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Pan-cancer profiles of the cuproptosis gene set
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Abstract: A recent study has revealed a novel cell death pathway, called “cuproptosis”, a programmed cell death 
based on copper. A total of 12 genes were involved in the cuproptosis pathway, including 7 pro-cuproptosis genes 
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB) genes, 3 anti-cuproptosis genes (MTF1, GLS, and CDKN2A), and 
2 key copper transporters ATP7B and SLC31A1. The insight into these cuproptosis genes in cancer is necessary to 
understand cuproptosis-related tumorigenesis and to develop the cuproptosis pathway as a potential therapeutic 
target for clinical cancer treatment. By mining multi-omic profiling data, we performed a comprehensive and system-
atic characterization of the cuproptosis of these 12 genes across more than 9000 samples of 33 types of cancer. 
This letter not only revealed diverse mechanisms of the gene expression regulations of the cuproptosis gene set 
in cancer but also analyzed the potential associations between cuproptosis and other common cancer pathways, 
providing an overall picture of cuproptosis in cancer for future reference. This study comprehensively clarified the 
genomic pan-cancer profiles of the cuproptosis gene set regarding the SNV, CNV, methylation, mRNA expression, 
pathway cross-talk, and miRNA regulations across 33 solid tumors. Our findings revealed that genomic alterations 
and miRNA-mRNA network-mediated ectopic expression of cuproptosis genes were involved in the activation of oth-
er cancer-related pathways and also identified KIRC as a potential cancer type that might be affected by cuproptosis. 
We think, as the rase of the cuproptosis cancer research, these in-time profiles will provide a genetic overview and 
useful information for future studies on the cuproptosis in cancers.
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Introduction

A recent paper [1] has revealed a novel cell 
death pathway, called “cuproptosis”, a pro-
grammed cell death based on copper, that  
is different from known cell death pathways 
such as apoptosis, necrosis, oncosis, pyropto-
sis, autophagy, and ferroptosis. Copper served 
as a co-factor for a number of key enzymes 
across almost all organisms [2], but the homeo-
static level of intracellular copper is strictly 
regulated, and the accumulation of intracellular 
free copper can result in the death of cells [3, 
4]. The intracellular concentration of copper 
has been found to affect many types of can-
cers, such as breast cancer [5], head and neck 
cancer [6], and endometrial cancer [7], how- 
ever, only until the recent publication did the 
pathway of cuproptosis sorted out with a set  
of cuproptosis genes identified. A total of 10 
genes were involved in the cuproptosis path-
way, including 7 pro-cuproptosis genes (FDX1, 
LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB) 

genes and 3 anti-cuproptosis genes (MTF1, 
GLS, and CDKN2A) [1]. In addition, two key cop-
per transporters are key cuproptosis affecting 
genes, including copper exporter ATP7B [8] and 
copper importer SLC31A1 [9]. The insight into 
these cuproptosis genes in cancer is necessary 
to understand cuproptosis-related tumorigene-
sis and to develop the cuproptosis pathway as a 
potential therapeutic target for clinical cancer 
treatment. By mining multi-omic profiling data, 
we performed a comprehensive and systematic 
characterization of the cuproptosis of these 12 
genes across more than 9000 samples of 33 
types of cancer. This letter not only revealed 
diverse mechanisms of the gene expression 
regulations of the cuproptosis gene set in can-
cer but also analyzed the potential associations 
between cuproptosis and other common can-
cer pathways, providing an overall picture of 
cuproptosis in cancer for future reference. The 
detailed methods of the analyses were provid-
ed in the Supplementary Materials. We think, 
as the rase of the cuproptosis cancer research, 
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these in-time profiles will provide a genetic 
overview and useful information for future stud-
ies on the cuproptosis in cancers.

Results and discussions

Pan-cancer single nucleotide variation profiles 
of cuproptosis gene set

The single nucleotide variation (SNV) analysis 
revealed that CDKN2A was the most frequen- 
tly mutated cuproptosis gene across cancer 
types, especially in HNSC and PAAD, where the 
mutation rate was over 20%. ATP7B was the 
second most frequently mutated cuproptosis 
gene in cancer. Generally, UCEC had a relatively 
higher mutation rate in all cuproptosis genes 
than other cancer types (Figure 1A). The SNV 
landscape showed that most of the SNVs were 
missense-mutation, followed by a small pro- 
portion of other mutation types such as non-
sense-mutation, except for the most frequently 
mutated gene, CDKN2A, which had a relatively 
high proportion of nonsense-mutation (Figure 
1B). The profile of the survival association of 
cuproptosis gene SNVs revealed that the can-
cer types that were most likely to associate 
with cuproptosis genes SNV were BRCA and 
COAD. However, only a few genes were signifi-
cant, and, for most of the other cancer types, 
no significance was found (Figure 1D). Based 
on the SNV analysis, although CDKN2A had a 
high SNV frequency, we suggested that the 
SNVs in cuproptosis genes might not be critical 
for cancers.

