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Abstract: Lung adenocarcinoma (LUAD) is a very heterogeneous cancer with a bad prognosis. Pyroptosis and fer-
roptosis are two newly discovered forms of regulated cell death, which can trigger inflammation-related immuno-
suppression in tumor microenvironments, thereby promoting tumor growth. So far, there has been no thorough 
systematic investigation of the predictive values of ferroptosis and pyroptosis-related genes in LUAD. Therefore, in 
this study, we conducted a combined analyses in the gene expression of ferroptosis and pyroptosis and identified 
four distinct subgroups: immobility, ferroptosis, pyroptosis, and mixed. The gene sets most closely associated to 
both ferroptosis and pyroptosis were utilized to build a risk prediction model based on their variations in survival 
and biological activities. More importantly, our conclusions from bioinformatics analyses were validated by external 
experiments in patients with LUAD. In conclusion, the establishment of LUAD subgroups based on the ferroptosis- 
and pyroptosis-related gene expression profile provided new insights into understanding the roles of programmed 
cell death in oncogenesis and might contribute to the development of individualized therapy.
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Introduction

Because of its poor prognosis, lung cancer is 
one of the leading causes of cancer-related 
mortality globally [1]. Non-small cell lung can-
cer (NSCLC) accounts for the vast majority of 
LUAD diagnoses, while the most common NS- 
CLC histologic subtype accounts for around 
40% of all lung cancer cases [2]. The two major 
clinical challenges with LUAD treatment are  
the late diagnosis and drug resistance [3]. 
Although multiple clinical trials have demon-
strated encouraging effects in certain LUAD 
patients with immunotherapies based on im- 
mune checkpoint inhibitors (ICIs) [4], other 
LUAD patients who undergo ICI therapy fail to 
exhibit a significant improvement in OS, proba-
bly due to cancer cell resistance to apoptosis. 

Hence, searching for novel forms of cell death 
has emerged as a viable treatment strategy.

Apoptosis, necrosis, ferroptosis, parthanatos, 
oxeiptosis, oncosis, pyroptosis, and autophagy 
are a few of the several types of cell death th- 
at are involved in the pathophysiology and 
development of cancer. Of note, ferroptosis and 
pyroptosis have become the center of interest 
in recent years. Numerous studies have shown 
that the essential biological processes con-
nected to the development of LUAD are ferrop-
tosis and pyroptosis [7, 8]. In contrast to apop-
tosis, necrosis, and autophagy, which are other 
types of programmed cell death [9], ferroptosis 
is iron-dependent, which is caused by an imbal-
ance in cellular redox equilibrium and ultimately 
the excessive lipid peroxidation. Many studies 
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have explored the functional mechanism and 
the potential of targeting ferroptosis for cancer 
treatment [10]. For example, Alvarez et al. have 
reported that decreasing the iron-sulfur cluster 
biosynthesis enzyme NFS1 in LUAD, in conjunc-
tion with limiting cysteine transport, induces 
ferroptosis in vitro and reduced xenograft tu- 
mor growth in vivo [11]. Zhang et al. have  
discovered that the translational control of 
SLC7A11 by RBMS1 modifies lung cancer fer-
roptosis [12]. Wang et al. found that the lung 
cancer stem cell factor SOX2 mediates ferrop-
tosis resistance by overexpressing SLC7A11 
[13]. Other newly identified regulators, such as 
erianin, may impede cell migration and cause 
Ca2+/CaM-dependent ferroptosis, potentially 
playing an anti-tumor role in lung cancer [15].

However, how ferroptosis affects the tumor 
immune microenvironment (TIME) remains elu-
sive. It is reasonable to speculate the function 
of ferroptosis in TIME as TIME is connected  
to iron metabolism and homeostasis in vivo, 
whereas ferroptosis is necessary for tumor 
immunity [16]. Recent research has shown that 
CD8+ T lymphocytes activated by immunother-
apy raise ferroptosis-specific lipid peroxidation 
in tumor cells, increasing the effectiveness of 
cancer immunotherapy [17]. It’s important to 
note that the expression of SLC7A11 and 
SLC3A2 is downregulated by IFN secreted by 
CD8+ T cells, which promotes ferroptosis and 
lipid peroxidation in addition to blocking tumor 
cells from absorbing cystine [18]. A connec- 
tion between ferroptosis and the prognosis of 
non-small cell lung cancer was also found by 
Lai et al. [19]. LUAD and their activities are 
impacted by ferroptosis-related genes, althou- 
gh little is known about the processes behind 
these effects.

The synthesis of several proinflammatory medi-
ators during pyroptosis, a lytic type of con-
trolled cell death, is one of its defining fea- 
tures [20]. One of two signaling pathways-the 
GSDMD-dependent, which is regulated by cas-
pase 1/4/5/11, or the GSDME-dependent, 
which is regulated by caspase 3-can initiate 
pyroptosis [21-24]. Gasdermin C and Gasder- 
min D are two important pyroptosis effectors 
that are overexpressed in several malignancies 
and are linked to tumor growth and the poor 
prognosis of patients [25, 26]. Furthermore, 
Teng et al. discovered that the ROS/NF-κB/

NLRP3/GSDMD signal axis was activated by 
PPVI, the caspase 1-mediated pyroptosis, whi- 
ch mediated the PPVI-induced suppression of 
NSCLC [27]. Furthermore, by triggering cas-
pase 3/GSDME signaling, Zhang et al. discov-
ered that the chemotherapy medicines pacli-
taxel and cisplatin differently promote pyropto-
sis in A549 lung cancer cells [28]. Both in vivo 
and in vitro, cucurbitacin B reduces NSCLC  
via causing TLR4/NLRP3/GSDMD-dependent 
pyroptosis [29]. Significantly, a unique gene  
signature for pyroptosis was discovered in 
LUAD to be used in prognostic prediction. The 
development of LUAD depends on the lncRNA 
KCNQ1OT1/miR-335-5p/NLRP1/NLRP7-media- 
ted regulatory axis of pyroptosis [30]. Further- 
more, Gasdermin E may promote tumor cell 
phagocytosis by macrophages, enhance the 
quantity and potency of CD8+ T lymphocytes, 
and boost the activity of natural killer (NK) cells, 
leading to tumor cell pyroptosis and generating 
a positive feedback loop [31].

The interaction among pyroptosis, ferroptosis, 
and TIME to influence their perspective func-
tion is intricate. CD8+ T lymphocytes could limit 
tumor growth by inducing ferroptosis and pyrop-
tosis via different mechanisms. For instance, 
CD8+ T cells may release IFN-γ to inhibit 
SLC7A11 expression, leading to a buildup of 
lipid ROS and tumor cell ferroptosis [32]. The 
activation of ferroptosis, in turn, can further 
improve antitumor immunity. Additionally, in 
order to cause pyroptosis and activate the ma- 
crophage-derived cytokine IL-1, necessary for 
antitumor immunity, CD8+ T cells may produce 
GzmA (a GSDMB-cleaving enzyme) and GzmB 
(a GSDME-cleaving enzyme) [33]. At present, 
the impact of pyroptosis and ferroptosis on 
tumor biology is unknown. Therefore, it is criti-
cal to better understand the complex functions 
and the signaling pathways of pyroptosis and 
ferroptosis in order to develop pyroptosis and 
ferroptosis-related treatment strategies for 
LUAD. 

In this study, we identified four important cell 
death subgroups of LUAD based on the con- 
sensus clustering of gene expression patterns 
associated with pyroptosis and ferroptosis. 
Each of these subgroups was correlated with 
unique immunological, mutational, and survi- 
val markers. The pyroptosis-ferroptosis score 
was also computed, and it has a greater ca- 
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pacity to predict the response to chemotherapy 
and immunotherapy in LUAD patients.

Materials and methods

LUAD datasets and data processing

The Cancer Genome Atlas (TCGA) RNA-sequ- 
encing data and comprehensive clinical in- 
formation for 492 LUAD patients were retrieved 
via the GDC API. The FPKM (Fragments Per 
Kilobase per Million) expression data were con-
verted to TPM (Transcripts Per Kilobase per 
Million) format and utilized as the training 
cohort. Complete patient clinical information 
from the GSE30219 dataset based on the 
Affymetrix HG-U133 Plus 2.0 Array platform, 
from the GSE72094 dataset based on the Ro- 
setta/Merck Human RSTA Custom Affymetrix 
2.0 platform, and from the GSE42127 dataset 
based on the Illumina HumanWG-6 v3.0 ex- 
pression beadchip platform were downloaded 
from GEO (http://www.ncbi.nlm.nih.gov/geo/) 
database and used as the test cohorts. In addi-
tion, two immunotherapy cohorts, GSE126044 
and GSE135222, consisting of patients who 
underwent PD1 treatment were used for the 
prediction of immunotherapeutic responses. 
The IMvigor210 dataset was publiclyavailable, 
and the fully described software and packages 
downloaded at http://research-pub.gene.com/
IMvigor210CoreBiologies were distributed un- 
der the Creative Commons 3.0 license. A total 
of 298 melanoma patients who received PD1 
therapy and had full clinical data related to 
their diagnoses were included.

