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Original Article
Low adipocyte hepatocellular carcinoma is associated 
with aggressive cancer biology and with worse survival
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Abstract: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and non-
alcoholic fatty liver disease is strongly associated with its development. To explore the role of adipocytes in HCC, we 
investigated intratumoral adipocytes, also known as cancer-associated adipocytes (CAA). Based on our prior breast 
cancer findings, we hypothesized that low intratumoral adipocytes would be associated with aggressive cancer biol-
ogy, worse tumor microenvironment (TME), and clinical outcomes. The Cancer Genome Atlas (TCGA) was used and 
validated by the Gene Expression Omnibus (GEO) cohort. xCell algorithm was used to quantify intratumoral adipo-
cytes and top 90% were defined as adipocyte high (AH) and bottom 10% as adipocyte low (AL). We found that AL-
HCC was significantly associated with worse disease-free survival (DFS), disease-specific survival (DSS), and overall 
survival (OS). AL-HCC were higher-grade, had high MKI67 expression, enriched cell proliferation-related gene sets, 
and had increased altered fraction, aneuploidy, and homologous recombination defects. Also, anti-cancer immune 
cells, CD8, Th1, and M1 cells, as well as pro-cancer Th2 cells were increased in AL-HCC. Micro-RNAs miR-122 (as-
sociated with cholesterol metabolism) and miR-885 (associated with liver pathologies) were significantly increased 
in the AL TME. In conclusion, we found that AL-HCC has worse patient outcomes and is biologically more aggressive 
with enhanced cell proliferation. Our findings take initial steps to clarify the role of adipocytes in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is globally the 
sixth most common cancer, but it ranks the 
second leading cause of cancer-related death 
worldwide due to its aggressiveness and late 
diagnosis [1]. Inherited, environmental, and 
infectious etiologies have been classically iden-
tified as the underlying cause of hepatocyte 
malfunction leading to oncogenesis [2]. These 
etiologies, especially alcohol intake and hepati-
tis viruses, remain responsible for a significant 
portion of the incidence of HCC [3]. On the 
other hand, 30-40% of patients do not have 

any of these identified major risk factors [4]. 
Non-alcoholic fatty liver disease (NAFLD), 
including non-alcoholic steatohepatitis (NASH), 
has been proposed as a widespread underlying 
factor for idiopathic HCC [5]. However, there is 
primarily indirect evidence for the causation 
between NAFLD and HCC [6].

Adipocytes are one of the stromal cells that 
constitute the tumor microenvironment (TME) 
that is known to play critical roles in cancer pro-
gression and metastasis. Long thought to be 
indolent bystanders, their part in usurping 
usual roles and machinery to grow and spread 
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cancers is being uncovered in various malig-
nancies metastasis [7-16]. Our group’s prior 
work in breast cancer shows that cancer-asso-
ciated adipocytes (CAA) interact with cancer 
cells and promote proinflammatory cytokine 
secretion, contributing to pro-cancer inflamma-
tion and cancer progression [15, 17]. We also 
showed that the malignancies with the highest 
overall infiltration of CAA were breast and liver 
cancer [15], thus CAA are of particular interest 
for their role in HCC. Interestingly, we further 
found in breast cancer that a high CAA density 
was associated with a favorable TME, and low 
CAA density was associated with enhanced cell 
proliferation and with advanced grade tumors 
[15]. Based upon these findings, we hypothe-
sized that low intratumoral density of CAA is 
associated with more aggressive cancer biolo-
gy and with poorer patient outcomes.

In order to investigate the association between 
CAA infiltration and HCC progression, we esti-
mated the intratumoral infiltration of CAA utiliz-
ing xCell, a bioinformatic algorithm that identify 
adipocytes by gene expression profile [18]. 
Each cohort was divided into intratumoral adi-
pocyte-low (AL - bottom 10%) and intratumoral 
adipocyte-high (AH - top 90%) groups. Using 
these defined cohorts, we assessed patient 
outcomes and compared the active gene sets 
and the TME using in silico analysis of publicly 
available databases of human HCC tumors.

