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Abstract: Triple-negative breast cancer (TNBC) is highly heterogeneous in prognosis. The current TNM staging sys-
tem shows its limitation in accurate risk evaluation. Immune response and immune cell abundances in the tumor 
immune microenvironment (TIME) are critical for cancer progression, clinical outcome and therapeutic response in 
TNBC. However, there is a lack of an effective risk model based on the overall transcriptional alterations relevant to 
different immune responses. In this study, multiple bioinformatics and statistical approaches were used to develop 
an immune-related risk (IRR) signature based on the differentially expressed genes between the immune-active 
and immune-inactive samples. The IRR model showed great performance in risk stratification, immune landscape 
evaluation and immunotherapy response prediction. Compared with the low-IRR group, the high-IRR group exhibited 
a poorer prognosis, less cytotoxic cell infiltration, higher M2/M1 ratio and upregulated glycolytic activity. Moreover, 
the high-IRR group showed more resistance to immunotherapy than the low-IRR group. Our study reveals that the 
IRR model may be a promising tool to help clinicians assess risk and optimize treatment for TNBC patients.
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Introduction

Triple-negative breast cancer (TNBC) is charac-
terized by a lack of estrogen receptor (ER), pro-
gesterone receptor (PR) and human epidermal 
growth factor receptor 2 (HER2) expression, 
accounting for 10-15% of all breast cancer sub-
types [1]. TNBC is highly heterogeneous and 
presents higher genetic instability, frequent 
copy number alternation and complex structur-
al rearrangement [2]. Compared with the other 
subtypes, TNBC is more aggressive and prone 
to early relapse and distant metastasis. To 
date, TNBC mainly depends on adjuvant che-
motherapy due to the lack of therapeutic tar-
gets; thus, its prognosis is poorer than that of 
the other subtypes.

It is widely accepted that the American Joint 
Committee on Cancer (AJCC) tumor-node-
metastasis (TNM) classification provides the 

standard guideline to stratify cancer patients 
into different risks. However, significant differ-
ences in the prognosis of TNBC patients within 
the same pathological TNM stage are still 
observed, suggesting the limitations of the TNM 
staging system [3]. Immune activation and the 
tumor immune microenvironment (TIME) in 
TNBC play a considerable role in TNBC develop-
ment. Many published works have confirmed 
the prognostic value of the immune response 
and immune cell infiltration for TNBC [4, 5]. For 
example, abundant tumor-infiltrating lympho-
cytes (TILs) are associated with a good progno-
sis in TNBC. Recently, high-throughput sequ- 
encing technologies have been developing rap-
idly, followed by the emergence of many 
machine learning methods relevant to immune 
cell quantification [6]. Some studies attempt  
to construct prognostic models using progno-
sis-related immune cell abundances quantified 
by immunohistochemistry, immunofluorescen- 

http://www.ajcr.us


Risk model for TNBC patients

3914 Am J Cancer Res 2022;12(8):3913-3931

ce or machine algorithms [7-9]. Some have 
developed prognostic signatures based on pre-
defined gene sets of cancer-related hallmarks 
[10-12]. Nevertheless, none of these models 
was developed based on the overall molecular 
alterations relevant to immune responses that 
are associated with distinct prognoses.

With the increase in immunotherapy trials for 
TNBC in recent years, it has been proven that 
TNBC patients can benefit from immune check-
point inhibitor (ICI) treatment [13-15]. However, 
the exploration of effective biomarkers for pre-
dicting the efficacy of immunotherapy remains 
a challenge. Due to a relatively low tumor muta-
tion burden (TMB) and low incidence of mis-
match repair, PD-L1 expression is the only rec-
ognized and extensively used biomarker for 
immunotherapy in TNBC [16]. PD-L1 has some 
limitations as well. For instance, some PD-L1-
negative patients also show a response to ICI 
therapy, but some PD-L1-positive patients do 
not [17]. Therefore, it is necessary to explore 
more novel predictors to identify TNBC pa- 
tients who have the potential to benefit from 
immunotherapy.

In this study, we divided TNBC patients into 
immune-active and immune-inactive groups 
based on immune response-associated cells 
and pathways, and then we constructed a gene 
signature based on the different genes in the 
two groups. The predictive power of this risk 
model was validated in external GEO datasets. 
We also investigated the differences in TIME 
components, transcriptomes, genomes and 
therapeutic responses between the high- and 
low-risk groups. We also examined the perfor-
mance of the model for immunotherapeutic 
efficacy prediction. We believe that this model 
can provide clinicians with a novel reference for 
prognosis evaluation and clinical decision- 
making.

