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Abstract: Clear cell renal cell carcinoma (ccRCC) accounts for 75% of the total incidence of renal cancer, and every 
year the number of morbidity and mortality increases, posing a serious threat to public health. The current main 
treatment methods for kidney cancer include drug-targeted therapy and immunotherapy. Although there are many 
treatment options for kidney cancer, they all have limitations, including drug resistance, unsatisfied long-term ben-
efits, and adverse effects. Therefore, it is crucial to identify more effective therapeutic targets. As a newly discovered 
mechanism of cell death, copper-induced cell death (cuprotosis) is closely related to changes in cell metabolism, 
particularly in copper metabolism. Current studies have shown that the key signaling pathway of cuprotosis, the 
FDX1 (Ferredoxin 1)-LIAS (Lipoic Acid Synthetase) axis, plays an important role in the regulation of cellular oxidative 
stress, which can directly affect cell survival via inducing or promoting cancer cell death. Therefore, we speculated 
that this regulatory cell death mechanism might serve as a potential therapeutic target for the clinical treatment 
of renal cancer. To test this, we first performed a pan-cancer analysis based on cuprotosis-related genomic and 
transcriptomic levels to reveal the expression of cuprotosis in cancer. Next, GSVA-clustering analysis was performed 
with data from the Cancer Genome Atlas (TCGA) cohort, and the cohort was divided into three clusters according to 
the gene enrichment levels of cuprotosis marker genes. In addition, we analyzed the potential of using cuprotosis 
in clinical treatment from multiple perspectives, including chemotherapeutic drug susceptibility test, immune target 
inhibition treatment responsiveness, and histone modification. Combining the results of multi-omics analysis, we 
focused on the feasibility of this novel regulatory cell death mechanism in ccRCC treatment and further constructed 
a prognostic model. Finally, we verified our results by integrating the patient’s gene expression information and 
radiomics information. Our study provides new insights into the development and clinical application of targeting 
cuprotosis pathway.
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Introduction

Copper is one of the essential components of 
all living organisms. Copper ions play a critical 
role in maintaining cell homeostasis. However, 
excessive copper concentration can lead to cell 
death [1], a new form of cell death named 
cuproptosis, discovered by Peter’s team in 
March 2022 [2]. Although the mechanisms of 
toxicity of other metals, such as iron, have been 
well established, the mechanism by which cop-
per induces cell death is poorly understood. 
Recent studies have found that cuproptosis, 
unlike other forms of cell death, occurs primar-
ily through the direct binding of copper to the 
fatty acylated component of the Krebs cycle, 

which leads to the aggregation of fatty acyla- 
ted proteins and the subsequent loss of iron-
sulfur clusterin, thereby leading to increased 
protein toxicity and ultimately cell death [1, 2]. 
Nevertheless, comprehensive study, particular-
ly, pan-cancer analysis of cuproptosis will help 
reveal the role of cuproptosis in tumor biology. 
In this study, we analyzed the expression of 
cuproptosis, identified 17 classic key genes 
involved in cuproptosis, and determined the 
expression, prognosis, gene variation and ex- 
pression of cuproptosis in different tumors 
through pan-cancer analysis. We found that 
cuproptosis-related genes were markedly 
down-regulated in renal clear cell carcinoma, 
and the expression of these genes was posi-
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tively correlated with prognosis, suggesting  
the clinical implication of cuproptosis in renal 
cancer.

ccRCC is the predominant histological subtype 
of renal cell carcinoma, accounting for approxi-
mately 75% of renal cell carcinomas [3]. Despite 
considerable clinical efforts, the recurrence 
and the increasing incidence still make ccRCC 
a medical challenge [4]. Therefore, it is essen-
tial to identify new therapeutic targets to 
improve the diagnosis and prognosis of ccRCC 
[5]. Normal cells mainly metabolize glucose 
through the tricarboxylic acid cycle, while tumor 
cell proliferation utilizes glucose mainly throu- 
gh aerobic glycolysis, which is known as the 
Warburg effect. Glycolysis products undergo de 
novo synthesis of fatty acids to form a large 
quantity of fatty acids by the action of impor-
tant fatty acid synthases, such as Fatty Acid 
Synthase (FASN), Stearoyl-CoA Desaturase 1 
(SCD1), Sterol Regulatory Element Binding 
Transcription Factor 1c (SREBP-1c), and Acetyl-
CoA Carboxylase (ACC). These fatty acids pro-
vide energy sources for the proliferation and 
metastasis of renal clear cell carcinoma and 
are also important raw materials to produce 
cell signaling molecules and the synthesis of 
cell membranes.

In addition, fatty acids also participate in the 
epithelial-mesenchymal transition (EMT) pro-
cess of tumor cells by regulating the structure 
of tumor cell membranes, thereby regulating 
tumor invasion and metastasis [6-10]. The 
dependence of cuproptosis on the tricarboxylic 
acid cycle is contradictory to the reported fat 
metabolism in renal cancer. Therefore, under-
standing the specific regulatory mechanism of 
cuproptosis in renal cancer cells is important 
for the treatment of renal cancer. In this study, 
we first performed a various bioinformatics 
study to determine the association of cupropto-
sis with the immune features and the prognosis 
of renal cancer. We further constructed a new 
model of renal cancer prognosis. Finally, given 
the current problem of drug selection and re- 
sistance in patients undergoing targeted thera-
py and immunotherapy, we randomly selected 
the CT images of 75 TCGA samples from The 
Cancer Imaging Archive (TCIA) database [11] 
according to cuproptosis type and constructed 
5 prediction models of different types of cupro-
ptosis with the help of 5 different classifiers by 

checking the ROI (region of Interest) of lesion 
and extracting its image characteristics by 
using pyradiomics [12]. Findings from our study 
will help understand the role of copper-related 
death in renal clear cell carcinoma.

