significantly correlated 
with the OS of GC patients. Recently, there are 
studies showing the inflammatory response 
and pro-tumor or anti-tumor effect of these 
CCRs. For example, CCL15, acting mainly via 
CC chemokine receptor CCR1 [41], also binds 
to CCR3 [42] and can recruit immune cells,  
e.g., T-cells, monocytes, eosinophils, and neu-
trophils, to tumor microenvironment [42, 43]  
to induce tumor angiogenesis [44]. It has also 
been reported that CCL15 is highly expressed 
in digestive tract and liver tissues and plays an 
important role in maintaining the balance of 
immune response in these organs. In tumor, it 
is found that the accumulation of CCR1+ tu- 
mor-associated neutrophils through CCL15-
CCR1 axis can promote lung metastasis of 
colorectal cancer [45]. Moreover, CCL15 pro-
duced by the renal cell carcinoma cells that 
migrate to the bone has been shown to display 
a significant effect on osteoclastogenesis, and 
can promote the bone metastasis of tumor  
[46, 47]. CCL21, as the ligand for CCR7, can 
activate T cells, preferentially naive T cells [48, 
49]. High expression of CCL21 in tumor can 
increase anti-tumor immune cell infiltration and 

prolong the survival of cancer patients [50, 51]. 
However, once the tumor immune microenvi-
ronment has been completely dysregulated, 
CCL21 may play an opposite role [52, 53] as 
CCL21 may recruit Treg into the tumor microen-
vironment, which results in tumor immune eva-
sion. ACKR3 is the receptor for CXCL12 and 
CXCL11. Recent studies have shown that 
ACKR3 can promote tumor cell growth and 
metastasis [54, 55] through modulating the 
mTOR pathway [56]. Increased expression of 
ACKR3 is a significant prognostic factor for the 
poor prognosis of patients with aggressive 
prostate carcinoma [57] and renal carcinoma 
[58]. Based on the four CCRs (CCL15, CCL21, 
CCR3 and ACKR3) described above, we estab-
lished a four-CCRs signature-associated risk 
model, and our results suggested that the risk 
score was an independent prognostic predi- 
ctor for GC patients. Importantly, our GSVA 
results revealed some signaling pathways that 
were significantly different between high- and 
low-risk groups, such as cytokine and cytokine 
receptor interaction, cell adhesion molecules 
(CAMs) and RNA degradation. The abnormali-
ties of these pathways may be the cause for the 

Figure 7. The correlation between risk scores and immune cell infiltrating. Neutrophils (A), CD4+ T cells (B), CD8+ T 
cells (C), dendritic cells (D), macrophages (E), and B cells (F) are revealed by scatter diagrams. The correlation is 
shown by Pearson correlation coefficient.
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difference in prognosis between high-risk and 
low-risk patients.

We further performed GSEA to determine the 
difference in immune responses between the 
high- and low-risk groups. Our results showed 
that the high-risk group was significantly 
enriched in two immune related gene sets 
including immune response and the process of 
immune system, while low-risk group showed 
no significant enrichment. This is in consis-
tence with the fact that immune response  
plays an important role in anticancer immunity 
and is closely related to the prognosis of vari-
ous human malignant tumors [59]. Tumor 

immune response involves many immune cells, 
and the role of immune cells is very complex 
and diverse. For example, neutrophils can pro-
mote the metastasis of tumor cells to distant 
organs by interacting with circulating tumor 
cells [60], and macrophages can promote EMT 
process to enhance tumor cells migration and 
invasion [61]. To understand the correlation 
between the risk score of our model and 
immune-cell infiltration, we conducted a corre-
lation analysis based on the TIMER database. 
Our results indicated that the infiltration of 
CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages and dendritic cells was positively asso-
ciated with the risk score, suggesting that a 

Figure 8. Differential signaling pathway enrichment in different risk groups. (A) gene sets of immune response and 
the process of Immune system in high-risk and low-risk groups analyzed by GSEA. (B, C) GSVA enrichment analysis 
showing the up and down regulated signaling pathways in different risk groups. Volcano plot (B), and Heatmap of 
differential expression in KEGG pathway (C). Red represents up regulated pathways, and green represents down 
regulated pathways.
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high infiltration level of these immune cells 
might increase the mortality risk of GC pa- 
tients. However, in contrary to our results, high 
level of CD4+ and CD8+ cells infiltration in tumor 
has been reported as a good prognostic factor. 
We speculated that this contradiction was 
caused by the other functions of CCL21; the 
high expression of CCL21 might recruit Treg 
and lead to tumor immune escape.

Our research constructed a four-CCRs (CCL15, 
CCL21, CCR3 and ACKR3) signature prognostic 
risk model and provided new insights into the 
GC immune microenvironment. However, there 
are some limitations in this study. Since this 
was a retrospective study, the results need to 
be further validated by large-scale prospective 
studies. Besides, the predictive power of this 
model in GC requires further testing for better 
prognostic stratification and treatment man-
agement. Moreover, the biological functions of 
these four CCRs need further experimental 
verification.

Conclusion

Through a series of comprehensive analyses, 
we identified the potential biological function 
and prognostic value of CCRs in GC. We further 
constructed a novel prognosis model for GC 
patients. We found that the risk score of this 
model could reflect the immune microenviron-
ment status of GC patients. The current studies 
shed some light on our understanding of CCRs 
in GC and provide novel potential prognostic 
and therapeutic biomarkers.
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Table S1. Primer sequences of genes in the risk model used for qPCR
gene primer
ACKR3 Forward: TCTGCATCTCTTCGACTACTCA

Reverse: GTAGAGCAGGACGCTTTTGTT
CCR3 Forward: TGGCATGTGTAAGCTCCTCTC

Reverse: CCTGTCGATTGTCAGCAGGATTA
CCL15 Forward: TCCCAGGCCCAGTTCATAAAT

Reverse: TGCTTTGTGAGATGTAGGAGGT 
CCL21 Forward: GTTGCCTCAAGTACAGCCAAA

Reverse: AGAACAGGATAGCTGGGATGG

Figure S1. The overview of mutation profile of CCRs from the TCGA-STAD datasets. A. Variant classification. B. Vari-
ant type. C. SNV class. D. Variants per sample. E. Variant classification summary. F. Top 10 mutated genes.
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Figure S2. The correlation among CCRs. Red represents positive correlation; blue represents negative correlation. 
Correlation analysis was conducted by Spearman correlation analysis.
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Figure S3. The P-value of enrichment network. The same enrichment network has its nodes colored by P-value (The 
darker the color, the more statistically significant).