Materials and methods

Data collection

The genomic data, transcriptome profiles and 
clinical information from the Molecular Taxo- 
nomy of Breast Cancer International Consor- 
tium (METABRIC) database were downloaded 
from https://www.cbioportal.org. Normalized 
gene expression profiles of GSE103091, GSE- 
21653 and GSE20685 were obtained from the 

Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). We extr- 
acted TNBC patients from all breast cancer 
patients in the METABRIC (n=205), GSE103- 
091 (n=107) and GSE21653 (n=73) cohorts 
according to immunohistochemical (IHC) stain-
ing of ER, PR and HER2. However, for the 
GSE20685 cohort, basal-like patients (n=49) 
were identified by PAM50 subtype analysis due 
to the lack of IHC information. In addition, 
genes with an expression level of 0 in more 
than 30% of the samples in all of the above 
cohorts were excluded, and only patients with  
a follow-up time of more than one month were 
included in the study. The METABRIC dataset 
was used as the training cohort, and three GEO 
datasets were used for external validation. The 
GSE106977 cohort that received neoadjuvant 
chemotherapy was used to assess the associa-
tion between the risk score and chemotherapy 
response. The TNBC cohort (GSE194040),  
metastatic melanoma cohorts (GSE35640, 
GSE78220) and metastatic urothelial carcino-
ma cohort (IMvigor210) were used to examine 
the distribution of the risk score in non-respond-
ers and responders to immunotherapy.

Evaluation of immune cell infiltration

To estimate the abundances of immune cells, 
we calculated the ESTIMATE score, stromal 
score, immune score and tumor purity by the 
ESTIMATE algorithm provided in the R package 
“estimate” [18]. Furthermore, we quantified the 
relative abundances of immune and stromal 
cell subsets using three algorithms named 
TIMER [19], xCell [20] and CIBERSORT [21]. The 
CYT score, which is an RNA-based measure of 
immune cytolytic activity in tumors, is defined 
as the geometric mean of two key cytolytic 
effectors, granzyme A (GZMA) and perforin 
(PRF1) [22].

Establishment of the immune-related risk (IRR) 
score

We referred to the published articles to estab-
lish a set of 29 immune signatures containing 
680 genes, including immune cell subsets, 
immune-related pathways and functions (Table 
S1) [23, 24]. Single-sample gene set enrich-
ment analysis (ssGSEA) was performed to esti-
mate enrichment scores in each sample using 
the R package “GSVA” [25]. Meanwhile, unsu-
pervised hierarchical clustering was conducted 
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to classify the samples into two subgroups. The 
differentially expressed genes (DEGs) were 
identified by the R package “limma” according 
to the cutoff of |Log2FC| > 0.5 and p value < 
0.01. Subsequently, to screen out reliable prog-
nostic markers, candidate genes with a p value 
< 0.05 in univariate Cox regression were input 
into the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis, and 
tenfold cross-validation was performed to avoid 
overfitting. Finally, 12 robust genes were identi-
fied to construct an immune-related risk (IRR) 
score based on their normalized expression 
values and LASSO Cox coefficients. The calcu-
lation formula was as follows:

IRR = ∑ Coefficient (mRNAi) × Expression (mRNAi)

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analy-
ses were conducted with the “enrichGO” and 
“enrichKEGG” functions in the R package “clus-
terProfiler”. Significantly enriched functions or 
pathways (p value < 0.05) were visualized by 
the R package “GOplot”. For GSEA, hallmark 
gene sets were retrieved from the Molecular 
Signatures Database (MSigDB), and enrich-
ment levels of corresponding gene sets were 
evaluated by the “GSEA” function provided in 
the R package “clusterProfiler”. ssGSEA was 
achieved using the “ssGSEA” method imple-
mented in the R package “GSVA” based on the 
gene sets obtained from the MSigDB or publicly 
published articles.

Analysis of genomic data

Somatic mutation data of the METABRIC sam-
ples were organized into mutation annotation 
format (MAF) files and analyzed using the R 
package “maftools”. Significantly mutated ge- 
nes (p value < 0.05) between the high- and low-
IRR groups were identified and visualized by the 
“forestPlot” and “onOncoplot” functions in the 
“maftools” package. Tumor mutation burden 
(TMB) was defined as the total number of non-
synonymous somatic mutations per million 
bases, with 38 Mb as the number of variants or 
estimate of the exome size.

HRD score

Allelic imbalance extending to the telomere 
(ntAI) was defined as the number of regions 

with allelic imbalance longer than 11 Mb that 
extend to one of the subtelomeres but do not 
cross the centromere. Loss of heterozygosity 
(LOH) was defined as the number of LOH 
regions shorter than the whole chromosome 
and longer than 15 Mb. Large-scale state tran-
sition (LST) was defined as chromosome break-
points between adjacent regions longer than 
10 Mb after filtering shorter than 3 Mb. The 
homologous recombination deficiency (HRD) 
score was calculated as the sum of ntAI, LST, 
and LOH scores [26].

Estimation of therapeutic sensitivity

Immunotherapeutic response was inferred with 
the Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithm (http://tide.dfci.harvard.edu), 
immunophenoscore (IPS) calculation and sub-
map analysis (https://cloud.genepattern.org/
gp) [27-29]. Normally, a lower TIDE score and a 
higher IPS score are positively correlated with 
an active immune response. The response to 
chemotherapy drugs in the METABRIC samples 
was predicted using the public Genomics of 
Drug Sensitivity in Cancer (GDSC) database 
(https://www. cancerrxgene.org). The half max-
imal inhibitory concentration (IC50) of the anti-
cancer drug was estimated by the R package 
“oncoPredict”.