Materials and methods

Clinical and transcriptomic data acquisition of 
HCC patients

Clinicopathologic and gene expression data 
from The Cancer Genome Atlas (TCGA) was 
obtained through cBioPortal as previously 
described by our group [19-35]. This was com-
pared to datasets of HCC subjects identified 
from the Gene Expression Omnibus (GEO) [36]. 
We used a computational algorithm, xCell, pre-
viously used by our group to quantify intratu-
moral adipocytes across the publicly available 
HCC transcriptomes [15, 24, 26-28, 37-42]. 
The density of the adipocytes within the tumor 
volume were calculated. These densities were 
then used to define the cohorts: up to the 10th 
percentile were defined as adipocyte low (AL) 
and the remainder were defined as adipocyte 
high (AH). 

Tumor microenvironment

The tumor microenvironment was assessed  
utilizing a computational algorithm, xCell,  
mentioned above. The infiltration of pro-cancer 
immune cells as well as anti-cancer immune 
cells were estimated using this algorithm. The 
scores of fraction altered, aneuploidy score, 
homologous recombination defects, and num-
ber of segments were calculated using the 
report by Thorsson et al. [43].

Grading, staging, and outcomes

The AH and AL cohorts were assessed  
and compared for their corresponding clinico-
pathologic data. Grading and staging data 
respectively were distributed across 4-tier sys-
tems utilized by TCGA and GEO. Clinical out-
comes assessed included disease-free survival 
(DFS), disease-specific survival (DSS), and 
overall survival (OS), which were available in 
TCGA.

Gene set enrichment analysis (GSEA)

We utilized a gene set enrichment assay (GSEA) 
to determine the most active biologic functions 
within the adipocyte high and low tumors [44]. 
Gene set enrichment analysis software (version 
4.0, Broad Institute, Cambridge, MA, USA) was 
used. 

Statistical analysis

All statistical analysis was conducted using R 
software (v 4.0.2). Survival analysis was con-
ducted using Kaplan-Meier survival curves 
using greyzoneSurv packages. One-way ANOVA 
or Fisher’s exact test was used to assess the 
differences between groups with a p-value < 
0.05 considered statistically significant. Spear- 
man correlation coefficient was used for the 
association between adipocyte density and 
MKI67 expression. Boxplots were of the Tukey 
type depicting medians and interquartile 
ranges.

Institutional review board statement 

Ethical review and approval were waived for 
this study due to using human tumor data that 
is publicly available and de-identified.
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Results

There was a significant difference between ad-
ipocyte-high (AH) and adipocyte-low (AL) HCC 
in disease-free survival (DFS), disease-specific 
survival (DSS), and overall survival (OS)

First, we wanted to assess whether CAA infiltra-
tion was associated with any difference in HCC 
survival outcomes. Based on our prior work, we 
hypothesized that AL would be associated with 
worse patient outcomes than AH liver cancers. 
Our analysis confirmed our suspicion; when the 
TCGA HCC cohort was divided into adipocyte 
high (AH) and low CAA (AL), there was a signifi-
cant difference in disease-free survival (P = 
0.01), disease-specific survival (P = 0.011), and 
overall survival (P < 0.001) (Figure 1). 

AL tumors were significantly associated with 
higher-grade tumors and increased MKI67 
activity

Since AL tumors were associated with poorer 
patient outcomes, we wanted to explore the 
underlying biology of these results. To this end, 
we evaluated for differences of adipocyte infil-
tration in the following: staging (I-IV) as an indi-
cation of tumor aggressiveness toward the 
external environment, grade (1-4 in TCGA, 1-3 
in GSE89377) as a pathological determination 
of cancer cell proliferation, and MKI67 expres-
sion, which is a molecular biological parameter 
of cancer cell proliferation [15]. The results 
obtained in TCGA cohort were validated with 
another HCC cohort from the Gene Expression 
Omnibus (GEO), GSE76427. In terms of staging, 
we found a tendency in both TCGA and GEO 

cohorts that AL HCC were higher stage tumors. 
However, this did not reach statistical signifi-
cance and was less accurate for the most 
advanced stage IV cancers due to small sample 
size (Figure 2A). Concerning grade, AL HCC 
were significantly associated with higher grades 
compared to AH HCC in both TCGA and GEO 
cohorts (Figure 2B; TCGA P < 0.001, GEO p = 
0.013). Finally, concerning MKI67, as we 
expected, AL HCC were found to have signifi-
cantly increased MKI67 expression in both 
TCGA and GEO cohorts (Figure 2C; P < 0.001 
and P < 0.001). Additionally, the total density  
of HCC intratumoral adipocytes was signi- 
ficantly inversely correlated with MKI67 activity 
consistently in both cohorts (Figure 2C; r = 
-0.287 and r = -0.369, respectively).