Somatic cell data collection

The TCGA-LUAD cohort’s somatic mutation 
data (in MAF format) were obtained from the 
UCSC Xena Data Center (https://xena.ucsc.
edu). The maftools package in R was used to 
evaluate and illustrate the mutation type and 
frequency of the genes. In addition, copy num-
ber variants (CNV) in TCGA-LUAD patients were 
collected and analyzed; a score > 0.2 was 
defined as amplification, while the score < -0.2 
was defined as deletion. The CNV summary 
map was visualized using the Circos package in 
R.

Pyroptosis and ferroptosis subgroups

The pyroptosis-related genes (n = 39) [34-36] 
and the ferroptosis-associated genes (n = 113) 

[37-39] were collated from published litera-
tures as shown in Table S1. The Consensus- 
ClusterPlus package was used to cluster the 
pyroptosis- and ferroptosis-related genes (set 
parameters were as follows: reps = 1000, 
pItem = 0.8, and pfeature = 1). Ward. D 2 and 
Pearson correlation were used as the cluster-
ing algorithm and distance measure, respec-
tively, with k = 5. The median expression le- 
vels of co-expressed pyroptosis and ferrop- 
tosis genes were used to divide samples into 
the subgroups shown below: immobility, pyrop-
tosis, ferroptosis, and mixed. 

Development and verification of risk model 
based on subgroups

The risk model was built using samples from 
the TCGA database. The WGCNA tool in R was 
used to create a scale-free co-expression net-
work, and the transcriptome was utilized to 
identify the most significant modules for the 
cell death subgroups. To increase matrix simi-
larity, a soft threshold parameter of 12 (scale-
free R2 = 0.91) was used, and a scale-free co-
expression network was built. Hierarchical clus-
tering of the weighted coefficient matrix was 
used to identify the modules further. The genes 
in the pink module most associated with sub-
groups were used for further analyses. Uni- 
variate analysis and the log-rank test were used 
to find the pertinent prognostic modular genes. 
The Cox proportional hazard model (iteration = 
100) with LASSO penalty function was utilized 
for these possible prognostic genes, and the 
optimal gene model was chosen using R’s glm-
net package. The best gene model was used to 
determine risk ratings using the following 
formula:

i i( ) ( )

Risk Score

i Coefficient mRNA Expression mRNA= #/

Moreover, the consistency C-index, proposed 
by Harrell et al. was calculated using the surv-
comp package in R [37-39], and the predictive 
powers of all the five datasets for scoring were 
validated; the higher the C-index, the more 
accurate the model’s prediction capacity.

Predicting chemotherapeutic and immuno-
therapeutic responses

The pRRophetic package in R and the Geno- 
mics of Drug Sensitivity in Cancer (GDSC) data-
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base were used to choose the five first-line 
therapeutic medicines utilized in the treat- 
ment of LUAD: cisplatin, gemcitabine, paclitax-
el, docetaxel, and vinorelbine. The half-maximal 
inhibitory concentration (IC50) for each sample 
and the sensitivity of the high- and low-risk 
groups to chemotherapy were compared using 
ridge regression (RR). The Tumor Immune Dy- 
sfunction and Exclusion (TIDE) algorithm and 
subclass mapping were used to forecast how 
patients in different risk categories will res- 
pond to anti-CTLA4 and anti-PD1 treatment. In 
addition, the potentil treatment targets includ-
ed genes that substantially varied between the 
high- and low-risk groups. The CMap database 
(https://clue.io/) was used to look for prospec-
tive medications that may target these genes. 
As a result, in addition to choosing the antici-
pated drugs based on gene expression charac-
teristics, the mode of action (MOA) of these 
pharmaceuticals targeting the relevant bio-
chemical pathways was also determined. The 
compounds with concentration fraction < -96 
were considered potential therapeutic drugs.

qRT-PCR

To verify the prediction accuracy, qRT-PCR was 
used to examine the expression levels of the 
critical genes such as ANLN, E2F7, ECT2, 
HMMR, and TK1 in thirty-six LUAD clinical sam-
ples and their paired adjacent normal lung tis-
sues obtained from the Shanghai Pulmonary 
Hospital. The total RNA was extracted using the 
Trizol reagent, and its quality was confirmed by 
RNA gel electrophoresis. Then, 2 µg of the total 
RNA was transcribed into cDNA using a quanti-
tative reverse transcription kit (Wuhan Seville 
biology company) followed by qPCR analysis. 
The preparation of qPCR reaction was accord-
ing to the manufacturer’s instructions. Briefly, 
the fluorescence quantitative PCR kit SYBR 
Green qPCR Master Mix (Wuhan Seville biology 
company) was used, and the PCR reaction con-
ditions were as follows: pre-denaturation at 
95°C for 10 min; denaturation at 95°C for 10 
seconds; annealing at 60°C for the 40 sec-
onds, and final extension at 72°C for 40 sec-
onds. Forty cycles were set for the qPCR reac-
tion. The CT values were recorded, and the re- 
lative expressions were calculated using the 
quantitative 2-ΔΔCT method with GADPH as inter-
nal reference. The sequences of primers used 
in this study were listed in Table S2. This study 
was approved by Shanghai Pulmonary Hos- 

pital Ethics Committee (ethical lot number: 
K21-111Y).

Immunofluorescence staining

Formalin fixed, paraffin-embedded tissue blo- 
cks of LUAD and the corresponding paracan- 
cerous tissues were cut into 5-μm-thick sec-
tions. These sections were dewaxed, rehydrat-
ed, and incubated with primary antibodies 
against ANLN, EEF7, ECT2, HMMR, and TK1, 
followed by incubation with FITC-conjugated 
secondary antibodies. And DAPI (sigma) was 
used for nuclear counterstaining. The sections 
were examined under fluorescence micros- 
cope (Zeiss, Oberkochen, Germany) and photo-
graphed. The intensity of fluorescence staining 
of the sections was determined by Image J.

Bioinformatics and statistical analyses

The CIBERSORT package in R and LM22 char-
acteristics were used to calculate the infiltra-
tion levels of 22 immune cell types in each 
patient in the TCGA cohort. The immunological 
and matrix scores for each sample were calcu-
lated using the ESTIMATE program. The GSVA 
program in R was used to assess the activity  
of immune-related pathways in each sample 
using the ssGSEA method. Gene markers for 
immune-related pathways are provided in Table 
S3. Next, the differentially expressed genes 
were obtained using the Limma package, and 
those with P.adjust < 0.05 and |Log2FC| > 1 
were considered as significantly differentially 
expressed. The clusterprofiler software in R 
and the Metascape webtool (https://metas- 
cape.org/gp/index.html) were used to annotate 
gene functions. R program was used for all sta-
tistical analysis and mapping (version 4.04). 
For the above-mentioned two groups, the 
Kruskal-Wallis test was performed, and the 
Wilcoxon test was utilized for pairwise compari-
son. The Chi-Square test was used to compare 
proportional differences. To assess the survival 
curves for subgroups in each dataset, Kaplan-
Meier curves were produced. To determine sta-
tistically significant differences, the logarithmic 
rank test was applied. The survivalROC pack-
age in R was used to conduct the time-depen-
dent receiver operating characteristic (tROC) 
analysis, and the area under the curve (AUC) 
was determined to assess the predictive poten-
tial of variables. The rms package in R was 
used to plot nomograms and calibration curves. 

http://www.ajcr.us/files/ajcr0142827suppltab3.xlsx
http://www.ajcr.us/files/ajcr0142827suppltab3.xlsx
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The Student’s t-test was performed to examine 
gene expression changes between tumor and 
normal tissues. Unless specified, two-tailed P < 
0.05 was considered statistically significant for 
all tests.