Statistical analysis

Kaplan-Meier plots were applied to describe 
survival curves, and the log-rank test was used 
to determine significance. Univariate and multi-
variate Cox regression analyses were conduct-
ed to calculate the hazard ratio (HR) and iden-
tify significant predictors associated with sur-
vival. Time-dependent receiver operating char-
acteristic (tROC) analysis was used to examine 
the predictive capacity of variables via the R 
package “timeROC”. A scoring nomogram was 
generated, and a calibration curve was plotted 
using the R package “rms”. Statistical differ-
ences in the distribution of continuous vari-
ables between two groups were examined by 
the Wilcoxon test, and those of three or more 
groups were compared by the Kruskal-Wallis 
test. Correlation analysis was conducted with 
Spearman’s correlation. The association be- 
tween the IRR score and therapy response was 
examined using the chi-square test. A two-sid-
ed p value < 0.05 was considered statistically 
significant. All statistical analyses were per-
formed using R software (version 4.1.1).
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Results

Immune profiling identified immune-active and 
immune-inactive clusters

The workflow diagram illustrating the design of 
our study is shown in Figure S1. We first evalu-
ated the immune cell infiltration of each TNBC 
sample by ssGSEA according to the 29 im- 
mune signatures. Then, we performed unsu-
pervised hierarchical clustering based on the 
Euclidean distance of the 29 signature scores 
in 205 TNBC patients. Finally, all the samples 
were divided into two clusters. Cluster 1 was 
characterized by low immune cell infiltration 
and a weak immune response, so we treated it 
as an immune-inactive group. Cluster 2 was 
characterized by high immune cell infiltration 
and a relatively strong immune response, and 
we classified it as an immune-active group 
(Figure 1A). Compared with the immune-active 
group, the immune-inactive group exhibited 
lower immune, stromal and ESTIMATE scores 
and higher tumor purity (Figure 1B). Moreover, 
Kaplan-Meier analyses indicated that the im- 
mune-inactive group had a significantly worse 
prognosis in terms of overall survival (OS), 
breast cancer-specific survival (BCSS), and 
relapse-free survival (RFS) (Figure S2A-C) than 
the immune-active group.

The IRR signature was constructed based on 
12 robust prognostic genes

To explore immune response-associated fac-
tors, we identified 640 DEGs between the 
immune-active and immune-inactive groups, 
including 557 upregulated genes and 83  
downregulated genes in the immune-active 
group (Figure 1C). GO analysis demonstrated 
that upregulated DEGs were mainly enriched in 
immune-related biological processes. However, 
downregulated DEGs were enriched in some 
oncogenic biological processes involved in 
keratinocyte differentiation, cell-cell junctions 
and embryonic organ development (Figure 
S2D). Similarly, KEGG enrichment analysis also 
indicated the upregulation of immune response 
pathways and the downregulation of carcino-
genesis-related pathways (Figure S2E). Sub- 
sequently, 243 candidate DEGs significantly 
associated with prognosis in the univariate Cox 
regression analysis were input into the LASSO 
Cox regression analysis. Tenfold cross-valida-
tion was applied to overcome overfitting. With 

the λ value of the minimum criteria selected,  
12 genes (CA9, C7orf68, PARM1, MATK, PLCL2, 
HLA-DRB4, RAMP3, TMEM176A, COBL, STAM- 
BPL1, KLRD1, PHF15) with corresponding 
LASSO coefficients were incorporated into the 
IRR signature construction (Figure S3A, S3B). 
Therefore, the final risk model was as follows: 
IRR score = 0.18546 × CA9 + 0.05457 × 
C7orf68 - 0.05881 × PARM1 - 0.14190 × MATK 
- 0.19422 × PLCL2 - 0.19703 × HLA-DRB4 - 
0.39867 × RAMP3 - 0.54037 × TMEM176A - 
0.69667 × COBL - 0.77352 × STAMBPL1 - 
0.78868 × KLRD1 - 0.95601 × PHF15. The 
distribution of LASSO coefficients of the 12 
genes was displayed using a lollipop plot (Fi- 
gure 1D). Correlation analyses demonstrated 
that these 12 genes were strongly correlated 
with each other (Figure 1E). Furthermore, we 
divided the 205 METABRIC samples into high- 
and low-IRR groups according to the median 
IRR score. The expression profile of the 12 
genes indicated that CA9 and C7orf68 were 
more highly expressed in the high-IRR group, 
whereas the others presented higher expres-
sion in the low-IRR group (Figure 1F). Principal 
component analysis (PCA) showed that pa- 
tients in different risk groups were separated 
into two distinct clusters using the 12 hub 
genes in the METABRIC and three external GEO 
datasets (Figure S3C-F), which confirmed the 
uniqueness and discriminative capacity of the 
12 hub genes for TNBC patients.