AL HCC were significantly associated with cell-
cycle and cell proliferation-related gene sets 

We next investigated which gene sets were 
enriched with AL HCC since these cancers were 
higher grade and more aggressive. To assess 
this, we conducted gene set enrichment analy-
sis (GSEA) on the AL HCC in the TCGA and GEO 
cohorts. We found significant enrichment of  
all the cell proliferation-related gene sets in 
Hallmark collection; E2F targets, G2M check-
point, mitotic spindle, MYC targets V1, and  
MYC targets V2 In the TCGA cohort (Figure 3). 
Similarly, all the cell proliferation gene sets 
exept MYC Targets V2; E2F targets, G2M check-
point, mitotic spindle, and MYC targets V1, were 
all significantly enriched in GSE76427 (Figure 
3). Based upon these results, we determined 
that AL is associated with increased cell 
proliferation.

Figure 1. Kaplan Meier survival analysis (disease-free survival (DFS), disease-specific survival (DSS), and overall 
survival (OS)) of adipocyte high (AH - red line) and adipocyte low (AL - blue line) in the TCGA liver cancer cohort. 
The number of patients at risk is shown below the X-axis of each panel. p-value < 0.05 was considered statistically 
significant.
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AL HCC had a significant increase in altered 
fraction, aneuploidy, and homologous recom-
bination defects 

Not only did we want to evaluate the genes 
active within the more aggressive AL HCC, but 
we also wanted to assess what underlying 
mutations may have occurred in AL HCC lead-
ing to these changes using scores calculated 
by Thorsson et al. [43]. We found that the frac-
tion altered, the aneuploidy score, and homolo-
gous recombination defects were significantly 
higher in the AL HCC in the TCGA cohort (Figure 
4). Although the number of segments appeared 
higher as well, this did not reach statistical 
significance. 

Our overarching finding was that intratumoral 
adipocyte-low (AL) HCC was associated with 
more aggressive cancer biology and worse 
patient prognosis and outcomes. The five-year 
median overall survival for HCC, in general, is 
approximately 19% in the current literature 
[54]. We found that the prognosis for AL HCC 
was grimmer and had significantly lower dis-
ease-free survival, disease-specific survival, 
and overall survival in the TCGA cohort. 

To explore this, we first showed that AL HCC 
was associated with higher grade and had sig-
nificantly increased MKI67 expression in both 
cohorts assessed. Higher tumor grade is known 
to correlate with worse overall survival in liver 

Figure 2. The stage, grade, and MKI67 expression in TCGA and GEO co-
horts. A. Cancer stage (I: open box, II: lightly shaded box, III: darkly shaded 
box, IV: closed box) and adipocyte density in entire TCGA and GEO cohorts. 
B. Pathologic grade in TCGA (G1: open box, G2: lightly shaded box, G3: 
darkly shaded box, G4: closed box) and GEO cohorts (G1: open box, G2: 
darkly shaded box, G3: Closed box) and adipocyte density. C. MKI67 gene 
expression by intratumoral adipocyte low (open box) vs. adipocyte high 
(shaded box) and Pearson correlation curve for MKI67 expression and adi-
pocyte density in TCGA and GEO cohorts. p-value < 0.05 was considered 
statistically significant. r represents Spearman’s correlation coefficient.

Anti-cancer immune cells, 
CD8, Th1, and M1 cells, as 
well as pro-cancer Th2 cells 
were significantly increased in 
AL HCC

We also investigated the tum- 
or immune microenvironment 
(TME) to assess the associa-
tion of immune cells infiltraion 
by adipocyte infitltraion within 
HCC in both TCGA and GSE- 
76427 cohorts. In the TCGA 
cohort, CD8 and Th1 cells were 
significantly increased in AL 
HCC (Figure 5). In the GSE- 
76427 cohort, CD4, and Th1 
cells were significantly increas- 
ed in AL; CD8, and M1 cells 
also showed increased trend in 
AL HCC but did not reach statis-
tical significance (Figure 5). 