Results

Identification of four distinct subgroups by 
combined analysis of ferroptosis and pyropto-
sis gene expression in LUAD 

In total, 492 patients from the TCGA-LUAD 
cohort were included in our study. The LUAD 
tumors were classified based on the relative 
expression levels of ferroptosis- and pyropto-
sis-related genes. To select the co-regulated 
and biologically relevant genes in LUAD, we  
performed consensus clustering and identified 
two sets of stably co-expressed genes involved 
in the pyroptosis (N = 20) and ferroptosis (N = 
66) pathways for cell death subgrouping as 
shown in Figures 1A, S1A-C. For each sample, 
the median values of pyroptosis and ferroptosis 
gene co-expression were computed and used 
to stratify four distinct subgroups: immobility 
(Pyroptosis ≤ 0, Ferroptosis ≤ 0), pyroptosis 
(Pyroptosis > 0, Ferroptosis ≤ 0), ferroptosis 
(Pyroptosis ≤ 0, Ferroptosis > 0), and mixed 
(Pyroptosis > 0, Ferroptosis > 0) (Figure 1B). 
Figure 1C showed the expression levels of 
pyroptosis and ferroptosis genes in each sub-
group. Pyroptosis subgroup was the largest 
subgroup (148/492; 30.08%), followed by the 
ferroptosis (132/492; 26.83%), immobility 
(122/492; 24.80%), and mixed subgroup 
(90/492; 18.29%). As shown in Figure 1D, 
based on the survival analysis, the pyroptosis 
subgroup was associated with the best overall 
survival, while the ferroptosis and mixed sub-
groups exhibited the worst overall survival. The 
intersection of differentially expressed genes 
among these four subgroups was shown in 
Figure S1D and Table S4. 

Association between these four subgroups and 
the immunophenotype

As shown in Figure 2A, the ferroptosis sub-
group showed the highest tumor homogeneity 
and the lowest immune score as indicated by 
the ESTIMATE scores, while the pyroptosis sub-
group was the opposite, exhibiting the lowest 
homogeneity and the highest immune score. 
We also examined the differential expression  
of immune checkpoint related genes, including 

CD274, HAVCR2, CTLA4, LAG3, IDO1, and 
PDCD1, and the immune response related 
genes, including CD8A, CXCL9, CXCL10, GZMA, 
GZMB, PRF1, IFNG, TNF, and TBX2 among the 
subgroups [41, 42]. As shown in Figure 2B, 
their expressions were higher in the pyroptosis 
and mixed subgroups, while their expressions 
were the lowest in the ferroptosis subgroup. 
Next, the abundance of 22 immune cell types 
was quantified using a cyclic classification  
algorithm. Figure 2C showed the differences  
in levels of immune cell infiltration among the 
subgroups. CD8+ T cells and memory B cells 
showed higher infiltration in the pyroptosis sub-
group. A greater infiltration of naive B cells and 
activated dendritic cells in the ferroptosis sub-
group was observed. 

Furthermore, we analyzed the differences in 
immunoreactive pathways among the sub-
groups (Figure 2D). Immunoreactive pathways 
were more active in the pyroptosis and mixed 
subgroups, while was the lowest in the ferropto-
sis subgroup, suggesting the significant differ-
ences in immunoactivities among the sub-
groups, which might attribute to the survival of 
patients. Moreover, through the enrichment 
analysis of the differentially expressed genes 
among subgroups, we found a significant en- 
richment in immune-related pathways, includ-
ing the immunoregulatory interactions between 
a lymphoid and a non-lymphoid cell, immune 
system processes, and positive regulation of 
immune responses (Figure 2E). The interaction 
network among the enrichment pathways was 
shown in Figure 2F, among them, pathways 
related to lymphocyte activation, immune ef- 
fector process, regulation of cytokine produc-
tion, and leukocyte migration were highly en- 
riched. Based on these data, we postulated 
that pyroptosis, a highly immunogenic type of 
cell death, might trigger local inflammation and 
attracted inflammatory cells into the area, 
which might serve as a potential therapeutic 
target to reverse TIME’s immunosuppression 
and trigger a systemic immune response to 
LUAD. In contrast, the ferroptosis subgroup 
showed the highest tumor homogeneity and 
the lowest immune score, which might attri- 
bute to its poor prognosis.

Association of the cell death subgroups with 
genomic changes

It has been well known that genetic alterations 
influence tumor immunity and immune inva-

http://www.ajcr.us/files/ajcr0142827suppltab4.xlsx
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Figure 1. Tumor stratification for LUAD based on relative expression levels of pyroptosis- and ferroptosis-related 
genes. A. The heat map depicted a consistent clustering solution generated for pyroptosis- and ferroptosis-related 
genes (k = 2) in 492 patients with LUAD. B. The scatter map showed the median expression levels of pyroptosis- 
(x-axis) and ferroptosis-related (y-axis) gene co-expression in each LUAD sample. The metabolic subgroups were 
allocated according to the relative expression levels of pyroptosis- and ferroptosis-associated genes. C. The heat 
map depicted the co-expression levels of pyroptosis- and ferroptosis-associated genes in each subgroup. D. Kaplan-
Meier survival analysis for four subgroups of LUAD patients.

sion. Therefore, we analyzed the differences in 
copy number variations and somatic variations 
among the subgroups and found a higher tu- 
mor mutation burden (TMB) in ferroptosis and 
mixed subgroups, while a lower TMB in the 
pyroptosis and immobility subgroups (Figure 
3A). In addition, the ferroptosis subgroup had 
the highest numbers of chromosomal amplifi-
cations and deletion events, while the pyropto-
sis subgroup had the least incidence (Figure 
3B, 3C). The mutation landscape of the top 25 
most commonly mutated genes in distinct sub-
groups was shown in Figure 3D. Furthermore, 

we evaluated the correlation between the 
expression of TP53 and TTN, the top two high-
est mutated genes, and the median expression 
of pyroptosis- and ferroptosis-related genes. As 
shown in Figure 3E-H, a positive correlation 
between TP53 and ferroptosis genes, a nega-
tive correlation between TTN and ferroptosis 
genes, and no significant correlations between 
either TP53 or TTN with pyroptosis genes were 
observed. These results suggested that the  
ferroptosis subgroup showed greater genomic 
alterations than the pyroptosis subgroup. Ta- 
ken together, the tight association between fer-
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Figure 2. Systematic immune and functional enrichment analyses for the immune subgroups. (A-D) Box diagram of analyses for ESTIMATE score (A), immune check-
point (B), immune infiltration (C), immune pathways (D) among the subgroups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (E) GO functional enrichment 
analysis, including significantly enriched biological processes, cellular components, molecular functions, and KEGG pathways. (F) Interaction network between the 
enrichment pathways.
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Figure 3. Tumor immune microenvironment patterns and immunogenic characteristics of LUAD associated with the 
cell death subgroups. A-C. Violin plots for death subgroups in individual LUAD sample were sectioned according to 
TMB, amplitudes, and deletions. D. Mutation landscape of the top 25 genes with the highest mutation frequency 
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roptosis and mutations may result in high tumor 
malignancy, thereby leading to worse prognosis 
of patients in ferroptosis subgroup.

Construction of risk model based on the sub-
groups

Given the significant differences in survival and 
biological functions among the subgroups, we 
further analyzed the differentially expressed 
genes. WGCNA was performed in the training 
cohort using the transcriptomic data for the dif-
ferentially expressed genes and the subgroups. 
Using β = 12 as the best soft threshold, we 
ensured non-scale co-expression in the net-
work graph (Figure S2A), and a total of eight 
non-gray module graphs were obtained (Figure 
S2B, S2C). Among these modules, the pink 
module (R = 0.43, P = 3e-21), with the highest 
correlation, was considered the most relevant 
for the cell death subgroups (Figure S2D, S2E). 
Furthermore, for the 189 genes in the pink 
module, univariate Cox analysis and the log-
rank test were done, and 142 of them were 
shown to have substantial prognostic predict-
ing capacity (P < 0.05). The detailed data was 
presented in Table S5. Furthermore, we per-
formed a total of 100 iterations and included 
two gene sets for further analysis (Table S6). 
We identified a robust five gene signature: 
ANLN, E2F7, ECT2, HM, and TK1, as the fre-
quency of the model was significantly higher 
(Figure 4A). As a result, the five-gene signature 
was best suited for the risk model’s creation. 
Accordingly, the risk score graphs (Figure S2F, 
S2G) were plotted, and the specific coefficient 
values were shown in Table S7. To evaluate the 
effectiveness of our risk score, we first calcu-
lated the C-index for predicting the OS, and the 
values for TCGA, GSE30219, GSE42127, and 
GSE72049 were 0.6383, 0.6580, 0.6302,  
and 0.5989, respectively. The tROC analysis 
showed that the AUC of the risk score plots for 
each point in the four cohorts for five years was 
greater than 0.6 (Figure 4B). Thus, the risk 
model had a high prediction accuracy for sur-
vival. According to KM analysis, the prognosis 
of patients in the high-risk category was poorer 
(P < 0.0001) (Figure 4C), and a poor survi- 
val was observed in the high-risk group (Figure 

4D). ROC analysis showed that 1-, and 8-year 
AUC was 0.71 and 0.68, respectively, suggest-
ing the better prognostic efficacy of risk score 
(Figure 4E). Consistently, similar results were 
observed in the three test cohorts (Figure S3). 
Figure 4F showed the expression of genes in 
different subgroups according to the model.