Material and method

Data collection

The clinicopathological information and gene 
expression matrix of ccRCC patients were 
obtained from the TCGA database and the 
ArrayExpress database. ccRCC cell line expres-
sion profiles and anticancer drug data were 
obtained from the Genomics of Drug Sensitivity 
in Cancer (GDSC database). The protein expres-
sion levels of ccRCC patients and the immuno-
histochemical and immunofluorescence results 
of ccRCC cells were obtained from the Clinical 
proteomic tumor analysis consortium (CPTAC) 
database. CT images of TCGA ccRCC cohort 
patients were obtained from the TCIA database 
[11].

Bioinformatics analysis

GSVA algorithm was used to calculate the 
cuprotosis enrichment score of a single sample 
to obtain the cuprotosis-score of each sample 
[18]. Cluster analysis according to the expres-
sion level of the samples was implemented 
using ward.D [19]. In our cluster analysis, we 
relied on cuprotosis-score for clustering, and 
cuprotosis-score was obtained by GSVA algo-
rithm, i.e., each sample or single cell was sort-
ed by gene expression, and then all samples 
were sorted by gene expression. The value of 
the enrichment score was normalized, and 
cuprotosis-score was the result obtained after 
normalizing the GSVA enrichment score of each 
sample, so it represented the expression level 
of each gene in each sample based on the 
cuprotosis gene set, which could objectively 
reflect the difference in the expression level of 
cuprotosis in each sample. Based on the pRRo-
phetic algorithm [20], we constructed a ridge 
regression model to predict drug IC50 based 
on the TCGA database and the expression pro-
file of GDSC cell lines. Using the TIDE algori- 
thm (http://tide.dfci.harvard.edu/) and sub- 
map algorithm from GenePattern (https://
cloud.genepattern.org/gp), we predicted the 
possibility of response to immunotherapy for 
three cuprotosis cluster subtypes. Immune-



Cuprotosis in ccRCC targeted therapy

3949 Am J Cancer Res 2022;12(8):3947-3966

related analysis scores were implemented 
using seven algorithms: CIBERSORT, CIBERS- 
ORT-ABS, ESTIMATE, MCPcounter, XCELL, EPIC 
and TIMER. ssGSEA algorithm was used to 
quantify the degree of immune cell infiltration 
based on TCGA data [21]. T test, univariate COX 
regression, and least absolute shrinkage and 
selection operator (LASSO) regression were 
used to screen genes and image features, and 
multivariate COX regression was used to con-
struct prognostic models. Five machine learn-
ing algorithms including random forest, sup- 
port vector machine, Xgboost, MLP and 
Lightgbm were used to construct a prediction 
model of cuprotosis expression based on image 
features.

* was used to represent p value of all statistical 
analysis results. *: P<0.05; **: P<0.01; ***: 
P<0.001; ****: P<0.0001.

Programming languages, software and major 
software packages (libraries)

R (4.1.1): Survival analysis and COX regression 
analysis: survival, limma, survminer.

Cluster analysis: consensuscluster, hclust.

LASSO regression analysis: glmnet.

Plotting: ggplot2, ggstatsplot, corrplot, vioplot, 
forestplot, rms.

Python (3.9): Obtain image omics features: 
pyradiomics.

Machine learning algorithm: sklearn.

3D slicer: delineate areas of interest (ROI).

Perl: CNV and SNV of cuprotosis-related genes 
in each cancer type were calculated by perl 
language.

Results

Pan-cancer analysis of cuprotosis

Although studies on the cancer-related aspects 
of cuprotosis are limited, there are emerging 
reports on the functional mechanism of cupro-
tosis and the key genes in cuprotosis pathway 
(Figure 1A) [1, 22-24]. Hence, we selected 17 
cuprotosis-related genes from relevant litera-
ture for our current study: CDKN2A, GCSH, 
ATP7B, LIPT1, GLS, PDHA1, DLD, ATP7A, DLST, 

SLC31A1, LIAS, FDX1, DLAT, PDHB, MPC1, 
MTF1, DBT. By analyzing normal and cancer 
cohort samples in the TCGA database, we 
found that mutations and differential expres-
sions of cuprotosis-related genes were widely 
present in a variety of cancers (Figure 1B-E). 
Mutations were particularly evident in some 
high-incidence cancers, such as UCEC, COAD, 
and PCPG. Among the 33 cancers examined, 
except for SKCM, THYM and PAAD, cuprotosis-
related genes were significantly differentially 
expressed between cancer and normal tissues. 
In ccRCC, most of the cuprotosis-related genes 
were expressed at low level. In consistent with 
this, survival landscape analysis of the sampl- 
es showed that the expression of most of the 
cuprotosis-related genes was correlated with 
the favorable prognosis of patients with ccRCC 
(Figure 1G, 1I). These results were also validat-
ed by immunofluorescence staining of different 
cancer cell lines, such as A-431 and A-OS-2, in 
the CPTAC database (Figure 1F). We further 
expressed the influence weights of these gen- 
es in different oncogenic/tumor-suppressor 
pathways by fan graph (Figure 1H). The results 
showed that cuprotosis-related genes affected 
many signaling pathways, especially the RTK, 
EMT, and cell cycle pathways [25-29], which 
were important in cancer cell proliferation and 
metastasis, suggesting that cuprotosis-related 
genes are closely associated with the develop-
ment of cancer.

