
Am J Cancer Res 2022;12(8):3811-3828
www.ajcr.us /ISSN:2156-6976/ajcr0143829

Original Article
A cellular senescence-related gene  
prognostic index for biochemical recurrence  
and drug resistance in patients with prostate cancer

Dechao Feng*, Xu Shi*, Jia You*, Qiao Xiong, Weizhen Zhu, Qiang Wei, Lu Yang

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, 
People’s Republic of China. *Equal contributors and co-first authors.

Received April 29, 2022; Accepted July 12, 2022; Epub August 15, 2022; Published August 30, 2022

Abstract: In this study, we aimed to establish a novel cellular senescence-related gene prognostic index (CSG PI) 
to predict biochemical recurrence (BCR) and drug resistance in patients with prostate cancer (PCa) undergoing 
radical radiotherapy or prostatectomy. We performed all analyses using R version 3.6.3 and its suitable packages. 
Cytoscape 3.8.2 was used to establish a network of transcription factors and competing endogenous RNAs. Three 
cellular senescence-related genes were used to establish the CSGPI. We observed that CSGPI was an independent 
risk factor for BCR in PCa patients (HR: 2.62; 95% CI: 1.55-4.44), consistent with the results of external validation 
(HR: 1.88; 95% CI: 1.12-3.14). The CSGPI had a moderate diagnostic effect on drug resistance (AUC: 0.812, 95% CI: 
0.586-1.000). The lncRNA PART1 was significantly associated with BCR (HR: 0.46; 95% CI: 0.27-0.77), and might 
modulate the mRNA expression of definitive genes through interactions with 57 miRNAs. Gene set enrichment 
analysis indicated that CSGPI was closely related to ECM receptor interaction, focal adhesion, TGF beta signaling 
pathway, pathway in cancer, regulation of actin cytoskeleton, and so on. Immune checkpoint analysis showed that 
PDCD1LG2 and CD96 were significantly higher in the BCR group compared to non-BCR group, and patients with 
higher expression of CD96 were more prone to BCR than their counterparts (HR: 1.79; 95% CI: 1.06-3.03). In addi-
tion, the CSGPI score was significantly associated with the mRNA expression of HAVCR2, CD96, and CD47. Analysis 
of mismatch repair and methyltransferase genes showed that DNMT3B was more highly expressed in the BCR group 
and that patients with higher expression of DNMT3B experienced a higher risk of BCR (HR: 2.08; 95% CI: 1.23-
3.52). We observed that M1 macrophage, CD8+ T cells, stromal score, immune score, and ESTIMATE score were 
higher in the BCR group. In contrast, tumor purity was less scored in the BCR group. Spearman analysis revealed 
a positive relationship between CSGPI and M1 macrophages, CD4+ T cells, dendritic cells, stromal score, immune 
score, and ESTIMATE score. In conclusion, we found that the CSGPI might serve as a biomarker to predict BCR and 
drug resistance in PCa patients. Moreover, CD96 and DNMT3B might be potential treatment targets, and immune 
evasion might contribute to the BCR process of PCa.
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Introduction

Prostate cancer (PCa) is the second most com-
mon cancer and the sixth leading cause of can-
cer death worldwide [1]. Since the introduction 
of prostate specific antigen (PSA), 81% of new 
cases have been localized, and radical radio-
therapy (RRT) and prostatectomy are two pre-
ferred treatments for these patients [2, 3]. 
Although the natural course of PCa is slow, 
among patients after radical therapy, the 
15-year survival rate of those who suffer bio-
chemical recurrence (BCR) within 3 years is 

41% [4]. The impact of BCR on survival is 
believed to be limited to a subgroup of patients 
with specific clinical risk factors [5]. Never- 
theless, BCR can promote the development of 
castration resistant prostate cancer (CRPC), 
and lead to an increased risk of long-term 
metastasis [5, 6]. In this case, clinicians are 
more concerned about how to predict high-risk 
groups of BCR and avoid overtreatment at the 
same time. 