The IRR score served as an indicator of prog-
nosis in the METABRIC and three GEO datas-
ets

To further evaluate the prognostic value of the 
IRR score, we investigated the survival differ-
ences in the high- and low-IRR groups using the 
Kaplan-Meier method and analyzed the distri-
bution of the IRR score in different clinical sub-
groups. The Sankey diagram illustrated the flow 
from the two immune clusters to different risk 
groups and vital survival statuses (Figure S4A). 
Moreover, we observed that the IRR Z score 
was significantly elevated in patients who died 
during follow-up and in patients with higher 
TNM stages (Figure 2A). Kaplan-Meier analy-
ses demonstrated that a higher IRR score indi-
cated poorer OS, BCSS, and RFS in the 
METABRIC dataset (Figure 2B-D). In the sub-
group analyses concerning age and stage for 
the METABRIC cohort, patients with higher IRR 
scores also exhibited worse OS than those with 
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Figure 1. Construction of the immune-related risk gene signature. A. Heatmap depicting the enrichment levels of 
immune cell types and immune-associated pathways in the immune-active and immune-inactive clusters. B. Box-
plots showing differences in immune, stromal and ESTIMATE scores and tumor purity between the immune-active 
and immune-inactive groups. C. Volcano plot of DEGs in the immune-active group versus the immune-inactive group 
(|Log2FC| > 0.5; p value < 0.01). D. Lollipop plot showing the LASSO coefficients of 12 robust markers included in 
the prognostic model. E. Correlation of the 12 hub genes. Red and blue lines represent the positive and negative 
correlations between genes, respectively. The thicker the line is, the stronger the correlation. F. Normalized expres-
sion profile of the 12 hub genes in the high- and low-IRR groups.
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lower IRR scores (Figure S4B-F). The distribu-
tion of the IRR score in patients with different 
clinical outcomes and its prognostic value were 
externally validated in three independent GEO 
cohorts (Figure S5A-G). The areas under the 
ROC curves of the IRR score for 3-year, 5-year, 
and 10-year survival were 0.68, 0.70, and 0.72, 
respectively (Figure 2E). In the external GEO 
cohorts, the areas under the ROC curves of the 
IRR score ranged from approximately 0.6 to 
0.8, indicating good prognostic efficiency of the 
IRR score (Figure S5H-J). In addition, univariate 
and multivariate Cox regression analyses dem-
onstrated that the IRR score was an indepen-
dent prognostic factor for the METABRIC and 
three GEO datasets (Figure 2F; Table S2). Then, 
we built a nomogram based on the IRR score 
together with age and stage for predicting 3-, 
5-, and 10-year OS (Figure 2G). In the calibra-
tion analysis, the nomogram performance was 
extremely close to that of an ideal model, sug-
gesting a high accuracy of prediction (Figure 
2H). Decision curve analysis (DCA) showed that 
the nomogram had a potential clinical applica-
tion with more net benefit than either the treat-
none scheme or the treat-all scheme (Figure 
2I). Furthermore, tROC analysis showed that 
compared with age and stage, the nomogram 
presented much more accuracy and stability 
for 3-, 5-, and 10-year OS prediction (Figure 2J).

High-IRR patients had TIME characteristics 
distinct from those of low-IRR patients

To further investigate the underlying mecha-
nisms leading to the different outcomes in the 
low- and high-IRR groups, we analyzed the 
association between TIME components and 
IRR score through a series of algorithms. As 
illustrated in Figure 3A, the IRR score exhibited 
a negative correlation with the stromal, immune 
and cytolytic activity (CYT) scores but a positive 
correlation with tumor purity, which indicated 
less immune activation in the high-IRR group. 
We then compared the differences in the pro-
portions of immune cell types inferred by the 
TIMER, CIBERSORT and xCell algorithms be- 
tween the high- and low-IRR groups. The 
CIBERSORT results showed that macrophage 
cells generally occupied the largest proportion 
of all immune cell types in the METABRIC sam-
ples (Figure S6A). In addition, many immune 
cell types were discriminately distributed 
between the high- and low-IRR groups. The low-
IRR group had more immune cell infiltration 

than the high-IRR group, especially effector T 
cells, NK cells and DCs (Figures 3B, 3C, S6B). 
The IRR score was negatively correlated with 
CD8 T cells and active NK cells, which are the 
main effector cells that kill tumors in the TIME 
(Figure 3D). Remarkably, the M2 macrophage/
(M2 macrophage + M1 macrophage) ratio of 
the high-IRR group was significantly higher than 
that of the low-IRR group (Figure 3E), indicating 
an M2 phenotype in the high-IRR group, but we 
did not observe a significant difference in the 
Th2/(Th1 + Th2) ratio between the two groups 
(Figure 3F). Moreover, among these hub genes, 
COBL showed only a weakly positive correlation 
with M1 macrophages and follicular helper T 
cells and a weakly negative correlation with 
activated memory CD4 T cells. CA9 and C7orf- 
68 were mainly positively correlated with mac-
rophages, activated mast cells and neutrophils 
but negatively correlated with CD4/CD8 T cells. 
Overall, the other genes mainly exhibited a 
moderately negative correlation with M0/M2 
macrophages and Treg cells but a positive cor-
relation with effector T cells (Figure 3G). The 
correlation analysis provided additional proof 
for the protective or risk roles of these robust 
genes in TNBC progression. Taken together, 
this evidence demonstrated significant differ-
ences in intrinsic tumor immunogenicity and 
TIME components between the two risk groups.