Clustering analysis of TCGA ccRCC samples 
and anticancer drug sensitivity prediction

Currently, targeted therapy is the main treat-
ment method for ccRCC [30]. Therefore, it is 
essential to determine whether there is a cor-
relation between cuprotosis and various tar-
geted drugs and to predict whether the differ-
ential expression of cuprotosis will affect the 
sensitivity of ccRCC to various anticancer 
drugs. Using the expression levels of cuproto-
sis-related genes in normal cohort samples as 
a reference, we conducted an unsupervised 
clustering analysis and divided TCGA ccRCC 
cohort samples into three clusters based on 
the expression levels (Figure 2A): Cluster1 
(cuprotosis medium expression), Cluster2 
(cuprotosis low expression), and Cluster3 
(cuprotosis high expression) (Figure 2B). The 
violin plot showed that there were noticeable 
differences in gene enrichment among the 
three clusters, and the survival curve also 
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Figure 1. Pan-cancer analysis and molecular mechanism. A. The mechanism of cell death caused by cuprotosis. The massive accumulation of DLAT bound to sulfur 
atoms is the direct cause of cuprotosis. B, C. CNV (copy number variation) representation of Cuprotosis-related genes in 33 cancers. B, C. Represent CNV gain and 
CNV loss, respectively. The color bar on the right represents the CNV gain/loss frenquency, from blue to red corresponding to the degree from low to high. D. The heat 
map shows the expression of cuprotosis-related genes in 33 cancers after taking the logarithm of the ratio of expression levels in cancer and normal tissues. The 
color bar on the right indicates that the color from yellow to green corresponds to the ratio of expression levels from low to high. E. SNV (single nucleotide variation) 
representation of Cuprotosis-related genes in 33 cancers. The color bar on the right represents the SNV frenquency, from blue to red corresponding to the degree 
from low to high. F. Immunofluorescence showed the expression distribution of the proteins corresponding to the three key genes (FDX1, LIAS, DLAT) in curoptosis 
in A-2-OS and A-431 cell lines. G. Combined with the survival information of the samples, the properties of cuprotosis-related genes in 33 cancers were judged, and 
they were classified as protective genes or risk genes. Among them, blue represents protective genes and purple represents risk genes. H. The roles and weights 
of cuprotosis-related genes in various classical oncogenic pathways, blue represents activation and red represents inhibition. I. Survival curves of 12 curoptosis-
related genes with statistical significance in ccRCC based on their expression levels and the clinical survival information of the samples.
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showed obvious differences in the survival of 
the samples in these three clusters (Figure 2C, 
2D). These results validated our clustering 
analysis; hence, we performed subsequent  
correlation prediction analysis of cancer treat-
ment on these three clusters. Using the two 
most distinct clusters Cluster2 and Cluster3, 
we integrated their clinicopathological featur- 
es and genetic features in a heatmaps. As 
shown in Figure 2E, the degree of tumor inva-
sion (T) and tumor stage in cluster3 (cuprotosis 
high expression) was significantly lower than 
those in cluster2 (cuprotosis low expression) 
(P<0.05). Meanwhile, we found that FDX1, 
DLAT, SLC31A1 and other cuprotosis-related 
genes were highly expressed in cluster3, which 
confirmed the authenticity of our cluster analy-
sis and further indicated the correlation of 
cuprotosis with the inhibition of ccRCC and a 
better prognosis. The susceptibility test results 
of 12 different anticancer drugs in the three 
clusters were presented by boxplots. The data 
showed that Cluster2 and 3 had significantly 
different sensitivity to these drugs, and the 
results of most anti-cancer drugs showed a 
trend of change in the three clusters (Figure 
2F). Furthermore, based on the previous sur-
vival analysis of the three clustered samples, 
we speculated that the differential expression 
of cuprotosis would affect the susceptibility to 
most targeted drugs. Indeed, there were signifi-
cant differences in the sensitivity to the two 
commonly used drugs for renal cancer: axitinib 
[31] and sorafenib [32]. However, interestingly, 
the differences were not uniform. The samples 
with high cuprotosis expression were signifi-
cantly more resistant to Axitinib, while they 
were less resistant to sorafenib. Similar differ-
ences were also observed to the rest of the 
common clinical drugs. It was noted that met-
formin [33], a NOVA drug with anticancer func-
tion, showed weak sensitivity to the samples 
with high expression of cupprotosis.

Clustering analysis of TCGA ccRCC samples 
and immunotherapy prediction analysis

Immunotherapy has been widely applied to 
ccRCC patients now, and the immune check-
point inhibition therapy targeting programmed 
cell death protein 1/programmed cell death 
protein ligand 1 (PD-1/PD-L1) and cytotoxic 
t-lymphocyte-associated protein 4 (CTLA4)  
has become the standard treatment of ccRCC 
[34-36]. However, not all patients are sensitive 
to immunotherapy, and many ccRCC patients 
do not benefit from immunotherapy. Therefore, 
it is significant to stratify patients who will ben-
efit from immunotherapy in clinical practice 
[37]. Hence, we sought to determine whether 
the difference in the expression of cuprotosis 
could be used for this purpose. 