Senescence is a stable cell cycle arrest that 
occurs in both primary cells and cancer cells [7, 
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8]. Cell senescence may be a suboptimal 
response to anticancer therapies [9]. It is easy 
to understand that senescent cells can acti-
vate the immune system and promote the eli- 
mination of tumor cells, but it is worth noting 
that this activation is highly dependent on the 
tumor p53 status [10]. In prostate cancer, 
PTEN-deficient senescent tumors trigger high- 
ly immunosuppressive senescence-associated 
secretory phenotype (SASP) associated with 
increased infiltration of myeloid-derived sup-
pressor cells [11]. Multiple studies have shown 
that senescent cells limit tumorigenesis and 
induce tumor progression, recurrence and 
metastasis of PCa at the late phase [12-15]. 
Furthermore, this two-sidedness of cellular 
senescence for cancer can be explained by the 
SASP of tumor cells, which refers to the model 
for explaining how senescent cells most likely 
promote senescence: the increased expres- 
sion and secretion of inflammatory cytokines, 
chemokines, growth factors, and proteases 
[16]. However, the molecular and cellular mech-
anisms underlying cellular senescence and 
PCa are still poorly understood. In this study, 
we developed and validated a novel cellular 
senescence-related gene prognostic index 
(CSGPI) to predict biochemical recurrence 
(BCR) and drug resistance for patients with 
prostate cancer (PCa) undergoing radical radio-
therapy or prostatectomy.

Methods

Data preparation

The training datasets were obtained from 
GSE46602 [17], GSE32571 [18], GSE62872 
[19], and GSE116918 [20] after eliminating 
batch effects and the detailed process can be 
seen in our previous study [21]. We acquired 
the genes related to cellular senescence from 
GeneCards [22]. We used the TCGA database 
as the validation dataset. In addition, GSE- 
42913 [23] was used to explore the diagnostic 
efficacy of CSGPI for drug resistance. Tumor 
related genes were considered as |r| ≥ 0.3 and 
p.adj. < 0.0001 in weighted gene coexpression 
network analysis, and differentially expressed 
genes were regarded as |logFC| ≥ 0.4 and p.
adj. < 0.05.

Gene interaction, drug and cell line analysis

We analyzed the potential genes that might 
interact with definitive genes (ACACA, CTSB, 

and SERPINB5) using GeneMANIA [24]. We 
screened long noncoding RNAs (lncRNAs) asso-
ciated with BCR-free survival and differentially 
expressed them between tumor and normal 
samples. Subsequently, we constructed a net-
work of transcription factors (TFs) and compet-
ing endogenous RNAs (ceRNAs) using TRUST 
[25], lncBase [26], and miWalk [27]. We ana-
lyzed the drug sensitivity of definitive genes 
through GSCALite which included the data of 
the Cancer Therapeutics Response Portal 
(CTRP) [28], and the corporate cell lines of 
definitive genes was analyzed using canSAR 
[29].

Functional enrichment analysis

Gene Ontology (GO), including biological pro-
cess (BP), cell composition (CC) and molecu- 
lar function (MF), and Kyoto Encyclopedia of 
Genes and Genome (KEGG) analyses were con-
ducted to explore the possible bioactivities and 
signaling pathways. We divided the 248 tumor 
patients undergoing RRT in GSE116918 [20] 
into high- and low-risk groups. We further con-
ducted gene set enrichment analysis (GSEA) 
with “c2.cp.kegg.v7.4.symbols.gmt” and “h.all.
v7.4.symbols.gmt” from the molecular signa-
tures database [30]. We considered p.adj. < 
0.05 and false discovery rate ≤ 0.25 were con-
sidered statistically significant.

Tumor immune microenvironment (TME) analy-
sis

We explored the relationship between CSGPI 
and DNA mismatch repair (MMR) genes and 
methyltransferases using Spearman analysis 
[31]. The relationship between CSGPI and 20 
common immune checkpoints was examined, 
as well as the differential expression between 
the BCR and non-BCR groups. We utilized the 
quanTiseq and ESTIMATE algorithms to score 
TME components [32-34]. Moreover, we con-
ducted an analysis of differential expression, 
prognosis, and correlation for the above TME 
parameters and CSGPI score. Figure 1 shows 
an overview of the procedures in this study.