Upregulation of the glycolysis pathway and 
suppression of innate immunity might contrib-
ute to the suppressive TIME

Tumor immunogenicity, oncogenic pathway 
activity and altered immune checkpoint expres-
sion are commonly acknowledged causes of 
immune escape. To clarify the intrinsic immune 
escape mechanisms associated with IRR, we 
compared the differences between the high- 
and low-IRR groups in these aspects. We found 
that the IRR score showed significantly positive 
correlations with the ntAI, LOH and HRD scores 
but not with the LST score or TMB. Although the 
significance level of the correlation between 
TMB and IRR score did not reach the standard 
(p value < 0.05), the TMB level in the high-IRR 
group was significantly higher than that in the 
low-IRR group (Figure 4A). Subsequently, we 
performed GSVA based on the KEGG gene sets 
in the METABRIC and three GEO cohorts. The 
volcano plots indicated that most pathways 
were upregulated in the low-IRR groups (Figure 
S7A). Finally, an intersection including eighteen 
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Figure 2. Evaluation and validation of the prognostic significance of the IRR signature. (A) Distribution of the IRR 
score in different risk, grade and stage subgroups. (B-D) Kaplan-Meier survival curves of OS (B), BCSS (C) and RFS 
(D) in the high- and low-IRR groups. (E) ROC curves of the IRR score with regard to 3-, 5- and 10-year OS. (F) Forest 
plots of univariate and multivariate Cox regression analyses in the METABRIC and GEO datasets. (G) A nomogram 
was established for predicting the probabilities of 3-, 5- and 10-year OS. (H) Calibration curves for assessing the 
agreement between nomogram-predicted 3-, 5- and 10-year OS and observed OS. (I) DCA curves for evaluating the 
potential of nomogram application clinically at 3, 5 and 10 years. (J) Time-dependent AUC value for the nomogram, 
stage and age in the METABRIC dataset.
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upregulated pathways in the low-IRR groups of 
the four datasets was identified using a Venn 
diagram (Figure S7B). Most of the eighteen 
pathways were involved in immune activation 

and response (Figure S7C, S7D). The GSEA 
results also validated the discovery in the GSVA 
that many immune-related pathways were 
notably upregulated in the low-IRR group 

Figure 3. The landscape of TIME components and their correlations with IRR. (A) Association of the IRR score with 
the immune score, stromal score, tumor purity and CYT score in the METABRIC cohort. (B) Heatmap displaying 
immune and stromal cell infiltration levels in the high- and low-IRR groups. (C) Comparison of the estimated propor-
tions of 22 immune cell types in the high- and low-IRR groups. (D) Association of the IRR score with CD8 T cells (left) 
and activated NK cells (right). (E, F) Comparison of the ratio of M2 macrophages/(M1 + M2 macrophages) (E) and 
Th2 cells/(Th1 + Th2) (F) in the high- and low-IRR groups. (G) Correlation matrix of robust prognostic genes and the 
abundance of 22 immune cell types estimated by the CIBERSORT algorithm.
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(Figure 4B). Some pathways involved in the cell 
cycle, DNA replication and steroid hormone bio-

synthesis were upregulated in the high-IRR 
group (Figure 4C). Likewise, GSEA according to 

Figure 4. Underlying immune escape mechanisms in high-IRR TNBC patients. (A) Correlation analyses for ntAI, LOH, 
LST, HRD and TMB with the IRR score. (B, C) GSEA showed KEGG pathways enriched in the low-IRR (B) and high-IRR 
groups (C). (D) Ridge plots showing HALLMARK signature differences identified by GSEA between the low-IRR and 
high-IRR groups. (E) GSEA showed that the glycolysis pathway was enriched in the high-IRR group versus the low-
IRR group. (F) Comparison of the expression levels of glycolytic pathway-associated genes in the high- and low-IRR 
groups. (G-J) The expression differences in cGAS-STING pathway-associated genes in the high- and low-IRR groups. 
(K) Correlation analysis of the IRR score with the expression levels of immune checkpoint and HLA family genes.
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the HALLMARK gene sets showed that immune-
related pathways were more enriched in the 
low-IRR group. Meanwhile, in the high-IRR 
group, we observed more enrichment in onco-
genic pathways, such as epithelial-mesenchy-
mal transition, MYC, hypoxia, G2/M checkpoint 
and glycolysis pathways (Figure 4D). As shown 
in Figure 4E, the glycolysis pathway was upreg-
ulated in the high-IRR group. We then examined 
the expression levels of glycolysis-associated 
genes in different risk groups. The half-violin 
plot indicated that all the genes showed signifi-
cantly higher mRNA levels in the high-IRR group 
than in the low-IRR group (Figure 4F). In addi-
tion, the Hippo pathway and Notch pathway 
were significantly more enriched in the high-IRR 
group than in the low-IRR group of the METAB- 
RIC dataset (Figure S8A, S8B). Considering that 
the initiation and maintenance of the T-cell 
response are closely associated with the in- 
nate immune response, we further examined 
the key initiation molecules and downstream 
effector factors involved in innate immunity. As 
shown in the boxplots (Figure 4G-J), the ex- 
pression levels of cGAS were elevated in the 
low-IRR group in all cohorts, and STING mRNA 
levels in the low-IRR groups were also higher 
than those in the high-IRR groups of the three 
GEO cohorts. CCL5 and CXCL10, typical effec-
tor factors in innate immunity, were significant-
ly upregulated in the low-IRR groups compared 
with those in the high-IRR groups in three GEO 
cohorts. Furthermore, we analyzed the correla-
tions of the IRR score with immune checkpo- 
ints and HLA family molecules (Figure 4K). For 
immune checkpoints, only CD276, TNFSF15 
and BTNL2 showed a positive correlation with 
the IRR score. CD276 and TNFSF15 expression 
levels were higher in the high-IRR group than in 
the low-IRR group. Most of the other immune 
checkpoints were negatively correlated with 
the IRR score and upregulated in the low-IRR 
group (Figure S9A). Most of the HLA family mol-
ecules related to antigen presentation were 
negatively correlated with the IRR score and 
upregulated in the low-IRR group (Figure S9B). 
These results indicated that the high IRR sam-
ples showed lower immune-related pathway 
enrichment, more oncogenic pathway upregula-
tion and lack of innate immunity activation, to 
some extent leading to low immune infiltration 
and an immunosuppressive microenviron- 
ment.