Pan-cancer copy number variation profiles of 
cuproptosis gene set

The copy number variation (CNV) profile showed 
that the CNV of the cuproptosis gene set across 
different cancer types had a variety of patterns. 
The pan-cancer pie chart and CNV plots of the 
cuproptosis gene set showed that the major 
CNV types were heterozygous CNV, with only 
very few cases of homozygous CNV (Figure 
1D-F). The profile of the survival association of 
cuproptosis gene CNVs revealed that the can-
cer types that were most likely to associate 
with cuproptosis genes CNV were UCEC, KIRP, 
and ACC. However, for the other cancer types, 
there were only a few significances in part of 
the cuproptosis gene set (Figure 1G). The cor-
relation profile of CNV and expression demon-
strated that, for most cancer types, CNV was 

positively correlated with expressions of most 
of the cuproptosis genes (Figure 1H). Based on 
the CNV analysis, we suggested that the het-
erozygous CNV might potentially associate with 
cancers, especially in UCEC, KIRP, and ACC 
where cuproptosis genes CNV correlated with 
the survival of patients.

Pan-cancer methylation profiles of cuproptosis 
gene set

The profile of the methylation differences be- 
tween tumor and normal tissues revealed that 
a few cancer types had a difference in methyla-
tion of some cuproptosis genes between tumor 
and normal tissues but there were no cancer-
noncancer difference patterns shared across 
different cancer types (Figure 1I). The correla-
tion profile of methylation and mRNA expres-
sion revealed that a few cancer types had sig-
nificant correlations between methylation and 
mRNA expression in some cuproptosis genes 
and most of these correlations were negative 
correlations (Figure 1J). The survival correla-
tion analysis of methylation showed that the 
methylation levels were not correlated with the 
survival of cancer in most cancer types (Figure 
1K). Based on the CNV analysis, we suggested 
that hypermethylation was one of the potential 
mechanisms of down-regulation of some cupro-
ptosis genes, but, overall, the methylation level 
of cuproptosis gene set was not closely associ-
ated with cancers.

Pan-cancer gene expression profiles of cupro-
ptosis gene set

We analyzed the expression difference of 
cuproptosis genes between cancer and non-
cancer tissues from TCGA. Results showed th- 
at KIRC had the most significantly different 
genes. DLD, PDHA1, GLS, DLAT, SLC31A1, 
PDHB, and FDX1 were down-regulated in KIRC, 
while CDKN2A and ATP7B were up-regulated in 
KIRC. CDKN2A was the gene that was signifi-
cantly different between normal and cancer  
in most of the cancer types across all cupropto-
sis genes. Yet, for most cancer types, there 
were only a few significant differences in the 
expression of these genes between cancer and 
their non-cancer tissues (Figure 2A). We  
also analyzed the expression of these genes 
among cancer subtypes, results revealed that 
BRCA, KIRC, STAD, and LUAD were the top four 
cancer types that showed significance (Figure 
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Figure 1. Pan-cancer genetic profiles of cuproptosis gene set. A. Heatmap of the mutation frequency. Numbers rep-
resent the number of samples that have the corresponding mutated gene for a given cancer. “0” indicates that there 
was no mutation in the gene coding region, blank indicates there was no mutation in any region of the gene, and 
color represents the mutation frequency. B. The SNV landscaped plot of cuproptosis genes in cancers. C. Survival 
difference between mutant and wild-type cuproptosis genes. Copy number variation (CNV) and methylation analysis 
of cuproptosis genes in cancers. D. CNV distribution pie chart across cancers. Hete Amp = heterozygous amplifica-
tion; Hete Del = heterozygous deletion; Homo Amp = homozygous amplification; Homo Del = homozygous deletion; 
None = no CNV. E, F. Heterozygous and homozygous CNV profile showing the percentage of amplification and de-
letion of heterozygous and homozygous CNVs for each gene in each cancer. Only genes with >5% CNV in a given 
cancer are shown as a point in the figure. G. Survival difference between CNV groups. H. The correlation of CNV and 
mRNA expression. I. Methylation differences between tumor and normal tissues. J. The correlation of methylation 
and mRNA expression. K. Survival difference between samples with high and low methylation of cuproptosis genes 
(only significant cancer types were plotted).
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Figure 2. Pan-cancer expression and cross-talk profiles of cuproptosis gene set. A. Expression difference between 
cancer and non-cancer tissues from TCGA. B. Expression differences between subtypes of cancers. C. Survival dif-
ference between high and low expression groups. D. Pie chart of the percentage of the effect of cuproptosis gene 
cross-talk with other cancer pathway activity. E. Heat map of the percentage of the effect of cuproptosis genes on 
other cancer pathway activity. F. Pathway regulation network of cuproptosis genes. A line represents a connection 
between genes and different pathways, where a solid line represents activation, and a dashed line represents in-
hibition. The color of the line represents different cancer types. G. The microRNA (miRNA) network of cuproptosis 
genes. A miRNA and one regulator connection node represent miRNA regulation of a gene. Node size is positively 
correlated with the node’s degree, and edge width is defined by the absolute value of the correlation coefficient.