Statistical analysis

We conducted all analyses using R software 
(version 3.6.3) and its suitable packages. 
Cytoscape 3.8.2 [35] was used to establish the 
TF-ceRNA network. We used the Wilcoxon test 
if the data did not satisfy a normal distribution. 
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Variables were enrolled in the multivariate Cox 
regression analysis if the p value < 0.1 in the 
univariable Cox regression analysis. Statistical 
significance was set as two-sided P < 0.05. 
Significance was marked as follows: ns, P ≥ 
0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Results

CSGPI score and prognostic values

We eventually determined ACACA, CTSB, and 
SERPINB5 to be definitive genes after intersec-

tion of tumor-related genes, differentially ex- 
pressed genes, and genes associated with BCR 
free survival, and Lasso and COX regression 
analysis (Figure 2A-F). These genes could dis-
criminate high-risk patients from low-risk 
patients (Figure 2G). The risk score based  
on ACACA, CTSB, and SERPINB5 was CSGPI 
score =-0.88714*ACACA + 0.97560*CTSB - 
1.79755*SERPINB5. The CSGPI was highly 
positively correlated with PSA (r: 0.652, P= 
0.029; Figure 2H). We observed moderate 
diagnostic accuracy of the CSGPI score distin-
guishing BCR from no BCR stably (AUCs were 

Figure 1. The detailed flowchart in this study. WGCNA = weighted gene coexpression network analysis; GO = gene 
ontology; KEGG = Kyoto Encyclopedia of Genes and Genome; GSEA = gene set enrichment analysis; TF = transcrip-
tion factor; CSGPI = cellular senescence-related gene prognostic index; mRNA = message RNA; long noncoding RNA 
= lncRNA.
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Figure 2. Process of screening definitive genes and clinical values. A. Volcano plot showing the mRNA expression of definitive genes between tumor and normal tis-
sues; B. Modules and phenotype showing the tumor-related modules; C. Venn plot showing DEGs associated with tumor and cellular senescence; D. Gene screening 
through Lasso regression; E. Genes associated with BCR-free survival in PCa using univariate and multivariate COX analysis after Lasso regression; F. Examining 
the clinical values of CSGPI score using univariate and multivariate COX analysis for BCR free survival; G. Plot of risk factor showing the distribution of high- and 
low-risk patients; H. Correlation between CSGPI score and PSA; I. Time dependent ROC curve of CSGPI score discriminating BCR from no BCR; J. Kaplan-Meier 
curve showing survival differences between high- and low-risk patients for BCR free survival; K. Kaplan-Meier curve showing survival differences between high- and 
low-risk patients for metastasis free survival; L. External validation of CSGPI score through Kaplan-Meier curve showing survival differences between high- and low-
risk patients for BCR free survival in TCGA dataset; M. Time dependent ROC curve of CSGPI score discriminating BCR from no BCR in TCGA dataset; N. ROC curve 
showing the diagnostic ability of CSGPI for drug chemoresistance; O. Protein-protein network of ACACA, CTSB, and SERPINB5; P. TF-ceRNA network of ACACA, CTSB, 
and SERPINB5. CSGPI = cellular senescence-related gene prognostic index; ROC = receiver operating characteristic; BCR = biochemical recurrence; PSA = prostate 
specific antigen; TF = transcription factor; ceRNA = competing endogenous RNA; PCa = prostate cancer.