Validation of the independent prognostic value 
of the risk model

According to the Chi-Square test, all variables 
except sex revealed significant differences 
between the high and low subgroups among 
the differences in each clinical characteristic 
across subgroups, as shown in Figure 5A. Risk 
score had higher prognostic accuracy than sex, 
age, and stage (Figure 5B). Following the in- 
corporation of new clinical data, univariate and 
multivariate Cox regression analysis for the 
four cohorts revealed that the risk score was  
an independent prognostic predictor (Figure 
5C, 5D). In addition, the subgroup analysis 
showed that the risk score of different clinical 
subgroups exhibited satisfactory predictive ef- 
ficacy in four cohorts (Figure S4). Therefore, we 
constructed a nomogram to better visualize the 
predictive power of the model (Figure 5E), and 
the calibration curve, the indication of the good 
predictive accuracy of the nomogram, was pre-
sented in Figure 5F. Importantly, ROC analysis 
showed that the nomogram model had the best 
prediction accuracy as compared to other vari-
ables (Figure 5G).

Differences in biological functions among the 
subgroups

We also evaluated the association between our 
risk score and numerous biological processes. 
As shown in Figure 6A, a high negative correla-
tion was obsesrved between the mean risk 
score and the immune score (Pearson Corre- 
lation = -0.166, P < 0.01). The high-risk group 
exhibited higher tumor homogeneity and lower 
immune activity (Figure 6B), and most of the 
immune checkpoint and immunoreactivity cha- 
racteristics were highly enriched in the high-
risk group, in addition to TBX2 (Figure 6C). In 
supporting this, LUAD patients in the two 

in different subgroups. E, F. Scatterplot plots delineated the association of the median TP53 gene expression with 
ferroptosis (left panel) and with pyroptosis (right panel). G, H. Scatterplot plots delineated the associations of the 
median TTN gene expression with ferroptosis (left panel) and with pyroptosis (right panel).
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Figure 4. Mining subgroups and construction of risk model by WGCNA. A. Model frequency 
was shown in the bar graph. B. The AUC curve of different datasets depicted changes annu-
ally. C. KM survival curves according to the risk scores obtained from TCGA data. D. The scat-
ter plot for the survival and the risk score from our analysis. E. AUC for the risk model at 1, 3, 
5, and 8 years. F. Gene expression values for different subgroups in the model.

groups showed differences in immune microen-
vironment (Figure 6D). The high-risk group 
showed higher M0/M1 macrophage activated-

CD4 cells infiltration, while the low-risk group 
had higher infiltration of B cells, dendritic cells, 
mast cells, plasma cells, CD4 resting cells, and 
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Figure 5. Effectiveness of the risk model. A. Pie chart showing the differences for each clinical variable among subgroups. B. The time-dependent AUC showed the 
prediction efficiency of risk score and clinical features (Risk score, Age, Gender, and Stage) for OS in training cohort. C, D. Univariate and multivariate forest plots 
constructed based on the risk model scores and other clinical variables from TCGA data. E. Nomograms based on risk model scores and other clinical variables. F. 
Rectification curves for nomograms. G. Prediction accuracy of AUC curves of the nomograms.
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Figure 6. Immunological and functional enrichment analyses for different risk groups. (A) Scatter plot of correlation between immune score and risk score; (B-E) 
Differences between high and low-risk groups in ESTIMATE score (B), immune checkpoint (C), immune infiltration (D), immune pathways (E). *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001; (F, G) GSEA analysis for up- and down-regulated genes in high- and low-risk groups; (H, I) GO pathway analysis for up- and down-
regulated genes in high and low-risk groups.
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Tregs, suggesting active antigen presentation 
in the low-risk group. Although M0 and M1  
macrophages are generally considered to pro-
duce antineoplastic proinflammatory cytokines, 
including ROS and nitric oxide (NO), to inhibit 
tumor growth and progression [41, 42], M0/M1 
macrophage infiltrations may also lead to a 
poor prognosis. For instance, a recent study 
showed that M1 macrophage recruitment was 
strongly associated with poor OS in medullo-
blastoma [44]. In our study, we further analyzed 
the balance between M1 and M2 macrophages 
in the high- and low-risk group, however, the dif-
ference was not statistically significant. A pos-
sible explanation for higher M0 and M1 macro-
phage infiltrations in the high-risk group is that 
pyroptosis and ferroptosis-related genes can 
regulate the tumor immune microenvironment. 
To test this, we analyzed the differences in 
immune response pathways between high- and 
low-risk groups and found that the MHC class I 
pathway was significantly upregulated in the 
high-risk group, while the HLA pathway and 
type II IFN response pathway were significantly 
enriched in the low-risk groups (Figure 6E). 
Furthermore, GSEA analysis revealed that cell 
cycle, DNA repair, and P53 signaling pathways 
were significantly enriched in the high-risk 
group, indicating active cell division and tumor 
malignancy, whereas asthma and T cell re- 
ceptor pathways were enriched in the low-risk 
group, indicating the immune system’s active 
state (Figure 6F, 6G). Further enrichment analy-
sis revealed that the up-regulated genes in 
high-risk groups were strongly related with cell 
division processes such as organelle fission, 
nuclear division, and chromosomal segrega-
tion. The down-regulated genes were associat-
ed with immune activity and protein produc- 
tion processes, including humoral immune re- 
sponse, antimicrobial humoral response, and 
protein processing (Figure 6H, 6I).

Differences in genomic alterations among the 
subgroups

We examined at whether there were any differ-
ences in total mutation counts, nonsynony-
mous mutation counts, and synonymous muta-
tion counts between the high- and low-risk 
groups (Figure 7A-C). There was a positive cor-
relation between the risk score and the muta-
tion load among the three mutation types; 
when the mutation load was higher, its correla-

tion with all mutation counts was the lowest (R 
= 0.23, P = 2e-07), whereas its correlation with 
the synonymous mutation counts was the high-
est (R = 0.29, P = 0.89e-11) in the high-score 
group. The general topography of copy number 
differences in the high- and low-score groups 
was shown in Figure 7D and 7E. Figure 7F and 
7G revealed that the high-score group had a 
considerable increase in amplifications and 
deletions. We also examined the mutations in 
the top 25 most mutated genes between the 
high- and low-score groups. As shown in Figure 
7H, all the genes with significant differences 
had higher mutation rates in the high-score 
group. Figure 7I showed the landscape of muta-
tions for the top 25 genes between high- and 
low-score groups.

Risk score as an indicator to guide treatment 
strategies

The sensitivity to five regularly used chemother-
apy medications was compared between high- 
and low-score groups, and we discovered that 
the IC50 of these drugs was considerably 
greater in the low-score group, indicating a 
reduced sensitivity to chemotherapy (Figure 
8A). The three external validation cohorts yield-
ed similar findings. Because the differentially 
expressed genes between high- and low-score 
groups might be used as small chemical tar-
gets, we performed MOA analysis to identify 66 
small molecule drugs targeting 39 molecular 
pathways (Figure S5A). Figure 8B showed a  
significant reduction in risk scores for patients 
who were responding to immunotherapy in the 
external dataset GSE126044 upon PD1 treat-
ment. The survival analysis indicated that the 
overall survival was the worst in the NSCLC 
dataset of GSE135222 upon PD1 treatment in 
the high-score group (P = 0.0061) (Figure 8C). 
The risk score’s usefulness was further evalu-
ated in the IMvigor210 cohort, which revealed 
that responders had lower scores (Figure 8D). 
Figure 8E demonstrated that patients with  
high scores had the worst overall survival. 
Consistently, the Chi-Square test also showed 
that the response rate to PD1 was higher in the 
low-score group (P = 0.013) (Figure 8F), and 
patients in the low-score group were sensitive 
to the PD1 treatment (FDR = 0.014) according 
to the subclass mapping algorithm (Figure 8G). 
TIDE algorithm also similarly showed that the 
low score group was more sensitive to PD1 
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Figure 7. Differences in genomic mutations among different subgroups and the mutational landscape. A-C. Scatter 
plots based on the differences on all mutation counts, non-synonymous mutation counts, and synonymous muta-
tion counts between the high- and low-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; D, E. 
Overall landscape for copy number variations in the high- and low-risk score groups; F, G. Amplification and deletion 
variations were significantly greater in the high-risk score group; H. Mutation difference forest plot of the 25 genes 
with the highest mutation frequency in the high- and low-risk groups. All significantly different genes had higher mu-
tation frequencies in the high-risk group (*P < 0.05; **P < 0.01; ***P < 0.001); I. Oncoplot of mutation landscape 
for the top 25 frequently mutated genes between high- and low-risk score groups.

treatment (P = 0.015) (Figure 8H). Consistent 
results were observed in the three validation 
cohorts (Figure S5B-D). 