Cuproptosis genes in cancer

4080	 Am J Cancer Res 2022;12(8):4074-4081

2B). Survival analysis showed that KIRP was 
the cancer type whose survival was the most 
associated with cuproptosis genes. The high 
expressions of five pro-cuproptosis genes 
(LIAS, SLC31A1, DLD, FDX1, and DLAT) and  
two anti-cuproptosis genes (MTF1 and ATP7B) 
were associated with a low survival risk in  
KIRP, while the expression of anti-cuproptosis 
gene CDKN2A was associated with a high sur-
vival risk in KIRP. In addition, LGG was another 
cancer type whose survival might associate 
with cuproptosis, yet, for the other cancer 
types, there were only a few significances in 
survival associations (Figure 2C). These ex- 
pression analyses identified KIRC as a poten-
tial cancer type that might be affected by 
cuproptosis.

Pan-cancer pathway cross-talk profiles of cu-
proptosis gene set

To explore the potential cross-talk of cupropto-
sis and other cancer-related pathways, we ana-
lyzed the reverse-phase protein array (RPPA) 
data from the TCPA database to calculate 
scores for 7876 cancer samples and provided 
pan-cancer pathway cross-talk profiles of the 
cuproptosis gene set. As shown in the pie ch- 
art, the cuproptosis genes were also potentially 
involved in the activations of other cancer path-
ways, but most of these involvements were not 
remarkable except for a few genes in some 
pathways, such as PDHA1 in the cell cycle, 
MTF1 in RTK, ATP7B in RTK, and CDKN2A in  
the cell cycle (Figure 2D). Detailed percentage 
numbers of the activation and inactivation of 
these pathways were presented in Figure 2D.  
A pan-cancer pathway regulation network of 
cuproptosis genes was also constructed ba- 
sed on these results (Figure 2F). These path-
way cross-talk profiles provided information on 
the potential connections between cuproptosis 
and other cancer-related pathways.

Pan-cancer pathway cross-talk profiles of cu-
proptosis gene set

This study also analyzed the miRNA expression 
data from TCGA and constructed a miRNA-reg-
ulation network of cuproptosis genes. Eleven of 
the twelve genes of the cuproptosis gene set 
were found in the databases with regulating 
miRNA. As shown in Figure 2G, multiple miR-
NAs might be involved in the regulation of the 
expression of the cuproptosis genes, including 
several co-regulators for some of the cupropto-

sis genes. ATP7B was regulated by 11 miRNA, 
where the top regulating miRNA were has-miR-
185-5p and has-miR-98-5p. The has-miR-98-
5p was also regulating PDHB and the has-miR-
576-5p was regulating both ATP7B and LIPT1. 
DLAT was regulated by 15 miRNA, where the 
top regulating miRNA were has-miR-365a-3p, 
has-miR-664a-3p, and has-miR-1271-5p. has-
miR-3133 was regulating both DLAT and PDHB 
and the has-miR-452-5p was regulating both 
DLAT and LIAS. The LIAS was only regulated  
by has-miR-452-5p and has-miR-1976. DLD 
was regulated by 14 miRNA, whose top regu-
lated miRNA was has-miR-125b-5p, a miRNA 
that also regulated MTF1 and CDKN2A. Similar 
to has-miR-125b-5p, has-miR-876-5p and has-
miR-125a-5p regulated both DLD and MTF1. 
CDKN2A was also regulated by multiple other 
miRNAs. FDX1 was regulated by 10 miRNA and 
the top regulating one was has-miR-21-5p, 
which was also regulating SLC31A1. SLC31A1 
was regulated by 7 miRNA, especially by has-
miR-708-5p and has-let-7i-5p. GAS has the 
most regulating miRNA. It was regulated by 27 
miRNA, where the top correlated miRNAs were 
has-miR-9-5p, a miRNA also regulated CDKN2 
and FDX1, and has-miR-141-3p (Figure 2G). 
The network provided an overview of the poten-
tial cuproptosis-regulating miRNAs for future 
reference.