A cellular senescence-related gene prognostic index for prostate cancer

3816	 Am J Cancer Res 2022;12(8):3811-3828

0.766, 0.714, and 0.635 for 1 year, 2 years, 
and 3 years, respectively; Figure 2I). In 
GSE116918 [20], patients in the high-risk 
group had higher risk of BCR (HR: 2.62, 95%  
CI: 1.55-4.44, P=0.001) and metastasis (HR: 
3.86, 95% CI: 1.67-8.92, p=0.004) than those 
in the low-risk group (Figure 2J, 2K). We 
observed similar results in the TCGA dataset 
for BCR-free survival (HR: 1.88, 95% CI: 1.12-
3.14, P=0.018; Figure 2L) and diagnostic accu-
racy (AUCs were 0.613, 0.627, and 0.575 for 1 
year, 2 years, and 3 years, respectively; Figure 
2M). For drug resistance, the diagnostic accu-
racy was 0.812 (95% CI: 0.586-1.000; Figure 
2N). The possible genes that interacted with 
ACACA, CTSB, and SERPINB5 included CCT5, 
CSTA, PPP6C, ACLY, IRF6, UNC93B1, TP63, 
ERCC6L, MLX, HLCS, ADAMTSL4, TRIM29, 
PROCR, FASN, USP29, IDH2, TLR8, TLR7, IDH1, 
and CTSZ (Figure 2O). We detected that pa- 
tients expressing higher lncRNA PART1 had a 
lower risk of BCR than their counterpart (HR: 
0.46, 95% CI: 0.27-0.77, P=0.004; not shown). 
We subsequently constructed the ceRNA net-
work. PART1 might regulate the expression of 
ACACA, CTSB, and SERPINB5 through 57 com-
mon miRNAs (Figure 2P). In addition, TFs in- 
cluding SPDEF, E2F1, SP1, CREB1, RELA, and 
NFKB1, could activate the expression of ACA- 
CA, CTSB, and SERPINB5, while AR could 
repress the expression of SERPINB5 (Figure 
2P). Overall, Figure 2 shows the process of 
screening definitive genes, clinical values of 
CSGPI scores, possibly interacting genes and 
the regulatory network of definitive genes.

Functional enrichment analysis

Figure 3 presents the GO functions of the can-
didate genes. BP analysis indicated that candi-
date genes were mainly involved in cell junction 
assembly and organization, reproductive struc-
ture and system development, gland develop-
ment, and regulation of epithelial cell prolifera-
tion (Figure 3A). CC analysis showed that can- 
didate genes were mainly involved in collagen-
containing extracellular matrix (ECM), contrac-
tile fiber, I band, myofibril, sarcomere, Z disc, 
and focal adhesion (Figure 3B). MF analysis 
showed that candidate genes mainly partici-
pated in actin binding, extracellular matrix bind-
ing, cell adhesion mediator activity, structural 
constituent of cytoskeleton, cadherin binding 
involved in cell-cell adhesion, and integrin bind-
ing (Figure 3C). KEGG analysis indicated that 

candidate genes were mainly involved in focal 
adhesion, proteoglycans in cancer, glutathione 
metabolism, TGF-beta and Wnt and MAPK sig-
naling pathways, platinum drug resistance, and 
pyruvate metabolism (Figure 3D). Figure 4 
shows the GSEA results of high- and low-risk 
patients. GSEA showed that high-risk patients 
were enriched in ECM receptor interaction, 
focal adhesion, TGF-beta signaling pathway, 
regulation of actin cytoskeleton, NOD like 
receptor signaling pathway, FC gamma-R medi-
ated phagocytosis, chemokine signaling path-
way, apoptosis, complement and coagulation 
cascades, intestinal immune network for IGA 
production, lysosome, Wnt signaling pathway, 
adhesion junction, P53 signaling pathway, GAP 
junction, and cytokine-cytokine receptor inter-
action (Figure 4A). 