Validation of five hub genes in the clinical 
samples

To validate the accuracy and reliability of this 
signature, tumor samples and the paracancer-
ous tissues from 36 newly diagnosed LUAD 

patients were collected and analyzed by qRT-
PCR, and the differential expression of the five 
hub genes was compared by utilizing the pair- 
ed t-test. The results showed that the expres-
sions of ANLN, E2F7, ECT2, HMMR, and TK1 in 
LUAD were significantly up-regulated in tumor 
samples compared to those in paracancerous 
tissues (Figure 9A-E), which supported our  
conclusions from bioinformatics analyses. We 
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Figure 8. Correlation between risk score and drug sensitivity. A. Differences in the IC50 values of five commonly 
used drugs between the high- and low-score groups; B. Differences in risk scores between responders and non-
responders; C. The KM survival curve for the high- and low-score groups of patients in the GSE135222 data; D. 
Differences in risk scores between responders and non-responders in the IMvigor210 dataset; E. KM survival curve 
for the high- and low-score groups of patients in the IMvigor210 dataset; F-H. Different PD1 response rate based 
on different algorithms.
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use not only qRT-PCR to determine their tran-
scription level but also histochemical staining 
to detect the protein expression of these five 
hub genes in these samples. A paired t-test 
confirmed that the fluorescence intensity of 
ANLN, E2F7, ECT2, HMMR, and TK1 in LUAD 
were significantly higher than that in normal 
adjacent tissues (Figure 10A-E), further dem-
onstrating the reliability and accuracy of the 
hub genes we screened. 

Discussion

Pyroptosis and ferroptosis are emerging as 
important forms of programmed cell death in 
normal and pathological conditions including 
cancer. Ferroptosis and pyroptosis can influ-
ence the TIME and suppress the occurrence 
and the development of cancer, thereby improv-
ing the prognosis of patients with cancer [45]. 
Ferroptosis and pyroptosis can also impact 
cancer therapy to affect the survival of patients 
[46]. The commonly used chemotherapeutic 
drugs and immune checkpoint inhibitors (ICIs) 
inhibit tumor progression by inducing apoptosis 
[47]; however, most tumors exhibit innate resis-
tance to apoptosis [48]. Identifying new path-
ways of cell death induction will lead to the 
development of potentially new cancer therapy 

techniques. Therefore, our current studies on 
the non-apoptotic-related new cell death path-
ways will shed light on the dvelopment of thera-
peutic targets.

In this study, we stratified LUAD into four dis-
tinct subgroups: immobility, ferroptosis, pyrop-
tosis, and mixed, based on the dual analysis of 
ferroptosis and pyroptosis-related gene expres-
sions. The pyroptosis subgroup had the great-
est patient survival, according to the survival 
study, while patients in the ferroptosis and 
mixed subgroups has the worst survival. Si- 
gnificant differences in the immunoreactivities 
among the subgroups were also observed; the 
ferroptosis subgroup showed the highest tumor 
homogeneity and the lowest immune score, 
while the pyroptosis subgroup showed the 
opposite features, which might attribute to the 
different survival among subgroups. Further- 
more, there were differences in immunocyte 
infiltrations among subgroups; the infiltration  
of CD8+ T cells and memory B cells were higher 
in the pyroptosis subgroup, while naive B cells 
and activated dendritic cells were enriched in 
the ferroptosis subgroup. Thus, our findings 
provided new insights into the immunological 
features of different LUAD subgroups.

Figure 9. Validation of the expres-
sion of the five-gene signature by 
qRT-PCR in LUAD and paracancerous 
tissues samples. (A) ANLN, (B) E2F7, 
(C) ECT2, (D) HMMR, and (E) TK1 (*P 
< 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001). 
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Figure 10. Histochemical staining to detect the expression levels of five hub 
genes. (A) ANLN, (B) E2F7, (C) ECT2, (D) HMMR, and (E) TK1 (*P < 0.05; **P 
< 0.01; ***P < 0.001; ****P < 0.0001).

Previous research has shown the significan- 
ce of genetic alterations in modulating tumor 
immunity and immune invasion patterns [49]. 

Thus, we analyzed the differ-
ences in copy number varia-
tions and somatic variations 
between different subgroups. 
Higher TMB was observed in 
the ferroptosis and mixed sub-
groups, while TMB in the py- 
roptosis and immobility sub-
groups was lower. The chromo-
some amplification and dele-
tion events were most abun-
dant in the ferroptosis sub-
group, while lowest in the 
pyroptosis subgroup. In addi-
tion, a positive correlation bet- 
ween p53 and ferroptosis 
genes, a negative correlation 
between TTN and ferroptosis 
genes, and no significant cor-
relation between TTN and py- 
roptosis genes were found. 
The tumour suppressor p53 
and ferroptosis sensitivity are 
tightly related [50]. In p53 
wildtype mice, p53 binds to 
the promoter of SLC7A11, an 
essential molecule for ferrop-
tosis induction, and inhibits its 
transcription. But animals car-
rying numerous p53 mutati- 
ons (K98R, K117R, K161R, 
and K162R) show a significant 
reduction in p53-dependent 
ferroptosis responses [51]. Fe- 
rroptosis is thought to be an 
innate mechanism for begin-
ning tumour resistance given 
the high prevalence of p53 
mutation in diverse malignan-
cies [52]. Ferroptosis subgr- 
oup showed more genomic 
alterations as compared to the 
pyroptosis subgroup, and the 
significantly high association 
between ferroptosis and mu- 
tations may lead to malignant 
tumor and worse prognosis.

Given the differences in sur-
vival and biological functions 
among the subgroups, we an- 

alyzed the differential expression of ferroptosis 
and pyroptosis genes. Based on the WGCNA 
co-expression network, we selected the gene 
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sets that were most relevant to pyroptosis and 
ferroptosis and finally identified ANLN, E2F7, 
ECT2, HMMR, and TK1 genes as the signature 
for the risk model. As a result, based on the 
median risk score, we divided the samples into 
high- and low-risk groups, and then we exam-
ined the variations between these groups. The 
development of the risk model should enable 
the prognostic prediction to be more precise.

Increasing evidence has shown that the im- 
mune system may influence cancer in a con-
text-dependent way, either by promoting it or by 
inhibiting it. Accordingly, one of the most effec-
tive anticancer therapies, immune checkpoint 
therapy, has been developed. In our study, we 
found significant differences in the immune 
status of the low- and high-risk LUAD patients. 
M0/M1 macrophages and activated CD4 cells 
were found to show high infiltration in the high-
risk group, while B cells, dendritic cells, mast 
cells, plasma cells, resting CD4 cells, and Tregs 
were enriched in the low-risk group, suggesting 
the active antigen presentation in the low-risk 
group. B cells can inhibit tumor cells, reduce 
the occult micrometastasis incidence, and pro-
long survival by limiting subsequent tumor 
spread [53]. Remark et al. have summarized 
some studies on the relationship between im- 
mune cells and survival outcomes in NSCLC 
and suggested that B cell density was a better 
prognostic marker [54]. We also observed that 
immune cell infiltration had a significant effect 
on LUAD survival outcomes. The degree of B 
cell infiltration reduced as the risk score went 
up, which is consistent with the high-risk 
patients’ shorter survival times. To examine the 
functional mechanisms underlying the gene 
signature, we performed gene enrichment an- 
alysis by utilizing GSEA. Compared to the low-
risk group, the high-risk group showed signifi-
cant enrichment in the activation of the cell 
cycle, DNA repair, and p53 signaling pathways, 
suggesting an active cell proliferation in the 
high-risk group.

We evaluated the effectiveness of employing 
risk score to forecast the chemotherapeutic 
response in order to more accurately assess 
the clinical viability of our risk model. The IC50 
values of the five commonly used chemothera-
peutic drugs were significantly high in the low-
risk score group, suggesting that the patients  
in this group were less sensitivity to chemother-

apy. In addition to chemotherapy, we also de- 
termined the relationship between patient ch- 
aracteristics and immunotherapeutic sensitivi-
ty. Our results suggested that patients in the 
low-risk score group were more sensitive to 
PD1 therapy, consistent with the findings that 
the characteristics of high-risk score group 
were significantly related to cell cycle, while 
those in the low-risk score group were mainly 
associated with cellular immunity. Collectively, 
our findings may provide rationales in selecting 
treatment options for LUAD patients.

In summary, our study has some advantages. 
First, the combined ferroptosis- and pyroptosis-
related gene signatures were identified in the 
scRNA-seq data of LUAD, which were more 
accurate than the traditional biomarkers. Se- 
cond, the risk model could systematically quan-
tify individual LUAD patients from multiple per-
spectives, including function, immune infiltra-
tion, and genomic alterations. Hence, the risk 
model could perform bettr in predicting the 
responses to chemotherapy and immunothera-
py. Finally, we used external experiments to 
validate the prognostic value of hub genes in 
clinical samples. 