We first analyzed the degree of immune infiltra-
tion in ccRCC samples with differential expres-
sion of cuprotosis, and evaluated whether 
cuprotosis-related genes could be used to pre-
dict the outcomes of immunotherapy [38, 39]. 
We used the ssGSEA algorithm to obtain the 
expression levels of the marker genes of 24 
immune cells in the TCGA ccRCC cohort sam-
ples and calculated the immune infiltration 
level of each sample. Finally, we obtained the 
correlation coefficient between the cuprotosis 
and the level of each immune infiltration indica-
tor. The results were displayed in a balloon plot 
(Figure 3A). It showed that cuprotosis was  
negatively correlated with most of the immune 
infiltration indicators. Among them, Parain- 
flammation and T-cell-co.stimulation, the two 
most prominent indicators, were selected, and 
their correlations with cuprotosis were inde- 
pendently displayed in scatter plots. Figure 3B, 
3C showed the clear negative correlation 
between these indicators and cuprotosis. 
Furthermore, we screened the genes involved 
in inflammatory factors in the samples of the 

Figure 2. Cluster analysis and GDSC database. A. TCGA sample cohort was subjected to unsupervised clustering 
analysis based on the expression of cuprotosis-related genes, and the influence of the expression levels of cupro-
tosis-related genes on different clinical treatment hotspots in ccRCC was analyzed according to the three clusters 
obtained. The analysis was carried out from various perspectives such as classic drugs, classic oncogenes, immune 
infiltration and inflammatory factors. B. The heatmap shows the results of unsupervised clustering analysis, with red 
for up-regulated mRNA expression, grey for no difference in mRNA, and blue for down-regulated mRNA. The resulting 
three clusters are represented in red (no-change), green (inactive) and black (active), respectively. C. The violin plot 
shows the gene enrichment score for the three clusters. D. Survival curves for three cluster. E. The heatmap displays 
the gene expression of two clusters representing cuprotosis-active and cuprotosis-inactive, combined with tumor 
TNM stage (except for N), grade, age and survival. F. Based on the drug susceptibility test in GDSC, ridge regression 
was used to predict the drug susceptibility of three clusters to various classic anticancer drugs. Boxplots showing 
the prediction results.
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TCGA ccRCC cohort and used a heat map to 
represent their differential expression levels 
compared to the normal cohort samples 
according to the three clusters. We selected 
seven key inflammatory factors in immunother-
apy: IgG, HCK, LCK, MHC-II, STAT1, Interferon, 
B7-CD28 and TNF, as metagenes to cluster  
the genes in the TCGA database samples 
(Figure 3D). The results showed that higher 
expression of inflammatory factors was associ-

ated with higher immune score and lower 
cuprotosis score and was more likely to benefit 
from PD-1 and CTLA4 treatment.

Finally, we divided the TCGA ccRCC cohort  
samples into two groups: cuprotpsis-high and 
cuprotpsis-low, by using the best cut-off  
value according to the order of cuprotpsis 
score. Seven immune scoring algorithms, 
including TIMER, CIBERSORT, CIBERSORT-ABS, 

Figure 3. Immune infiltration analysis. A-C. Bubble plot shows the correlation between each immune infiltration in-
dex and cuprotosis. The two most correlated immune infiltration indicators: Parainflammation and T-cell-co.stimula-
tion, and the correlation with cuprotosis is displayed in the form of scatter plot. D. Heatmap shows the gene expres-
sion levels of 8 inflammatory factors in different clusters, as well as the predictive results of 3 immune algorithm 
scores and responses to immune checkpoint inhibition therapy. The 8 inflammatory factors were: IgG, HCK, MHC-II, 
LCK, STAT1, Interferon, B7-CD28, TNF. E. Heatmap for immune responses based on different algorithms among the 
high and low-risk groups. Different algorithms are represented by different colored area bars. 
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QUANTISEQ, MCPCOUNTER, XCELL, and EPIC, 
were used to calculate and score the correla-
tion between these samples and immune cells. 
The results obtained by these seven algorithms 
were integrated and displayed together with a 
heatmap (Figure 3E). The results suggested 
that higher cuprotosis score reflected a more 
negative correlation. 

Clustering analysis of TCGA ccRCC samples 
and oncogenes and histone acetylation

We used a heatmap to show the expression of 
gene families associated with the canonical 
oncogene of ccRCC and histone acetylation 
related genes in different clusters (Figure 4B). 
We found that many canonical ccRCC onco-
genes were altered along with the alteration in 
cuprotosis expression. For example, VHL [40-
42] and mTOR [28, 43, 44], the two important 
molecules in oncogenic pathways in ccRCC, 
exhibited a significantly increased expression 
level with the increase of cuprotosis (Cluster2-
Cluster3). In contrast, the expression level of 
MYC [45] and TP53 [46-48], the genes closely 
related to lipid metabolism in renal cancer, 
decreased significantly with the increased 
expression level of cuprotosis. Sirtuin (SIRT) 
and Histone Deacetylase (HDAC), the enzymes 
that regulate the acetylation and deacetylation 
of histone and non-histone targets [49], are 
known to play key roles in many physiological 
and pathological processes, including tissue 
homeostasis, maintenance of genomic sta- 
bility, apoptosis, autophagy, senescence and 
tumorigenesis [50]. However, the function of 
SIRT and HDAC as tumor suppressors or tumor 
promoters is still not clear, and the favored 
notion is that both of them play a role in tumor 
tissues by affecting the balance between oxida-
tive stress and DNA damage repair [51, 52]. 
Given that the functional mechanism of cupro-
tosis is closely related to oxidative stress  
in tumors, it is necessary to explore if the 
expression of SIRT family and HDAC family is 
correlated with the differential expression of 
cuprotosis. 