TME, drug, and cell line analysis

We observed that PDCD1LG2 (P=0.038) and 
CD96 (p=0.013) were expressed at higher  
levels in the BCR group than in the non-BCR 
group (Figure 5A), and higher expression of 
CD96 was associated with a higher risk of BCR 
(HR: 1.79, 95% CI: 1.06-3.03, P=0.032; Figure 
5B). Spearman analysis showed that the CSG- 
PI score was significantly associated with the 
mRNA expression of HAVCR2 (r: 0.29, P < 
0.001), CD96 (r: 0.15, P=0.016), CD47 (r: 0.16, 
P=0.012), and LAG3 (r: -0.15, P=0.018) (Figure 
5C). DNMT3B was expressed at higher levels in 
the BCR group (Figure 5D) and was closely 
associated with BCR free survival (HR: 2.08, 
95% CI: 1.23-3.52, P=0.008; Figure 5E). More- 
over, we observed that M1 macrophages (P= 
0.022), CD8+ T cells (P=0.016), stromal score 
(P=0.003), immune score (P=0.012), and esti-
mate score (P=0.003) had higher scores in the 
BCR group than in the non-BCR group (Figure 
5F, 5G). However, the tumor purity showed a 
opposite difference (P=0.003, Figure 5G). We 
found that the CSGPI score was significantly 
related to M1 macrophages (r: 0.35), M2 mac-
rophages (r: -0.31), neutrophils (r: -0.13), CD4+ 
T cells (r: 0.2), dendritic cells (r: 0.26), stromal 
score (r: 0.49), immune score (r: 0.45), esti-
mate score (r: 0.49), and tumor purity (r: -0.49) 
(Figure 5H). For drug analysis, we found that 24 
drugs might be sensitive to ACACA, CTSB, and 
SERPINB5 (Figure 5I), among which the top  
10 drugs were 1S, 3R-RSL-3, CIL70, ML162, 
ML210, PI-103, PYR-41, UNC0638, bendamus-
tine, manumycin A, and sunitinib (Figure 5J). 
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Figure 3. Gene ontology analysis of candidate genes. A. BP analysis; B. CC analysis; C. MF analysis; D. KEGG 
analysis; KEGG = Kyoto Encyclopedia of Genes and Genome; BP = biological process; CC = cell composition; MF = 
molecular function.
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The cell line analysis indicated that PRECLH, 
DU145, PC3, MDAPCA2B, 22RV1, NCIH660, 
and VCAP were potential cell lines to investi-
gate CTSB, ACACA, and SERPINB5 in PCa 
(Figure 5K). Overall, Figure 5 shows the analy-
ses of TME, MMR, methyltransferase genes, 
drug and potential cell lines in PCa patients. 

Discussion

For low- and intermediate-risk localized pros-
tate cancer, RRT is as effective as radical pros-
tatectomy (RRP) [36]. However, for the high-risk 
subgroup, the risk of recurrence after RRT is 
increased [37]. After treatment and cure of 
PCa, some patients may have disease recur-
rence confirmed by PSA blood tests, namely 
BCR. However, not everyone who experiences 
BCR will develop a progressive disease [38]. 
Despite the development of the diagnosis and 
treatment of PCa during the past few decades, 
the survival rate of patients has often improved 

by meager months [39]. The development of 
models that predict BCR can help optimize 
decision-making strategies for PCa manage- 
ment.

Cellular senescence is a complex stress res- 
ponse, accompanied by a large number of 
changes in gene expression [40]. Senescence 
can be induced by cancer chemotherapy dru- 
gs and radiation, known as therapy-induced 
senescence (TIS) [9, 41]. What needs to be 
clear is that tumor cells in vitro and in vivo have 
been found to escape from TIS, accompanied 
by a reduction in the expression of select SASP 
components [42, 43]. In other words, senes-
cent tumor cells can actually re-enter the cell 
cycle after senescence, and these cells ac- 
quire stem cell-like characteristics, which may 
represent a possibility of recurrence [44-46]. 
Demaria et al. found that senescent nontumor 
cells are conducive to cancer recurrence and 
metastasis after chemotherapy in a murine 