However, our study has some limitations. The 
data we used were from the TCGA database 
and the GEO datasets. All sample information 
in the four cohorts (TCGA-LUAD and three-GEO 
cohorts) that were used for construction and 
external validation of the prognostic signature 
were also from public databases. The ferropto-
sis-associated prognostic signature would be 
more reliable if validated in our center’s pro-
spective clinical trial cohort.

Conclusion

In conclusion, we identified four LUAD sub-
groups based on the expressions of ferropto-
sis- and pyroptosis-related genes and con-
structed a risk model comprising of five ferrop-
tosis- and pyroptosis-related genes. The find-
ings of the predictive model indicated greater 
accuracy for prognostic prediction, which may 
guide the clinical treatment. Our study may pro-
vide insights into the identification of novel 
therapeutic targets for LAUD and contribute to 
the development of individualized therapies 
targeting unique tumor metabolic characte- 
ristics.
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Table S1. Pyroptotic and Ferroptosis genes obtained from previously published reviews 
Ferroptosis genes Pyroptosis genes
ABCC1 AIM2
ACACA APIP
ACO1 CASP1
ACSF2 CASP3
ACSL1 CASP4
ACSL3 CASP5
ACSL4 CASP6
ACSL5 CASP8
ACSL6 CASP9
AKR1C1 DHX9
AKR1C2 ELANE
AKR1C3 ELAVL1
ALOX12 GPX4
ALOX15 GSDMA
ALOX15B GSDMB
ANO6 GSDMC
ATF4 GSDMD
ATG5 GZMA
ATG7 GZMB
ATP5G3 IL18
AURKA IL1B
BAP1 IL6
BECN1 NAIP
CBS NLRC4
CD44 NLRP1
CDKN1A NLRP2
CDKN2A NLRP3
CFTR NLRP6
CHAC1 NLRP7
CISD1 NLRP9
CP NOD1
CRYAB NOD2
CS PLCG1
CYBB PRKACA
DPP4 PYCARD
EGLN1 SCAF11
ELAVL1 TIRAP
EMC2 TNF
EPAS1 ZBP1
FADS2
FANCD2
FDFT1
FH
FTH1
FTL
G3BP1
G6PD
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GCLC
GCLM
GLS2
GOT1
GPX4
GSS
HELLS
HILPDA
HMGB1
HMGCR
HMOX1
HSBP1
HSPA5
HSPB1
IREB2
ITGA6
KEAP1
LAMP2
LINC00472
LOX
LPCAT3
MAP1LC3A
MAP1LC3B
MAP1LC3C
MAP3K5
MAPK1
MDM2
MIF
MT1G
MUC1
MYC
NCOA4
NFE2L2
NFS1
NQO1
OTUB1
PCBP1
PCBP2
PEBP1
PGD
PHKG2
PRKAA1
PRKAA2
PRNP
PTGS2
RB1
RPL8
SAT1
SAT2
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SLC11A2
SLC1A5
SLC39A14
SLC39A8
SLC3A2
SLC40A1
SLC7A11
SOCS1
SQLE
STEAP3
TF
TFRC
TP53
TP63
VDAC2
VDAC3
ZEB1

Table S2. Primer Sequences
Target Gene Primer (5’-3’)
ANLN ATCTACGACACCAGGAGGAACAG

TCGGCCACGAAGACATGCTA
E2F7 TAGCTCGCTATCCAAGTTATCCC

TCATAGATGCGTCTCCTTTCCAC
ECT2 GAAAGGCGGAATGAACAGGAT

CATCTTTCATCTCCAAGCGGT
HMMR CATGGTGCAGCTCAGGAACA

AAGCTGACAGCGGAGTTTTG
TK1 AAGCACAGAGTTGATGAGACGC

GCAGAACTCCACGATGTCAGG
GAPDH GGAAGCTTGTCATCAATGGAAATC

TGATGACCCTTTTGGCTCCC
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Figure S1. ConsensusClusterPlus clustering. A. K = 2-5 consensus clustering cumulative distribution function; B. 
The relative change in area under the CDF curve for k = 2-5; C. Correlation between among subgroups; D. Venn 
diagram of intersecting differentially expressed genes among the four subgroups.
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Figure S2. WGCNA module analyses. A. Non-index analysis for various values of soft threshold power (β). Average 
connectivity analysis for various values of soft threshold power. Scale-free topology (left panel). The x-axis showed 
the logarithm of the overall network connectivity, while the y-axis showed the logarithm of the corresponding fre-



A combined ferroptosis- and pyroptosis-related gene signatures of LUAD

6 

Table S5. The Candidate prognostic gene

Output of the Cox regression Output of Kaplan-Meier Survival 
Analysis

gene HR z p value lower upper gene p value
ANLN 1.010589 5.941821 2.82E-09 1.007084 1.014106 ANLN 4.03E-06
E2F7 1.088375 5.552556 2.82E-08 1.056322 1.1214 KIF23 6.61E-06
HMMR 1.023312 4.843561 1.28E-06 1.013814 1.032899 FAM72C 8.48E-06
ECT2 1.009464 4.708779 2.49E-06 1.005514 1.01343 HMMR 8.82E-06
KIF18A 1.056475 4.640301 3.48E-06 1.032242 1.081277 CDK1 1.48E-05
CCNB1 1.005463 4.529929 5.90E-06 1.003096 1.007836 TK1 1.52E-05
CDC25C 1.054555 4.409641 1.04E-05 1.029949 1.07975 PLK1 1.90E-05
PLK1 1.015046 4.368727 1.25E-05 1.008268 1.02187 CASC5 2.07E-05
EXO1 1.023587 4.354819 1.33E-05 1.012903 1.034383 DEPDC1B 2.81E-05
KPNA2 1.00296 4.317056 1.58E-05 1.001615 1.004307 CDC25C 3.04E-05
DLGAP5 1.012719 4.279065 1.88E-05 1.006873 1.018598 GTSE1 3.10E-05
RRM2 1.007227 4.27102 1.95E-05 1.003904 1.01056 HJURP 3.25E-05
PRC1 1.013625 4.227 2.37E-05 1.007284 1.020005 SKA3 3.38E-05
FEN1 1.008582 4.15507 3.25E-05 1.004525 1.012656 PRC1 5.52E-05
KIF20A 1.01524 4.151928 3.30E-05 1.008017 1.022514 ARHGAP11A 6.10E-05
KIF4A 1.018571 4.148119 3.35E-05 1.009754 1.027465 TYMS 7.35E-05
DTL 1.029359 4.14722 3.37E-05 1.015378 1.043532 FAM72B 7.51E-05
TK1 1.00291 4.06628 4.78E-05 1.001506 1.004315 OIP5 9.49E-05
CDKN3 1.01549 4.064763 4.81E-05 1.007991 1.023044 FAM83D 9.91E-05
NEK2 1.014812 4.048592 5.15E-05 1.007614 1.022061 ECT2 0.000124
CCNA2 1.009024 4.047682 5.17E-05 1.004644 1.013422 SGOL2 0.000125
SHCBP1 1.031316 4.016965 5.90E-05 1.015916 1.04695 RRM2 0.000125
SKA3 1.032215 3.994251 6.49E-05 1.01628 1.0484 KIF14 0.000128
CDCA5 1.012225 3.933591 8.37E-05 1.006115 1.018371 SHCBP1 0.000138
DIAPH3 1.057546 3.929298 8.52E-05 1.028439 1.087477 CDCA3 0.000139
C18orf54 1.118526 3.914006 9.08E-05 1.057514 1.183057 BUB1B 0.000145
TYMS 1.006851 3.848523 0.000119 1.003356 1.010358 INCENP 0.000147
TUBA1B 1.001834 3.813621 0.000137 1.000891 1.002778 KIF18A 0.000152
ARHGAP11A 1.023102 3.807889 0.00014 1.011145 1.035201 TTK 0.000164
TUBA1C 1.00488 3.799 0.000145 1.002359 1.007407 DIAPH3 0.000165
SPC25 1.025819 3.790748 0.00015 1.012387 1.039429 BRCA2 0.000165
AURKA 1.008555 3.77903 0.000157 1.004109 1.013021 CCNA2 0.000172
HJURP 1.015735 3.769508 0.000164 1.007523 1.024015 KIF20A 0.000173
CKAP2L 1.031866 3.751287 0.000176 1.015092 1.048917 TUBA1B 0.000175
OIP5 1.026878 3.73355 0.000189 1.012679 1.041275 NCAPG 0.000183
SGOL2 1.040931 3.713451 0.000204 1.019123 1.063206 NUSAP1 0.000184
FOXM1 1.007799 3.657378 0.000255 1.003612 1.012003 CENPK 0.000186
CDCA2 1.04156 3.63936 0.000273 1.018968 1.064653 ESPL1 0.000225
PRR11 1.017409 3.628902 0.000285 1.007969 1.026937 BIRC5 0.000247
FANCI 1.020878 3.623015 0.000291 1.00953 1.032353 E2F7 0.00026
NDC80 1.014269 3.565875 0.000363 1.006401 1.022199 NEK2 0.000268