Construction of prognostic models

After integrating the survival information of 
TCGA ccRCC cohort samples, we constructed a 
prognostic model based on cuprotosis-related 
gene expression in ccRCC patients (Figure 4A). 
Utilizing hazard analysis of the differential  
gene expression between the normal and the 
ccRCC cohorts, the P values and hazard ratio  
of 17 cuprotosis-related genes were calculated 

(Figure 4C, 4D). The genes with P>0.05 were 
censored, and the remaining genes were ana-
lyzed by LASSO regression. At the end, 6 genes 
were utilized to construct the prognosis model 
(Figure 4E, 4F). The risk score was the sum  
of the characteristic coefficients obtained by 
multiplying the expression of each gene in the 
sample by LASSO regression. The ccRCC cohort 
samples were divided into high-risk group and 
low-risk group after using the best cut-off value 
of risk score according to the algorithm (Figure 
4G-I). Then, we used univariate COX regression 
and multivariate COX regression to construct 
the models for the samples in these two gro- 
ups, respectively. The expression level of cupro-
tosis and the clinicopathological characteris-
tics of the patients were integrated into the 
model construction. We found no significant 
difference in tumor TNM staging characteris-
tics in the multivariate COX regression model 
(Figure 4J, 4K). Finally, we constructed a prog-
nostic model by integrating cuprotosis and the 
clinical characteristics of patients. The predict-
ed AUC value of the model’s 10-year survival 
rate was 0.729, which was acceptable for prac-
tical application (Figure 4G). The results were 
presented by nomogram (Figure 4L).

Validation with external data set

We validated our models with ArrayExpress and 
CPTAC databases at the transcriptional and 
protein levels, respectively (Figure 5A). Using 
the expression and survival information of 
Cuprotosis-related genes in samples from 
ArrayExpress, the survival curve was created 
based on the risk score and FDX1 (Figure 5B, 
5C). The survival curves showed that the prog-
nosis of the high-risk group was significantly 
worse than that of the low-risk group, and the 
prognosis of the FDX1 high-expression group 
was significantly better than that of the low-
expression group, which was consistent with 
our analysis with the TCGA cohort. The immu-
nohistochemical results of cancer and para-
cancerous samples obtained from the CPTAC 
database indicated that the protein level of 
FDX1 was significantly lower in cancer samples 
than in paracancerous tissues, while CDKN2A 
protein level showed the opposite pattern 
(Figure 5D-F). Then the correlation-coefficient 
matrix of all genes are shown, and we also show 
the correlation between FDX1 and other genes. 
The results shows that there is a certain collin-
earity between these genes, and it is neces-
sary to reduce the number of genes included in 
the model (Figure 5G, 5H).
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Finally, by using the radiomics analysis, we 
evaluated the predictive value of the expres-
sion of cuprotosis in patients by using 75 sam-
ples with perfect CT image data corresponding 
to the TCGA samples selected from TCIA. We 
classified these 75 samples according to the 
results of cluster analysis and extracted ra- 
diomic features. After screening, the informa-
tion of 10 radiomics features was obtained 
(Figure 5I-L). Five machine learning classifiers 
were used to build the prediction model, and 
the prediction model by the four classifier  
algorithms, Support Vector Machine (SVM), 
LightGBM, Random Forest (RF), and Xgboost 
showed better performance. The AUCs were all 
greater than 0.7 (Figure 5M-Q), suggesting the 
feasibility of using CT imaging characteristics 
and the gene expression of Cuprotosis to guide 
treatment option.

Tumor mutational burden

Tumor mutational burden (TMB) was defined  
as the total number of somatic gene coding 
errors, base substitutions, and gene insertion 
or deletion errors detected per megabase [36]. 
TMB is a new marker for evaluating the thera-
peutic effect of PD-1/PD-L1 and CTLA-4, and 
its effect has been confirmed in the treatment 
of colorectal cancer with mismatch repair defi-
ciency [53, 54] (Figure 6). Since PD-1/PD-L1 
inhibitors have been widely used in the treat-
ment of ccRCC [35, 37, 38], it will be significant 
to apply TMB to evaluate the benefit of ccRCC 
patients receiving PD-1/PD-L1 therapy. After 
calculating the TMB value for each sample, we 
found that the TMB value was higher in the 
high-risk group than in the low-risk group. Next, 
we divided the high- and low-risk groups into 4 
subgroups according to the TMB value, and the 

survival curve showed that the prognosis of  
the high TMB group was significantly better 
than that of the low TMB group, suggesting that 
TMB value was significantly correlated with the 
prognosis of ccRCC patients. Hence, combining 
cuprotosis and TMB as indicators to evaluate 
the benefit of PD-1/PD-L1 inhibitor therapy in 
patients will be more precise and reliable. We 
displayed the TMB down to the mutational pro-
file of a single gene as a heatmap, and the 
results showed that, in addition to the frequent-
ly mutated genes VHL and PBRM1 in renal  
cancer, mutations in SETD2 and TTN were  
common too. Recent studies have shown that 
SETD2 induces the down-regulation of FBW7 
expression and promotes NFAT1 degradation  
in sunitinib-resistant RCC, suggesting that 
SETD2 contributes to the regulation of the 
immune response in RCC [55]. TNN mutation 
has been found in the immune microenviron-
ment of bladder cancer and colon cancer and is 
closely related to prognosis [56, 57]. Since 
there are only few studies about TTN mutation 
in the treatment of ccRCC, our results provide a 
new insight into the immunotherapy of ccRCC. 