Figure 4. GSEA analysis of high- and low-risk patients with prostate cancer. A. GSEA C2 analysis; B. GSEA hallmark 
analysis; GSEA = gene set enrichment analysis. Prostate cancer patients were divided into high- and low-risk groups 
according to the median value of the cellular senescence-related gene prognostic index.
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Figure 5. TME, drug, and cell line analysis. A. Comparison between BCR and no BCR group for immune checkpoints; B. Kaplan-Meier curve showing survival differ-
ences of high- and low-expression of CD96 for BCR free survival; C. Radar plot showing correlation between immune checkpoints and CSGPI score; D. Comparison 
between BCR and no BCR group for mismatch repair and methyltransferase genes; E. Kaplan-Meier curve showing survival differences of high- and low-expression 
of DNMT3B for BCR free survival; F. Comparison between BCR and no BCR group for TME cells; G. Comparison between BCR and no BCR group for TME score; H. 
Radar plot showing correlation TME parameters and CSGPI score; I. Venn plot showing common sensitive drugs of ACACA, CTSB, and SERPINB5 through the CTRP 
database; J. Plot showing the top 30 potential drugs for ACACA, CTSB, and SERPINB5 through the CTRP database; K. Venn plot showing common cell lines of ACACA, 
CTSB, and SERPINB5 in prostate cancer. TME = tumor immune microenvironment; CSGPI = cellular senescence-related gene prognostic index; BCR = biochemical 
recurrence; CTRP = the cancer therapeutics response portal.
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model [14]. Milanovic et al. found that senes-
cence-associated reprogrammed cells, with 
stemness, were found to have much higher 
tumor initiation potential than virtually identical 
cells and is enriched in relapsed tumors, which 
may have a long-term impact on tumor aggres-
siveness and prognosis for leukemia [16]. The 
elimination of senescent cells after doxoru- 
bicin treatment can improve inflammation and 
tumor recurrence through cell-autonomous 
mechanisms as well as paracrine signaling 
through the SASP. SASP factors are involved  
in the recruitment of natural killer cells (NK) 
and macrophages and the “reprogramming” of 
macrophages to the tumor-inhibiting M1 phe-
notype [47, 48]. 

Moreover, SASP has been shown to induce epi-
thelial-mesenchymal transition (EMT), thereby 
increasing invasiveness [49-52]. However, for 
PCa, the presence of senescent cells only 
increased the proliferation of cocultured cells 
in vitro but did not significantly change tumor 
growth in vivo, which indicates negligible prolif-
erative bystander effects of senescent PCa 
cells that depend on the expression of SASP 
components in the TME [47, 53]. In fact, SASP 
is now divided into those derived from acute 
senescent cells (A-SASP) and chronic senes-
cent cells (C-SASP), among which A-SASP is 
more effective in inducing the senescence of 
immortalized prostate cells [54, 55]. Recent 
studies have shown that SASP induced senes-
cence of immortalized prostate cells but not of 
metastatic PCa cells in vitro, suggesting that 
acute senescent cells only act to resist tumori-
genesis rather than directly fight against malig-
nant cells [56]. Borrowing this theory can partly 
explain how senescent cells mediate two oppo-
site effects of tumor suppression and promo-
tion [57, 58]. Recently, Tonnessen-Murray et al. 
found that chemotherapy-induced senescent 
cancer cells often engulf adjacent senescent or 
nonsenescent tumor cells at a significant fre-
quency to gain a survival advantage, leading to 
breast cancer recurrence and poor prognosis 
[59]. We speculated that a similar mechanism 
might exist for PCa cells after receiving RRT, 
since adherent senescent-like cells expressing 
common senescence-associated markers re- 
sulted in generation among several prostate 
cancer cell lines after ionizing radiation [60]. 
The mechanism may involve miR-106a, which 
can confer radiation resistance by reducing 
senescence [61].

The expression of lncRNA PART1 was found to 
be related to the poor prognosis and tumor 
recurrence of stage I-III non-small cell lung  
cancer and hepatocellular carcinoma [62-64]. 
SERPINB5, as a gene related to cancer cell 
motility, is believed to contribute to tumor inva-
sion, migration and final metastasis [65]. Zhang 
et al. found that the ubiquitination of guanine 
monophosphate synthase (GMPS) mediated by 
SERPINB5 promotes TP53 inhibition, resulting 
in radiation resistance in nasopharyngeal carci-
noma cells, which may help us understand that 
SERPINB5 may also be involved in the survival 
promotion and recurrence of PCa cells after 
RRT [66]. Here, we demonstrated for the first 
time the ability of the expression of lncRNA 
PART1 and its regulated mRNA to predict BCR 
and drug resistance after RRT in PCa. In addi-
tion, the CSGPI score based on in this study 
could predict BCR free survival for PCa patients 
undergoing RRP.