Micro-RNA miR-122 and 
miR-885 were significantly in-
creased in the AL TME 

Finally, we investigated the 
specific micro-RNA that were 
highly expressed in the TME of 
AL HCC. MiR-RNA are non-cod-
ing RNAs that epigenetically 
control oncogene expression 
and have significant role in can-
cer biology [45-53]. Within AL 
tumors, expression of miR-122 
and miR-885 were significantly 
elevated (Figure 6).

Discussion
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cancer [54, 55]. Additionally, MKI67 expression 
is a well-known and accepted marker for cell 
proliferation in cancer [15]. Specifically, in HCC, 
MKI67 activity has been correlated with worse 
tumor biology and poorer patient outcomes 
[56, 57]. In our study, increased MKI67 expres-
sion significantly correlated with higher adipo-
cyte infiltration across both cohorts. However, 
we were unable to achieve significance when 
correlating adipocyte infiltration with tumor 
staging. A fundamental difficulty in using pub-
licly available data is the lack of standardiza-
tion and staging within the scientific com- 
munity for liver cancer staging [54, 55, 58]. The 
TCGA and GEO cohorts used different staging 
systems, not allowing fair comparison between 
the data sets. However, AL HCC were associat-
ed with higher grade with increased MKI67 
consistently in two cohorts.

related to poorer prognosis [59-61]. Similar 
findings have been associated with G2M 
Checkpoints, Mitotic Spindle, and MYC Targets 
V1 [61-65]. This validated our findings that AL 
HCC is associated with pathologic grade and 
with increased MKI67 expression, and indi-
cates that they are highly proliferative. This 
underlying biology could partly explain why the 
tumors included in our study have low adipo-
cyte infiltration within their tumors since the 
growing mass likely exerted pressure not only 
externally but eventually internally, and its size 
increased.

Recognizing that almost all cell proliferation 
pathways that led to the increased proliferation 
and cancer aggressiveness are activated in the 
AL HCC, we also wanted to get a sense of the 
genetic abnormalities and mutations that could 

Figure 3. GSEA of adipocyte low (AL) HCC enriched Hallmark cell cycle and cell proliferation-related gene sets in 
the TCGA and GSE76427 cohorts. NES, normalized enrichment score; FDR, false discovery rate. FDR < 0.25 was 
considered statistically significant.

Figure 4. Fraction altered, aneuploidy score, homologous recombination 
defects, and the number of segments by AL and AH based on scores calcu-
lated by Thorsson et al. Intratumoral adipocyte low (open box) vs. adipocyte 
high (shaded box). p-value < 0.05 was considered statistically significant.

To validate these pathological 
and molecular biological find-
ings that cell proliferation is 
associated with AL HCC, we 
investigated what gene sets 
enrich to AL HCC. We found 
both TCGA and GSE76427 
cohorts to have significant 
enrichment of 4 of the 5 Hall- 
mark cell proliferation-related 
gene sets: E2F Targets, G2M 
Checkpoints, Mitotic Spindle, 
and MYC Targets V1. The fifth 
gene set, MYC targets V2, was 
enriched to AL in the TCGA 
cohort alone. E2F Targets has 
been identified previously as 
having a role in HCC prolifera-
tion, and high expression was 
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explain the biology we had uncovered in AL 
tumors. We have utilized the scores calculated 
by Thorsson et al. [43] to see what underlying 
mutations could explain the gene- and subse-
quent phenotypic behavior of the AL HCC. It 
showed a significant increase in altered frac-
tion, aneuploidy, and homologous recombina-
tion defects, significantly correlated with tumor-
igenesis and progression in various cancers, 
including HCC [43, 64, 66-68]. Again, this sup-
ported our hypothesis and conclusion that AL 
tumors have more aggressive cancer biology.