Somatic mutation landscapes of high-IRR and 
low-IRR patients

To explore the genomic alterations in different 
risk groups, we analyzed somatic mutations in 
the METABRIC samples. The Maftools analysis 
results demonstrated a relatively higher mutant 
frequency in the high-IRR samples than in the 
low-IRR samples. The top twenty highly mutat-
ed genes in the high- and low-IRR groups were 
displayed using waterfall plots (Figure 5A, 5B). 
TP53, which is frequently mutated in TNBC, 
was the most highly mutated gene in both 
groups. Next, we observed twelve co-occur-
rence events in the high-IRR group and nine 
entirely different co-occurrence events in the 
low-IRR group. Interestingly, there was only one 
unique mutually exclusive case in the high-IRR 
group (PIK3CA-TP53), which might indicate 
their competitive effects and selective advan-
tages in keeping one mutation between them 
(Figure 5C). With a threshold of p value < 0.05, 
the top five differentially mutated genes were 
HERC2, TP53, PIK3R1, ARID1A and KMT2C, 
but only HERC2 and TP53 showed significantly 
higher mutation frequencies in the low-IRR 
group (Figure 5D, 5E). Since there was only one 
sample with the HERC2 mutation in the low-IRR 
group, we could not compare the difference in 
samples with HERC2 mutation in the two 
groups in detail. Next, we investigated TP53 
mutation, the most frequently mutated and sig-
nificantly more mutated gene in the high-IRR 
group. We created a lollipop plot to depict the 
mutation sites for TP53 (Figure 5F). Compared 
with TP53-wild-type samples, the IRR score 
was significantly elevated in TP53-mutant sam-
ples (Figure 5G). Furthermore, we found that 
for the TP53-mutant patients, the high-IRR 
group had a poorer prognosis than the low-IRR 
group (Figure 5H), suggesting an excellent dis-
criminatory ability of the IRR score with the 
existence of TP53 mutation.

Patients with a low IRR showed more sensitiv-
ity to adjuvant therapy and were more likely to 
benefit from immunotherapy

Drug sensitivities forecasted by the GDSC data-
base indicated that the estimated IC50 indexes 
of seven drugs, including docetaxel, epirubicin, 
gemcitabine, cisplatin, olaparib, 5’-flurouracil, 
and cyclophosphamide, showed a significant 
increase in the high-IRR group compared with 
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the low-IRR group (Figure S10A). Meanwhile, as 
illustrated in the GSEA results, the low-IRR 
samples showed a greater response to radia-
tion and less doxorubicin resistance than  
the high-IRR samples (Figure S10B, S10C). 
Moreover, we analyzed the distribution of IRR 
scores in the subgroups with pathological com-
plete response (pCR) and residual disease (RD) 

of 88 TNBC patients treated with neoadjuvant 
anthracycline and/or taxane chemotherapy 
from the GSE106977 dataset. We observed 
that the IRR score in the RD samples was sig-
nificantly elevated compared with that in the 
pCR samples (Figure S10D). Patients with pCR 
accounted for a larger proportion in the low-IRR 
group than in the high-IRR group (Figure S10E). 

Figure 5. The landscape of genomic alterations in different IRR groups in the METABRIC cohort. (A, B) Waterfall 
plots illustrating the distribution of the top 20 highly mutated genes in the low-IRR (A) and high-IRR (B) groups. (C) 
Co-occurrence and coexclusive mutations in the low-IRR and high-IRR groups. (D, E) Top 5 discriminately mutated 
genes between the high- and low-IRR patients. (F) Lollipop chart showing the mutation sites of the TP53 protein. 
(G) Comparison of IRR scores in the TP53-mutant and TP53-wild-type groups. (H) Kaplan-Meier analysis of OS in 
patients with mutant TP53 stratified by IRR score.
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Additionally, we stratified the METABRIC pa- 
tients with or without adjuvant treatment by the 
IRR score. Kaplan-Meier analyses demonstrat-
ed that a high IRR indicated poorer OS, BCSS, 
and RFS, regardless of whether the patients 
received chemotherapy/radiotherapy (Figure 
S11).