Discussion

With the advancement in the understanding of 
renal cancer, the clinical treatment of ccRCC 
has developed from radiotherapy and chemo-
therapy, which have poor sensitivity and speci-
ficity, to targeted therapy, immunotherapy and 
other more precision treatments [31, 32, 40, 
58]. These therapies inhibit the proliferation 
and metastasis of ccRCC cancer cells by affect-
ing the expression levels of genes in signaling 
pathways involved in proliferation, metastasis, 
death, and the prognosis of ccRCC. How to reg-
ulate the expression of key genes in these 

Figure 4. Construction of clinical prognostic model. A. A cuprotosis-related prognostic model of ccRCC patients was 
constructed by combining the gene expression data in the TCGA cohort samples with the clinical and pathological 
characteristics data for analysis. B. The heat map shows the gene expression of canonical oncogenes of ccRCC, 
HDAC family, and SIRT family in the three clustered samples, respectively. C. Comparison of the expression of 
cuprotosis-related genes between cancer tissue cohorts and normal tissue cohorts in the TCGA database. D. The 
forest plot shows the Hazard ratio value and P value of each cuprotosis-related gene after COX regression analy-
sis. E, F. 6 genes were screened from 17 cuprotosis-related genes by LASSO regression as risk-score features for 
building survival prediction models. G. ROC curve of the 10-year survival prediction model constructed based on 
cuprotosis-related genes and features of clinical and pathological. H. Survival curves of high-risk and low-risk groups 
adjudicated with the median as the cutoff. I. The heat map shows the comparison of the clinical characteristics, 
pathological characteristics, and expression levels of the six genes screened by LASSO regression between the 
high-risk group and the low-risk group. J. The Hazard ratio and P value of each feature used to construct the survival 
prediction model were calculated by univariate COX regression. K. The Hazard ratio and P value of each feature used 
to construct the survival prediction model were calculated by multivariate COX regression. L. Display the resulting 
predictive model with a Nomogram.
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Figure 5. External data validation. A. Two external data, Arrayexpress and CPTAC, were used to verify the analysis results of the TCGA database, and the CT images 
in the TCIA image database were collected to find suitable imaging features, and a variety of model building methods in machine learning were used to construct 
the prediction model of expression subtypes of cuprotosis. B, C. Using the Arrayexpress database to verify the results of the TCGA database from two levels: the 
macroscopic-cuprotosis-related gene set and the microscopic-FDX1 single gene. Differences in results are shown with survival curves. D. The CPTAC database was 
used to verify the protein expression of FDX1 and CDKN2A in tumor tissue and normal tissue from the proteomic level. The images show the immunohistochemical 
(IHC) results of cancer tissue and normal tissue. E, F. The protein expression levels in the CPTAC database were retrieved from UALCAN to show the comparison 
between tumor tissue and normal tissue. G, H. Correlations among the 17 cuprotosis-related genes are shown in the heatmap. The correlation of FDX1 with other 
cuprotosis-related genes is additionally represented. I, J. Feature screening using LASSO regression to get 10 radiomics features. K. Heatmap showing the cor-
relation between 10 radiomics features filtered by t-test and LASSO regression. L. The weights of the 10 radiomics features, corresponding from 1 to 10: 1.origi-
nal_shape_Sphericity, 2.orginal_firstorder_10Percentile, 3.original_firstorder_Skewness, 4.log-sigma-1-0-mm-3D_gldm_SmallDependenceLowGrayLevelEmphasis, 
5.log-sigma-3-0-mm-3D_glcm_lmc1, 6.log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformity, 7.log-sigma-3-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis, 
8.log-sigma-4-0-mm-3D_glszm_SizeZoneNonUniformityNormalized, 9.wavelet-HHL_glcm_ClusterShade, 10.wavelet-HHH_glrlm_shortRunEmphasis. M-Q. Based on 
10 selected radiomics features, five machine learning strategies of RF, SVM, MLP, XGboost and lightgbm are used to build a prediction model.
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Figure 6. Tumor burden mutation. A. Comparison of tumor burden mutation based on high and low risk groups. B. Scatter plots show the correlation between tu-
mor mutations burden and riskscore. C. Survival curve of sample grouping after comprehensive consideration of tumor mutation burden and riskscore. D, E. Two 
heatmaps show tumor mutational burden in high and low risk groups, respectively. F. Figure shows eigenvalues of tumor mutational burden for SETD2 and TTN.
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important pathways has become the focus of 
clinical treatment of ccRCC.