quency distribution (right panel). On this graph, the distribution was closed to an approximately straight line, namely 
an approximate scale-free topology; B. Genetic clustering tree graph based on the topological overlap. Different 
colors were assigned to the corresponding modules; C. Sample cluster analysis; D. Analysis of the correlations be-
tween the genes in the heat map modules and iron death score subgroups; E. Correlation among genes in different 
modules and phenotypes; F, G. Lasso regression. 
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CCNB2 1.010722 3.560597 0.00037 1.004806 1.016673 FAM64A 0.000281
FAM72A 1.294295 3.558445 0.000373 1.122862 1.491903 CDKN3 0.000301
TPX2 1.003096 3.5365 0.000405 1.001379 1.004816 CDCA2 0.000304
TACC3 1.00779 3.475276 0.00051 1.003389 1.012211 CENPU 0.000307
RAD51 1.030215 3.466128 0.000528 1.013019 1.047702 KIF11 0.000309
CENPN 1.032942 3.456959 0.000546 1.014134 1.052098 KIAA0101 0.000317
MKI67 1.010329 3.456163 0.000548 1.004458 1.016233 KPNA2 0.00032
LMNB1 1.00541 3.437168 0.000588 1.002321 1.008507 MAD2L1 0.000329
TICRR 1.077645 3.412449 0.000644 1.032341 1.124937 C16orf59 0.000342
PBK 1.011113 3.403557 0.000665 1.004698 1.017568 TACC3 0.000392
CENPU 1.013642 3.369861 0.000752 1.005685 1.021662 C18orf54 0.000425
BIRC5 1.006587 3.358997 0.000782 1.002738 1.01045 NUF2 0.000429
GTSE1 1.026846 3.352448 0.000801 1.011065 1.042874 FOXM1 0.000436
BORA 1.043543 3.349176 0.000811 1.017837 1.0699 SGOL1 0.000439
MCM4 1.005244 3.331704 0.000863 1.002156 1.008342 RACGAP1 0.00047
CHEK1 1.022661 3.326583 0.000879 1.009248 1.036252 MCM4 0.000484
ORC1 1.024345 3.31991 0.0009 1.009902 1.038995 DEPDC1 0.000521
MAD2L1 1.018967 3.319842 0.000901 1.007726 1.030333 WDHD1 0.000616
CDC25A 1.036722 3.300356 0.000966 1.014754 1.059165 ZWINT 0.000647
CDC20 1.003352 3.293046 0.000991 1.001356 1.005353 ZNF367 0.000665
ESCO2 1.10371 3.247043 0.001166 1.039889 1.171448 CCNB1 0.000688
KIF23 1.017442 3.241431 0.001189 1.006859 1.028135 PKMYT1 0.000726
MCM6 1.006223 3.222083 0.001273 1.002433 1.010028 FAM72D 0.00073
DEPDC1 1.025574 3.192253 0.001412 1.009796 1.041599 HELLS 0.000748
GSG2 1.06808 3.188099 0.001432 1.025697 1.112215 TPX2 0.000763
SKA1 1.022936 3.187476 0.001435 1.008771 1.0373 DLGAP5 0.000771
MELK 1.011099 3.185738 0.001444 1.004256 1.017988 EXO1 0.000798
SMC2 1.017104 3.172098 0.001513 1.006502 1.027818 FAM111B 0.000813
ASF1B 1.007603 3.168138 0.001534 1.002893 1.012336 SPAG5 0.000826
CEP55 1.008615 3.163841 0.001557 1.003269 1.013989 SPC25 0.000861
KIF14 1.033755 3.157749 0.00159 1.012672 1.055276 KIF20B 0.000874
FAM111B 1.015955 3.143621 0.001669 1.005978 1.026031 CCNB2 0.000971
NCAPG 1.015253 3.135946 0.001713 1.005693 1.024904 KIF4A 0.001071
WDHD1 1.017021 3.125531 0.001775 1.006314 1.027843 PLK4 0.001083
KIF11 1.010994 3.116198 0.001832 1.004065 1.017971 KIFC1 0.001175
CDCA3 1.034128 3.113397 0.001849 1.01251 1.056208 MTFR2 0.001203
PRKDC 1.004928 3.10786 0.001884 1.001817 1.008049 TRIP13 0.001227
GINS3 1.049413 3.08508 0.002035 1.017745 1.082066 BUB1 0.001419
BUB1 1.012233 3.083606 0.002045 1.00444 1.020086 CKAP2L 0.001423
UBE2T 1.004163 3.066497 0.002166 1.0015 1.006833 NDC80 0.001443
CDK1 1.00678 3.057278 0.002234 1.002428 1.011151 FAM72A 0.001452
CENPF 1.011112 3.044531 0.00233 1.003944 1.018331 CENPE 0.001471
SGOL1 1.046712 3.038113 0.002381 1.016333 1.077998 KIF18B 0.001524
KIAA0101 1.011372 3.037331 0.002387 1.004019 1.018779 TIMELESS 0.001547
ERCC6L 1.055653 3.030993 0.002438 1.019322 1.093278 NCAPG2 0.001557
CKAP2 1.010989 3.029698 0.002448 1.003866 1.018162 MELK 0.001596
NCAPD2 1.004717 3.010859 0.002605 1.001644 1.0078 CHEK1 0.001606
RFC3 1.01401 3.000963 0.002691 1.004838 1.023267 UBE2T 0.001819
KIF2C 1.00717 2.974653 0.002933 1.00244 1.011923 ATAD2 0.001851
WASF1 1.019858 2.965989 0.003017 1.006692 1.033196 TROAP 0.001856
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BUB1B 1.014226 2.953592 0.003141 1.004763 1.023778 PRR11 0.001972
FBXO5 1.028923 2.946346 0.003216 1.009591 1.048625 RAD51 0.00198
CASC5 1.046921 2.945505 0.003224 1.015461 1.079357 SLC38A1 0.002036
INCENP 1.012651 2.931383 0.003375 1.004175 1.021198 CDCA5 0.002157
FAM72B 1.139382 2.919467 0.003506 1.043818 1.243696 WDR76 0.002198
MTHFD2 1.004433 2.912866 0.003581 1.001448 1.007427 ESCO2 0.002271
UHRF1 1.01801 2.912725 0.003583 1.005856 1.03031 PBK 0.002288
NUSAP1 1.005714 2.90824 0.003635 1.00186 1.009583 SMC2 0.002326
CENPE 1.035127 2.861677 0.004214 1.010938 1.059895 TUBA1C 0.002384
RACGAP1 1.008032 2.855298 0.0043 1.002512 1.013582 MTHFD2 0.002569
PKMYT1 1.028239 2.846255 0.004424 1.008709 1.048146 SKA1 0.002604
NCAPH 1.010694 2.829569 0.004661 1.003274 1.018168 FANCD2 0.002676
BLM 1.030046 2.824159 0.00474 1.0091 1.051428 ASF1B 0.002954
FAM64A 1.016595 2.784093 0.005368 1.004884 1.028442 STIL 0.003147
TTK 1.020031 2.777506 0.005478 1.005855 1.034407 CENPW 0.003507
FANCD2 1.042107 2.740729 0.00613 1.011819 1.073301 DSCC1 0.003849
CLSPN 1.02405 2.719283 0.006542 1.006658 1.041743 NCAPH 0.004055
UBE2C 1.001576 2.709519 0.006738 1.000436 1.002718 TOP2A 0.004117
RFC4 1.008795 2.698599 0.006963 1.0024 1.015231 CEP55 0.004256
CDCA8 1.005911 2.697692 0.006982 1.001613 1.010227 CDC45 0.004393
DEPDC1B 1.020554 2.670617 0.007571 1.005429 1.035906 AURKB 0.004435
ZWINT 1.004144 2.665099 0.007697 1.001095 1.007203 CENPF 0.004514
KIF20B 1.029546 2.611015 0.009027 1.007287 1.052296 RAD51AP1 0.005137
WDR76 1.021941 2.600636 0.009305 1.005361 1.038795 GINS1 0.005299
FAM83D 1.008821 2.581219 0.009845 1.002116 1.01557 KIAA1524 0.005441
MTFR2 1.032457 2.571701 0.01012 1.007627 1.057899 FEN1 0.005458
AUNIP 1.026813 2.565499 0.010303 1.006265 1.047781 CDCA8 0.005564
PLK4 1.027795 2.556891 0.010561 1.006421 1.049623 CENPN 0.005587
CDC6 1.008282 2.503041 0.012313 1.001791 1.014815 XRCC2 0.005698