Then, to investigate the predictive performance 
of the IRR score for immunotherapy in TNBC, 
we compared the IRR scores of 29 TNBC 
patients who accepted paclitaxel + pembroli-
zumab from the I-SPY2 clinical trial (GSE- 
194040). Patients with complete response 
(CR) to anti-PD-1 therapy showed a tendency 
for lower IRR score (Figure 6A). The proportion 
of patients with CR was higher in the low-IRR 
group of the TNBC cohort (Figure 6B). The area 
under the curve (AUC) value of the IRR score  
for predicting immunotherapy response was 
0.684. The sensitivity, specificity and accuracy 
were 84.2%, 50% and 76.2%, respectively 
(Figure 6C). In addition, in many solid tumors, 
including TNBC, excluded and ignored immuno-
phenotypes are associated with poor response 
to immunotherapy. Therefore, we also com-
pared the IRR scores of different immunophe-
notypes of TNBC and found that the inflamed 
subtype exhibited a lower IRR score (Figure 
6D). The proportion of the inflamed subtype 
was also increased in the low-IRR group com-
pared with the high-IRR group (Figure 6E).  
To further test the potency of the IRR score for 
the prediction of immunotherapy response, we 
analyzed the METABRIC dataset using the IPS 
score and TIDE algorithm. Generally, a higher 
IPS score and lower TIDE score indicated a 
greater possibility of benefiting from immuno-
therapy. The results showed that the low-IRR 
group exhibited a higher IPS score, suggesting 
a better response to ICI therapy (Figure 6F). As 
shown in the correlation analysis, the IRR score 
was negatively correlated with the major histo-
compatibility complex (MHC), effector cell (EC), 
and IPS scores but positively correlated with 
the suppressor cell (SC) score (Figure 6G). 
Additionally, the TIDE results indicated that the 
IRR score showed a positive correlation with 
the TIDE and exclusion scores and a negative 
correlation with the dysfunction score (Figure 
S12A). Four potential responders to immuno-
therapy predicted by the TIDE algorithm were 
all included in the low-IRR group. Compared 
with the non-responders, the IRR score of 

responders was significantly decreased (Figure 
S12B). Next, we estimated the response possi-
bility to anti-CTLA-4 and anti-PD1 immunother-
apy in the high- and low-IRR patients with a sub-
map method. After Bonferroni correlation, only 
patients in the low-IRR group prospectively 
benefited from anti-PD1 therapy (Figure 6H). 
Finally, we chose three cohorts, GSE35640 
(metastatic melanoma patients treated with 
recombinant MAGE-A3 antigen combined with 
an immunostimulant), GSE78220 (metastatic 
melanoma treated with PD1 inhibitor), and 
IMvigor210 (metastatic urothelial carcinoma 
treated with PD-L1 inhibitor), to test the predic-
tive efficacy in other cancer types. For meta-
static melanoma patients, we observed a sig-
nificantly higher IRR score in the non-respond-
ers versus responders (Figure 6I). In addition, 
responders occupied a larger proportion than 
non-responders in the low-IRR group, and high-
IRR patients tended to have a poorer prognosis 
than low-IRR patients (Figure 6J, 6K). In the 
IMvigor210 cohort, there was no difference in 
responses to anti-PD-L1 therapy between the 
high-IRR and low-IRR groups, but the Kaplan-
Meier plot still demonstrated that a higher  
IRR score indicated poorer OS (Figure 6L). 
Collectively, these discoveries revealed that  
the IRR score was a promising indicator for 
responses to immunotherapy.

In summary, the IRR score is a promising mark-
er for characterizing tumor immune pheno-
types, predicting response to ICI treatment and 
assessing the clinical outcomes for TNBC 
patients (Figure 7).