Additionally, although our primary interest was 
the role of the intratumoral adipocyte of HCC, 
we explored the TME to assess what anti- and 
pro-cancer immune cells may be infiltrated. In 

expression in the AL TME. Out of the numerous 
miRNA assessed, only two were significantly 
highly expressed in AL HCC: miR-122 and miR-
885. Although historical findings of miR-122 
indicate that it should be decreased in more 
aggressive tumors since LOH of this region and 
subsequent down-regulation has been found in 
liver cancer in the past [12, 59, 75-77], we 
found that miR-122 was significantly elevated 
in the AL tumors. Conversely, other multiple 
studies show increased miR-122 to be associ-
ated with carcinogenesis [78]. These contradic-
tory findings highlight an area that could benefit 
from further exploration. Our finding with the 
increased miR-885 aligns with recent studies 
that have noted consistently high levels in HCC 
patients [79, 80]. Micro-RNA is an exciting and 

Figure 5. Immune cell composition by high and low adipocytes in the TCGA 
and GSE76427 cohorts. A. Anti-cancer immune cells: CD8+ (CD8+ T cell), 
CD4+ (CD4+ T cell), Th1 (type 1 helper T cell), M1 (M1 macrophage), DC 
(Dendritic cell). B. Pro-cancer immune cells: Th2 (Type 2 helper T cell), Treg 
(regulatory T cell), M2 (M2 macrophage). p-value < 0.05 was considered 
statistically significant.

AL HCC, anti-cancer immune 
cells, CD8, Th1 (TCGA and GS- 
E76427), and M1 (GSE76427) 
cells were significantly increa- 
sed. In the liver, CD8 T cell 
upregulation has been found  
to correlate with liver immune 
pathology [69-72], but this may 
be due to increased reaction  
to the tumor as opposed to 
causative by the CD8 cells. 
Similarly, increased Th1 and 
M1 cells have generally been 
found in settings with increas- 
ed anti-tumor activity or sup-
pressed in settings of in- 
creased tumor activity [43, 
72-74]. Additionally, in AL 
tumors, pro-cancer immune 
cells, Th2 cells were signifi-
cantly increased (TCGA), and 
this trend is supported by the 
current literature [37, 72]. This 
further supports our initial 
hypothesis that AL HCC are 
more aggressive. Based upon 
our findings, AL HCC correlates 
with increased overall immune 
response, and both pro-and 
anti-cancer immune cells are 
significantly increased in these 
tumor environments. 

Finally, to assess what oth- 
er transcriptomic mechanisms 
were at play within the AL HCC, 
we looked at the micro-RNA 
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developing area of research, where there is the 
promise for both prognostic use and targets for 
intervention. We cannot help but speculate that 
these identified micro-RNAs might be further 
evaluated as diagnostic parameters, or thera-
peutic targets in subsequent work to improve 
management and patient outcomes of HCC.

Despite our best efforts, there remain some 
limitations to our study. We analyzed publicly 
available cohorts, which unfortunately did not 
include thorough information on the patients’ 
complete medical history. This prevented us to 
determine the possible underlying cause of 
their HCC, whether it was infectious, environ-
mental, due to NAFLD, or something else. 
Additionally, we could not use the patient’s 
social history to correlate with smoking, diet, 
etc. Furthermore, although other factors were 
assessed similarly (and did show significant  
differences between AL and AH HCC), the stag-
ing of HCC was not standardized across both 
cohorts, so we could not compare between the 
two groups. A pivotal point to keep in mind with 
the public data used for this study is that the 

have more aggressive tumor biology and worse 
patient outcomes. Furthermore, the tumor 
microenvironment of AL HCC has increased 
infiltration of both pro and anti-cancer immune 
cells, and there is significant upregulation of 
miR-122 and miR-885 seen in other cancers 
compared to AH HCC. Next steps based upon 
our work could include assessing the relevance 
of adipocyte infiltration in HCC prospectively for 
patient outcome measures. Additionally, our 
work has identified vital gene sets, cell types, 
and microRNAs that may have a role in assess-
ing prognosis, monitoring disease, and for pos-
sible treatment targets in hepatocellular carci-
noma. Our findings help take initial steps into 
clarifying the role of adipocytes within HCC and 
provide a unique comparison to our prior work 
with adipocytes in breast cancer.
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