The senescence bystander effect mentioned 
above refers to the phenomenon that senes-
cent cells cause the development of senescent 
phenotype in nearby cells [67]. This effect was 
found to be related to thrombospondin-1-de-
pendent activation of the TGF-β1 signaling 
pathway through ROS and their downstream 
effector, p38 MAPK [68, 69]. The TGF-β1 sig-
naling pathway is related to premature senes-
cence of human diploid fibroblasts (HDFs) [70, 
71]. Furthermore, inhibition of the TGF-β1 sig-
naling pathway was found to prevent mouse 
primary prostate fibroblasts from radiation-
induced damage, which means, from another 
perspective, radiation resistance and the sub-
sequent recurrence of PCa [72]. This is consis-
tent with the results of our gene set enrichment 
analysis. The possible speculation is that the 
oxidative stress and the subsequent cell sen- 
escence caused by the TGF beta signaling 
pathway led to the bystander effect of the 
tumor and its surrounding counterparts in PCa 
tissue thus promoting the occurrence of BCR. 
ECM receptor interaction and focal adhesion 
are two other mechanisms that may link cell 
senescence with BCR. The ECM is a com- 
ponent of the TME that affects the biological 
behavior of PCa and mediates cell differentia-
tion, migration and invasion [73, 74]. Lichner et 
al. found that miR-29c, miR-34a and miR-141 
are differentially expressed in different Glea- 
son grades, and their main biological process-
es include ECM-mediated signaling and focal 
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adhesion kinase- and mitogen-activated kinase 
pathways, with miR-29c and miR-34a influenc-
ing downstream pathways that affect actin 
cytoskeleton organization [75]. Furthermore, 
miR-29c, miR-34a, miR-141 and miR-148a 
showed inverse correlations with BCR [75].

The high expression level of PDCD1LG2 has 
been found to be associated with a worse BCR 
free survival for PCa [76]. PDCD1LG2 was 
found to be related to immunomodulatory and 
radiation response pathways, suggesting its 
role in predicting prognosis and response to 
treatment as a promising immune checkpoint 
target [76]. In our study, we found higher 
expression of PDCD1LG2 in the BCR group, but 
an association with BCR-free survival was  
not observed. The DNA methyltransferase 
DNMT3B is highly abundant in several pro- 
state cancer cell lines. By targeting RAD9 to 
methylate, it regulates tumorigenicity, castra-
tion resistance, androgen-independent growth 
and metastasis of PCa [77, 78]. Moreover, 
DNMT3B mRNA expression is associated with 
an increased cancer aggressiveness and risk 
of lethal PCa [79]. Combined with our research, 
it is also suggested that DNA methylation may 
be related to the occurrence of BCR.

The TME is a collection of tumor cells and quiet 
nontumor cells [80]. A large number of studies 
have shown that the TME is involved in tumor 
progression and response to treatment by 
nourishing the tumor parenchyma [81, 82]. In 
the TME, macrophages play an important regu-
latory function [83]. Classically activated mac-
rophages in TME (M1 macrophages, CD14++ 
CD16-) show antitumor activity, while alter- 
natively activated macrophages (M2 macro-
phages, CD14+ CD16++) possess anti-inflam-
matory functions and promote wound healing, 
angiogenesis and tissue remodeling, thereby 
supporting tumor progression and metastasis 
[84]. The polarization of macrophages in par-
ticular depends on SASP in the TME [85]. As 
mentioned above, p53-dependent senescent 
hepatic stellate cells (HSCs) release specific 
SASP factors including IFN-γ and IL-6, which 
bias the polarization of macrophages in favor  
of the M1 state, while proliferating p53-defi-
cient HSCs promote the conversion of macro-
phages to the M2 phenotype through IL-4 [10]. 
Di Mitri et al. found that PTEN-null PCa tissue, 
which is vulnerable to TNF-α-induced senes-
cence, was strongly infiltrated by macrophages 
and promoted the polarization of macrophages 