Conclusions

This study comprehensively clarified the geno- 
mic pan-cancer profiles of the cuproptosis  
gene set regarding the SNV, CNV, methylation, 
mRNA expression, pathway cross-talk, and 
miRNA regulations across 33 solid tumors. Our 
findings revealed that genomic alterations  
and miRNA-mRNA network-mediated ectopic 
expression of cuproptosis genes were involved 
in the activation of other cancer-related path-
ways and also identified KIRC as a potential 
cancer type that might be affected by cupropto-
sis. The pan-cancer analysis of cuproptosis 
genes may provide additional insight into novel 
clinical therapy targeting cuproptosis.
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Supplementary Materials

Methods

Data acquisitions

The expression, methylation, single-nucleotide variant (SNV), and copy number variant (CNV) data with 
clinical information were downloaded from The Cancer Genome Atlas (TCGA) [1] and the UniProt. The 
reverse-phase protein array (RPPA) data were downloaded from the cancer proteome atlas (TCPA) [2, 3]. 
The miRNA regulation data of melatonergic regulators were collected from databases including experi-
mentally verified (scientific papers, TarBase [4], miRTarBase [5], and mir2disease [6]) data, and tar-
getscan and miRanda predicted data. The immune therapy survival data were accessed from the Tumor 
Immune Dysfunction and Exclusion (TIDE) [7, 8]. 

Gene alterations and expression analysis

All the expression and methylation analyses and plotting were implemented by R foundation for statisti-
cal computing (2020) version 4.0.3 and ggplot2 (v3.3.2) or accessed from the website of the data 
source. SNV plots were generated by the maftools [9]. CNV data were processed with GISTICS2.0 [10]. 
Data were analyzed using the t-test or ANOVA t-test. To compare the data, the integrated level of the 
expression of the cuproptosis gene set was calculated using the gene set variation analysis (GSVA) with 
the R package GSVA [11].

Survival analysis

The mRNA expression, methylation, and clinical survival data were analyzed. Tumor samples were divid-
ed into high and low groups according to the median gene RSEM value. The R package survival was 
used to fit the survival time and survival status for the two groups. A Cox Proportional-Hazards model 
was used to calculate survival risk (Hazard ratio, HR) for every gene. A log-rank test of Kaplan-Meier 
survival was performed for each gene. 

Pathway activity analysis

Reverse-phase protein array (RPPA) data from the TCPA database were used to calculate scores for 
7876 samples. Ten cancer-related pathways included tuberous sclerosis 1 protein (TSC)/mechanistic 
target of rapamycin (mTOR), receptor tyrosine kinase (RTK), phosphatidylinositol-4,5-bisphosphate-3-ki-
nase (PI3K)/protein kinase B (AKT), RAS/mitogen-activated protein kinase (MAPK), hormone estrogen 
receptor (ER), hormone androgen receptor (AR), epithelial-mesenchyme transition (EMT), the DNA 
Damage Response, cell cycle, apoptosis pathways. The pathway score is the sum of the relative protein 
level of all positive regulatory components minus that of negative regulatory components in a particular 
pathway. The pathway activity score (PAS) was estimated as in previous studies [12, 13]; gene expres-
sion was divided into two groups (High and Low) by the median expression and the difference in PAS 
between groups was analyzed using Student’s t-test where the P-value was adjusted by the FDR. The 
FDR ≤0.05 was considered significant. When PAS (Gene A group High) >PAS (Gene A group Low), gene 
A was considered to have an activating effect on this pathway; otherwise, it had an inhibitory effect on 
the pathway.

MicroRNA (miRNA) regulation network analysis

Only miRNA-gene pairs that have recorded data were used to calculate the expression correlation. The 
miRNA expression and gene expression were merged via the TCGA barcode. The association between 
paired mRNA and miRNA expression was tested based on a Pearson product-moment correlation coef-
ficient and the t-distribution. The P-value was adjusted by the FDR and only significant connections were 
plotted. Correlations were calculated for all paired samples. Meanwhile, in consideration of the pres-
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ence of positive regulators, including transcription factors, a miRNA-gene pair with a negative correla-
tion will be considered as a potential negatively regulated pair. The network was constructed using the 
visNetwork R package.

Statistical analysis 

All statistical analyses were performed using the R software v4.0.3. Correlation analysis was performed 
using the Spearman correlation test. A Cox proportional hazards model was used to calculate survival 
risk and hazard ratio (HR). The prognostic significance of every variable was estimated using Kaplan-
Meier survival curves and compared using log-rank tests. Group comparisons were analyzed using T.
test or ANOVA t-test. If not otherwise stated, the rank-sum test detected two sets of data, and a P-value 
<0.05 was considered statistically significant.
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