Regulatory cell death (RCD) is a gene-regulated 
mode of cell death [59]. Based on the differ-
ences in signaling pathways, RCD can be clas-
sified into different types, including apoptosis, 
the first discovered RCD, necroptosis, autopha-
gy, ferroptosis, pyroptosis, and cuprotosis [60-
62]. Numerous studies have shown that the 
excessive accumulation of copper ions can pro-
duce cytotoxicity, and increasing the intracellu-
lar copper ion concentration can achieve spe-
cific killing effect in cancer cells [63]. Cupro- 
tosis is a newly discovered form of regulatory 
cell death caused by the excessive accumula-
tion of copper ions, thereby leading to the 
destruction of certain mitochondrial metabolic 
enzymes and cell death [2]. Specifically, if the 
lipidylation level of TCA-related enzymes is 
increased, the modified proteins will directly 
bind to copper ion and aggregate, leading to 
the loss of Fe-S cluster-containing proteins  
and the activation of HSP70, which further 
results in acute proteolytic toxic stress [64]. In 
addition, it is also found that FDX1, a key regu-
latory gene for cuprotosis, is associated with 
the synthesis of Fe-S cluster-containing pro-
teins [65]. Hence, from our and other studies, it 
is evident that the occurrence and progression 
of kidney cancer are closely related to the re- 
programming of lipid metabolism [10, 66-68]. 
Given the close relationship between cupro- 
tosis and TCA, we proposed that cuprotosis 
could be a potential target for the treatment of 
kidney cancer, which warrants further investi-
gations. Several lines of evidence support this 
notion; for example, significant changes in cop-
per content in the serum and the tumor tissues 
of cancer patients have been reported. In addi-
tion to FDX1 regulation of cuprotosis, copper 
ions is also related to vascular endothelial 
growth factor (VEGF) and fibroblast growth fac-
tor (FGF1) [69, 70]. Furthermore, a recent clini-
cal trial showed that copper ion was related to 
the stability of HIF-1, an important regulatory 
gene in the metabolism of ccRCC [71]. Con- 
sidering the importance of warburg effect, our 
findings of the link between copper ions and 
TCA further highlighted the potential clinical 
application of cuprotosis [72]. 

Since the role of cuprotosis in cancer is still not 
fully understood, we performed a pan-cancer 
analysis of cuprotosis-related genes based on 

the gene expression data of 33 cancer samples 
from TCGA. The results indicated that cuproto-
sis played a diverse role in various cancers 
(Figure 1). For example, cuprotosis was a risk 
factor in liver cancer and prostate cancer, while 
it had a risk and protective effect in mesotheli-
oma and adrenal cortical cancer. In ccRCC, we 
found that most cuprotosis related genes were 
differentially expressed compared to normal 
tissues, and that cuprotosis had protection role 
in most cases. These results are exciting and 
suggest the potential of cuprotosis in ccRCC 
targeted therapy. To further categorize the sub-
types of differential expression of cuprotosis in 
TCGA ccRCC cohort, we applied unsupervised 
cluster analysis. Compared with normal cohort, 
the ccRCC cohort was divided into three clus-
ters based on the expression level of cuproto-
sis. Statistical analysis indicated that there 
were significant differences among these 
clusters. 

Since many drugs have been developed for the 
clinical treatment of ccRCC, we analyzed the 
effect of differential expression of cuprotosis 
on the sensitivity of ccRCC samples to these 
common drugs. We selected 12 drugs from 
GDSC database that are first-line or second-line 
drugs in the treatment of renal cancer [73].  
The IC50 prediction of these drugs showed that 
the IC50 of almost all drugs was significant dif-
ferent between the high and low cuprotosis 
expression groups, and most drugs had the 
same trend of either increasing or decreasing 
in IC50 values in each group. This result sug-
gested that the efficacy of all the commonly 
used ccRCC drugs might be related to cuproto-
sis and that the differential expression of 
cuprotosis could be used to guide the treat-
ment selection. Therefore, we further explored 
the prediction value of cuprotosis-related gene 
expression combined with current highly recog-
nized treatment plans in the treatment of 
ccRCC patients. Since PD-1/PD-L1 inhibitors 
are the new immunotherapeutic approach 
widely used in the treatment of ccRCC [38], we 
examined whether cuprotosis could affect the 
outcomes of immunotherapy in ccRCC. Using 
ssGSEA algorithm [74], we analyzed the degree 
of immune infiltration of each ccRCC sample 
and calculated the immune score of samples 
with different cuprotosis expression levels as 
well as the responsiveness and benefits of 
PD-1/CTLA4. The correlation analysis results 
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showed that most immune infiltrating cells 
were inversely correlated with cuprotosis 
expression, and the response to PD-1 treat-
ment in the low cuprotosis expression group 
was significantly better than that in the high 
cuprotosis expression group, while CTLA-4 
showed the opposite pattern, suggesting that 
cuprotosis could guide the use of immunother-
apy in patients with ccRCC, and that the com- 
bination of cuprotosis-targeted therapy and 
immunotherapy had clinical therapeutic value. 
To further explore the functional mechanism of 
cuprotosis in ccRCC, we investigated the rela-
tionship between cuprotosis and oncogene  
and histone modification. We found that many 
oncogenes, such as VHL, EGFR, MYC and P53, 
were expressed differentially in different cupro-
tosis expression groups [41, 48, 75]. Moreover, 
the two major histone acetylation and deacet-
ylatation enzymes, SIRT and HDAC, also has a 
significant correlation with the differential 
expression of cuprotosis. Hence, our study pro-
vided rationale for targeting cuprotosis-related 
genes in clinical treatment. 

Using the patient survival information in the 
TCGA database, we constructed a cuprotosis-
related genes-based prognostic model. We fur-
ther integrated the patient’s age, stage, grade, 
and pathological information into the model 
construction. After feature screening by uni- 
variate and multivariate COX regression and 
LASSO regression, we constructed a patient 
prognosis model by logistic regression. Com- 
pared with other prognostic model construc-
tion methods, our prognostic model had many 
advantages and innovations. First, LASSO 
regression was used to force the gene coeffi-
cient with low correlation to 0, which reduced 
the dimension of data matrix, avoided the 
occurrence of dimension disaster, and reduced 
the algorithm burden of model construction in 
the later stage. Second, dimensionality reduc-
tion helped remove noise from sample data, 
reduced overfitting, and increased the authen-
ticity of the model; meanwhile, it also provided 
valuable information. The genes screened out 
could be considered as the key genes for the 
function of cuprotosis in ccRCC. Of the six 
genes identified, FDX1 and LIAS have been 
shown to be important in the cuprotosis signal-
ing pathway. Another gene, metal-regulated 
transcription factor 1 (MTF1), is a conserved 
metal-binding transcription factor in eukary-