to the TNF-α-secreting M1 phenotype through 
CXCR2 [86]. Senescence establishes the anti-
tumor TME through SASP, which regulates the 
function of macrophages, and inhibits the 
tumorigenesis of neighboring cells in a noncell-
autonomous manner [48]. Most tumor-associ-
ated macrophages (TAMs) have the M1 pheno-
type, and TAMs can induce senescence and 
tumor inhibition [86, 87]. Combined with the 
results of our analysis, it is further confirmed 
that senescent PCa cells, such as HSCs, can 
promote the transformation of macrophages 
from the M2 to the antitumor M1 phenotype 
through SASP. Here we suggest the therapeutic 
effect of macrophage-targeting therapy in PCa, 
such as the application of an α-CSF-1R mono-
clonal antibody for colorectal adenocarcinoma 
and fibrosarcoma [88].

Senescent cells undergo immune surveillance 
from T cells through adaptive immunity as well. 
Various SASP factors including CCL27, CCL2, 
CXCL11 and IL-1α are related to the mobiliza-
tion, activation and differentiation of T cells 
[89, 90]. The potential recruitment of activated 
T lymphocyte subsets to sites occupied by 
senescent cells has been witnessed [49, 90- 
92]. The activation, differentiation and func-
tional specialization of T cells are finely regu-
lated [93]. The CD4+ T-cell response as a Th1 
type response, rather than direct T cell cytotox-
icity, effectively kills precancerous senescent 
hepatocytes [92]. The percentage of stromal 
cells in the TME represents the stromal score 
[94]. In all solid tumors, abundant matrix often 
represents a worse prognosis, with deeper 
invasion depth and lymph node metastasis 
probability [95]. The prostate stroma is an 
important component for normal prostate 
growth and differentiation, compared with PCa, 
where the increase in collagen fibers and carci-
noma-associated fibroblasts (CAFs) accompa-
nied a decrease in smooth muscle cells as  
cancer progresses [96]. This change in stroma 
is similar to wound healing and is called ‘reac-
tive stroma’ [97-99]. Reactive matrix grading 
(RSG) has been a tool to assess PCa-specific 
mortality in diagnostic prostate needle biop-
sies [100]. In univariate analysis, level 3 RSG 
can predict the time and risk of biochemical 
recurrence after radical prostatectomy [101]. 
Moreover, CD96 was expressed on T cells and 
NK cells together with CD226 and TIGIT, con-
tributing to tumor escape from the immune sys-
tem [102]. Thus, we proposed that immune 
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evasion played a vital role in the BCR process 
of PCa.

Here, we identified genes and pathways related 
to cellular senescence and BCR in PCa, and 
built a CSGPI risk score to predict BCR and  
drug resistance. Behind this score, we also 
revealed that the occurrence of BCR may be 
related to various immune cells and SASP in 
the TME. In summary, senescence is a specific 
response of cancer cells to antitumor treat-
ments including RRT. Combined with research 
results in other cancers, we speculated that 
senescent cells might play a major role in pro-
moting BCR after RRT in the short term through 
the reversible process of TIS and SASP in the 
TME. However, for the subsequent treatment  
of prostate cancer, senescence induction re- 
mains a potential treatment method through 
activation of the immune system. Indeed, we 
have to admit that most of the findings, such as 
the ceRNA network and the potential tar- 
gets identified in this study, warrant further 
investigation.

Conclusion 

We found that the CSGPI might serve as a bio-
marker to predict BCR and drug resistance in 
PCa patients. Moreover, CD96 and DNMT3B 
might be potential treatment targets, and 
immune evasion might contribute to the BCR 
process of PCa.
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