ESPL1 1.023691 2.491093 0.012735 1.005005 1.042725 DTL 0.005753
MCM2 1.004006 2.468216 0.013579 1.000824 1.007198 ASPM 0.005819
SPAG5 1.006911 2.454836 0.014095 1.001389 1.012463 DDIAS 0.006034
ASPM 1.015815 2.419186 0.015555 1.002983 1.02881 MCM10 0.006181
KIAA1524 1.0194 2.378523 0.017382 1.003387 1.035669 UBE2C 0.006416
DSCC1 1.016308 2.365963 0.017983 1.00278 1.030019 AUNIP 0.006499
MCM10 1.020644 2.323777 0.020137 1.003204 1.038387 CDT1 0.006528
CDC45 1.009433 2.306098 0.021105 1.00141 1.017521 PARPBP 0.006611
CENPA 1.011624 2.293724 0.021806 1.001683 1.021664 CDC6 0.006709
PRIM1 1.013737 2.276299 0.022828 1.001898 1.025715 CENPA 0.006728
ZNF367 1.02694 2.273906 0.022972 1.003677 1.050742 IQGAP3 0.006754
RAD51AP1 1.011145 2.249028 0.024511 1.001426 1.020959 GSG2 0.007456
KIFC1 1.004394 2.189114 0.028589 1.000459 1.008345 BRCA1 0.007562
E2F8 1.021008 2.1843 0.02894 1.002138 1.040235 MKI67 0.007893
TRIP13 1.006661 2.159148 0.030839 1.000613 1.012745 TICRR 0.007989
CENPW 1.004358 2.155787 0.0311 1.000395 1.008336 MCM2 0.009194
DDIAS 1.033726 2.152108 0.031389 1.002966 1.065429 TCF19 0.009259
EME1 1.039334 2.152033 0.031395 1.003449 1.076501 ERCC6L 0.00928
CDT1 1.006997 2.147232 0.031775 1.000608 1.013426 FANCI 0.009805
C16orf59 1.024277 2.14643 0.031839 1.002086 1.046959 POLQ 0.010037
SLC38A1 1.004644 2.142188 0.032178 1.000394 1.008913 KIF2C 0.010564
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NCAPG2 1.011191 2.132024 0.033005 1.000899 1.021589 ORC1 0.010873
ATAD2 1.006748 2.116493 0.034303 1.000498 1.013038 BORA 0.01092
BRIP1 1.042354 2.066547 0.038777 1.002142 1.08418 CCNE2 0.010942
RAD54L 1.02051 2.062514 0.039159 1.00101 1.04039 CDC20 0.010966
TMEM194A 1.010504 2.05274 0.040098 1.000472 1.020637 MCM6 0.012304
GINS2 1.009489 2.045547 0.040801 1.000395 1.018665 CDC25A 0.013014
TIMELESS 1.0062 2.03773 0.041577 1.000236 1.012199 CDC7 0.013439
AURKB 1.006012 2.021493 0.043229 1.000182 1.011876 BLM 0.013807
CENPK 1.022765 2.018809 0.043507 1.000656 1.045363 NCAPD2 0.017418
RDM1 1.078207 2.004254 0.045043 1.001665 1.160597 UHRF1 0.017878
FAM72D 1.134779 1.979479 0.047762 1.001247 1.286118 GAS2L3 0.01889
CENPI 1.028556 1.970711 0.048757 1.000154 1.057766 FANCA 0.020634
FAM72C 1.186615 1.957726 0.050262 0.999804 1.40833 E2F8 0.022276
TROAP 1.009835 1.932638 0.053281 0.999862 1.019909 RFC3 0.024489
PARPBP 1.025594 1.894086 0.058214 0.999121 1.052768 MYBL2 0.025176
GINS1 1.009655 1.869924 0.061494 0.999537 1.019874 CKAP2 0.025802
KIF15 1.019679 1.852323 0.06398 0.998868 1.040923 KIF15 0.029731
FANCA 1.029852 1.849068 0.064448 0.998237 1.062467 MTBP 0.030076
GAS2L3 1.036376 1.83854 0.065983 0.997643 1.076613 EME1 0.032752
NUF2 1.009049 1.749036 0.080285 0.998914 1.019286 RFC4 0.034774
ORC6 1.020773 1.728209 0.083951 0.997247 1.044855 E2F2 0.037558
TOPBP1 1.006693 1.702629 0.088638 0.998992 1.014453 LMNB1 0.040061
CDC7 1.012541 1.682339 0.092503 0.997946 1.027349 CLSPN 0.04458
BRCA1 1.019088 1.677809 0.093384 0.996825 1.041848 E2F1 0.048894
STIL 1.018957 1.656614 0.097597 0.996567 1.041849 GINS2 0.049728
SMC4 1.006033 1.619184 0.105408 0.998735 1.013384 AURKA 0.051726
MYBL2 1.001336 1.615817 0.106134 0.999716 1.002959 CENPI 0.053743
MTBP 1.052068 1.607895 0.107858 0.988947 1.119218 FBXO5 0.054538
ARHGAP11B 1.066441 1.601398 0.109289 0.9857 1.153797 GINS3 0.055573
KIF18B 1.009933 1.538971 0.123811 0.9973 1.022726 KNTC1 0.060723
E2F2 1.02009 1.498957 0.133885 0.993901 1.046968 TOPBP1 0.06451
TOP2A 1.001448 1.483949 0.137823 0.999536 1.003363 DNA2 0.078664
MMS22L 1.05776 1.384255 0.16628 0.976917 1.145293 BRIP1 0.078746
KNTC1 1.013147 1.343325 0.179167 0.994022 1.032639 ORC6 0.079693
BRCA2 1.033074 1.315004 0.188509 0.984168 1.084411 FANCB 0.084103
FANCB 1.057708 1.30364 0.192357 0.972149 1.150798 PRIM1 0.08702
IQGAP3 1.005818 1.301586 0.193058 0.99707 1.014643 WASF1 0.098657
CCNE2 1.018268 1.254239 0.209755 0.989865 1.047487 MMS22L 0.103115
XRCC2 1.016635 1.190068 0.23402 0.989383 1.044638 RAD54L 0.105968
POLQ 1.026618 1.157224 0.247181 0.981942 1.073327 RDM1 0.150613
NCAPD3 1.008604 1.137703 0.255245 0.993828 1.023599 ARHGAP11B 0.166096
TCF19 1.003132 1.033853 0.301205 0.997202 1.009098 PIF1 0.179131
PIF1 1.02466 1.020454 0.307513 0.977821 1.073741 PRKDC 0.236963
DNA2 1.011327 0.996804 0.31886 0.989176 1.033974 SMC4 0.328308
HELLS 1.011628 0.96821 0.332939 0.988228 1.035581 TMEM194A 0.405705
E2F1 1.00133 0.573804 0.5661 0.996795 1.005885 NCAPD3 0.40718
EZH2 1.002891 0.531247 0.595248 0.992266 1.01363 ZNF695 0.412408
ZNF695 1.012202 0.432475 0.665396 0.958069 1.069393 EZH2 0.529731
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Table S6. Two gene-signature models
5-genes-model 4-genes-model
ANLN ANLN
E2F7 E2F7
ECT2 ECT2
HMMR HMMR
TK1

Table S7.The Coefficient of the Risk Factor
Gene Coefficient
ANLN 0.004561126
E2F7 0.023154612
ECT2 0.001854024
HMMR 0.003971949
TK1 9.03E-05
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Figure S3. Survival analysis for other data sets. A-C. KM survival curve of the risk scores for patients in GSE30219, 
GSE42127, and GSE72049 datasets; D-F. Scatter plots of sample survival and risk scores based on GSE30219, 
GSE42127, and GSE72049 data; G-I. AUC curves for 1, 3, 5, and 8 years based on the risk models for GSE30219, 
GSE42127, and GSE72049 data sets.
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Figure S4. Forest map based on clinical features. (A) TCGA-LUAD, (B) GSE30219, (C) GSE42127, and (D) GSE72094. 
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Figure S5. Risk score as an indicator to guide treatment strategies. A. Identification of 66 small molecule drugs 
targeting 39 molecular pathways by MOA; B-D. Difference in IC50 values between high- and low-score groups and 
the response rate for PD1 in different score groups; the order from top to bottom is GSE30219, GSE42127, and 
GSE72094.