otes that binds to conserved DNA motifs and is 
known as a metal reaction element [76]. MTF1 
responds to changes in the body’s metal con-
tent, protects cells from oxidative and hypoxia 
stress, and is essential for vertebrate embry-
onic development. MTF1 has been shown to be 
down-regulated in ferroptosis in cancer, elimi-
nate the serine/threonine kinase ATM (mutat- 
ed in ataxia-telangiatosis) regulation of iron 
regulatory elements, and re-sensitize cells to 
iron apoptosis, which helps the targeted thera-
py of cancer cells [77]. Therefore, we speculat-
ed that MTF1 might play a similar role in cupro-
tosis, and that MTF1 might serve as a potential 
therapeutic target. The other three genes, DBT, 
CDKN2A and MPC1, have not been reported to 
have effects on copper metabolism or in the 
proliferation and metastasis of ccRCC cells or 
other cancer cells. Further verification is need-
ed. Moreover, by calculating the correlation 
among genes, we found that these 6 genes 
were highly independent, which was conducive 
to the construction of the model. The 10-year 
AUC area value of the test set and the verifica-
tion results of the external database Array- 
Express and CPTAC suggested that our model 
had good reliability and could be used in the 
survival prediction of ccRCC patients.

Sequencing of targeted gene expression and 
mutations (CNV, SNV, et al.) of patients and 
evaluating the response and benefit of patients 
receiving certain targeted drugs or immune 
drugs are currently the important standard in 
guiding therapy options for ccRCC and other 
cancer patients [78]. However, due to the high 
demand in technology and the high cost of this 
method, its application is limited in developing 
countries. Therefore, we aimed to find alterna-
tives of genetic testing to remedy the above 
limitations. We focused our study on radiomics. 
After examining the ccRCC related radio- 
mics data, we used multiple prediction models 
based on machine learning to determine the 
cuprotosis expression level in patients by 
searching for the differential features of CT 
images of samples with differential expression 
of cuprotosis [79, 80]. Our initial goal was to 
have prediction models with high predictive 
power (AUC>0.9); however, the results were not 
ideal, and only the Random Forest model barely 
reached about 0.8 AUC. Prediction of cuproto-
sis expression based on CT images of patients 
was one of our attempts, and the research of 
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Radiomics was not in-depth. Although the 
results did not reach the ideal level, we hope  
to find more methods to replace or combine 
genetic testing to obtain relatively accurate 
treatment guidelines for patients at a lower 
cost. In addition to radiomics, we also evaluat-
ed the effect of PD-1 inhibitor therapy by calcu-
lating TMB levels in ccRCC samples. TMB gen-
erally refers to the number of non-synonymous 
mutations of somatic cells in a specific region, 
and its evaluation results are affected by sam-
ple quality, tested genome size, and bioinfor-
mation analysis methods. TMB value can re- 
flect the potential of tumor neoantigen produc-
tion in tumor and is closely related to DNA 
repair defects [81]. Studies have shown lower 
survival in patients with higher TMB, but the 
opposite is true in patients treated with im- 
mune checkpoint suppression as patients with 
higher TMB generally have longer survival [82]. 
In our study, the expression level and coeffi-
cient of cuprotosis-related genes screened by 
LASSO regression were also calculated, and 
the risk-score of each sample was calculated. 
Next, the optimal cut-off value was used to 
divide all samples into high-risk group and low-
risk group. Based on the risk score of these two 
groups and the level of TMB, we divided the 
high-risk group and the low-risk group into four 
groups: high risk - high TMB, high risk - low 
TMB, low risk - high TMB and low risk - low TMB. 
By analyzing their survival, we found that TMB 
was indeed correlated with the prognosis of 
patients, and the prognosis of patients with 
high TMB was poor. In addition, the combina-
tion of TMB value and cuprotosis expression 
level could better distinguish different sub-
groups, indicating the response of cuprotosis to 
immune checkpoint inhibition therapy and the 
ability to predict the prognosis of patients. 
Currently, cuprotosis has not been used to 
determine the benefit of immune checkpoint 
inhibition in ccRCC patients; hence, our re- 
sults may provide a rationale for further 
investigation.

Our results have been proven to be reliable 
through multiple verifications, such as verifica-
tion by protein expression level, external gene 
set, and radiomic data. However, this study 
lacks the support from experimental data. 
Since the mechanism of cuprotosis has not 
been fully determined, more experimental 
results will be important to validate the bioin-
formatics analysis results. Further investiga-

tion on the new RCD mechanism of cuprotosis 
will be critical for the clinical application of 
cuprotosis in the treatment of cancer or other 
common diseases.
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PDHB, Pyruvate dehydrogenase E1 subunit 
beta; GLS, Glutaminase; MPC1, Mitochondrial 
pyruvate carrier 1; LIAS, Lipoic acid syntheta- 
se; ATP7A, ATPase copper transporting alpha; 
DLD, Dihydrolipoamide Dehydrogenase; LIPT1, 
Lipoyltransferase 1; DLAT, Dihydrolipoamide 
S-acetyltransferase; ATP7B, ATPase copper 
transporting beta; DLST, Dihydrolipoamide 
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Mesothelioma; OV, Ovarian serous cystadeno-
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