Discussion

Some studies have constructed risk models 
according to the biological characteristics of 
TNBC, such as autophagy, RNA binding protein, 
N6 methylation and protein-protein interaction 
networks [30-33]. With the development of 
basic and translational research, the heteroge-
neity of the TME of breast cancer has been 
increasingly understood. Emerging evidence 
has shown that TNBC has higher immune cell 
infiltration and correlates with prognosis. In our 
study, we constructed an IRR signature based 
on the DEGs between the “inflammatory/
active” and “desert/inactive” tumors and vali-
dated it in different cohorts. The IRR model is a 
prognostic factor independent of TNM staging, 
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Figure 6. Predictive value of the IRR score for immunotherapeutic response. A. The box plot displayed that the 
patients with CR tended to have lower IRR score. B. Bar graph showing the proportions of different responses to 
paclitaxel + pembrolizumab in the high- and low-IRR groups of TNBC patients. C. Left panel: confusion matrices of 
immunotherapy responses and results predicted by the IRR score in TNBC patients. Right panel: ROC curve of the 
IRR score in predicting immunotherapy response. D. The box plot shows IRR scores of different immunophenotypes 
in the GSE177043 cohort. E. Bar graph showing the proportions of immunophenotypes in the high- and low-IRR 
groups of the GSE177043 cohort. F. Violin plot showing the distribution of IPS scores in the high- and low-IRR groups 
of the METABRIC cohort. G. Correlation between the IRR score and MHC, EC, SC, and IPS scores in the METABRIC 
cohort. H. Submap analysis indicated the response sensitivities to anti-PD-1 therapy and anti-CTLA therapy in the 
high- and low-IRR patients of the METABRIC cohort. I. The box plot showed that patients with better responses to 
recombinant MAGE-A3 antigen exhibited lower IRR scores in the GSE35640 cohort. J. Bar graph showing the pro-
portions of different responses to recombinant MAGE-A3 antigen in the high- and low-IRR groups of the GSE35640 
cohort. K. Bar graph showing the proportions of different responses to PD-1 inhibitors in the high- and low-IRR 
groups of the GSE78220 cohort. Kaplan-Meier survival curves of OS in the high- and low-IRR groups. L. Bar graph 
showing the proportions of different responses to PD-1 inhibitors in the high- and low-IRR groups of the IMvigor210 
cohort. Kaplan-Meier survival curves of OS in the high- and low-IRR groups. NR, non-responder; R, responder.
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which can provide additional prognostic infor-
mation for TNBC patients. TNBC patients with  
a high IRR exhibited an inhibitory TIME and 
highly activated oncogenic pathways, which 
may result in a worse prognosis and more re- 
sistance to chemotherapy, radiotherapy and 
immunotherapy. We revealed that the suppres-
sive TIME in high-IRR patients might be caused 
by the hypoxic environment and upregulation of 
glycolytic activity. In addition, we evaluated the 
prediction potential of the IRR model for immu-
notherapy response. Our findings demonstrat-
ed that the IRR model could be used to evalu-
ate the prognosis of TNBC patients and guide 
clinical decision-making, including immuno-
therapy-related choices.

Genes involved in the IRR model show positive 
or negative correlations with the immune 
response. Among the 12 genes, CA9 and 
C7orf68 are risk factors, whereas the other 10 
genes are protective factors. Carbonic anhy-
drase 9 (CA9) is a transmembrane enzyme that 
plays a crucial role in pH regulation in the 
hypoxic TME [34]. Numerous studies have vali-
dated the importance of CA9 for promoting 
tumor progression and metastasis, including  
in breast cancer [35, 36]. C7orf68, also named 
hypoxia-inducible lipid droplet associated (HIL- 

secreted by CD4 T cells, CTL activity can be 
stimulated effectively [40, 41]. In addition, 
megakaryocyte-associated tyrosine kinase 
(MATK), encoding a protein containing an amino 
acid sequence similar to that of CSK tyrosine 
kinase, is less expressed in human colorectal 
cancer, neuroblastoma and glioblastoma [42, 
43]. Importantly, MATK downregulates HER2-
mediated Src kinase activation by interacting 
with HER2 via the SH2 domain of CHK and acts 
as an inhibitory growth regulator in human 
breast cancer [44]. Moreover, MATK can reduce 
CXCR4 expression through YY1, leading to im- 
pairment of CXCR4/CXCL12-mediated breast 
cancer cell motility and migration [45]. For the 
other genes included in this model, their under-
lying mechanisms for regulating the malignant 
behavior of TNBC as well as their involvement 
within the TIME remain unclear; thus, further 
investigation is needed.

In our study, patients with a high IRR presented 
higher glycolytic activity, less T-cell infiltration, 
and a higher M2/M1 ratio. Generally, tumor 
cells tend to induce an inhibitory TIME that ben-
efits immune evasion and tolerance [46, 47]. 
Multiple studies have confirmed that metabolic 
reprogramming is an important hallmark of 
tumors and is closely associated with the TIME. 

Figure 7. The schema chart displaying the characteristics of high- and low-
IRR patients. Compared with the high-IRR patients, low-IRR patients are 
characterized by intact antigen presentation, higher CTL levels, lower M2/
M1 ratios and more stimulatory chemokines. Low-IRR patients also tend to 
have a better ICI response and favorable prognosis.

PDA), can increase hypoxic 
lipid droplet formation, associ-
ate with the glycolysis pathway 
and enhance tumor immuno-
suppression status [37, 38]. 
High expression of these two 
genes in high-IRR patients 
reflects that hypoxia is one of 
the critical causes in the im- 
munosuppressive microenvi-
ronment for promoting TNBC 
progression. HLA-DRB4, one 
of the protective factors, en- 
codes the beta chain of MHC 
class II, which plays a central 
role in antigen presentation 
between antigen presenting 
cells (APCs) and CD4 T cells 
[39]. Intact antigen presenta-
tion between APCs and CD4 T 
cells maintains CTL activation 
when it is restricted by unsuc-
cessful recognition of CTLs 
with tumor cells. With the aux-
iliary function of chemokines 
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Tumor cells are prone to exhibit enhanced gly-
colytic activity under aerobic or hypoxic condi-
tions [48, 49]. High glucose consumption in 
tumor cells limits the nutrient sources required 
by effector cells and results in a low pH environ-
ment that is harmful to antitumor effectors 
such as T and NK cells [50, 51]. In addition, gly-
colysis upregulation influences the differen- 
tiation direction of tumor-associated macro-
phages (TAMs) [52]. For example, the glycolytic 
metabolite lactate can stabilize HIF-1α-me- 
diated VEGF expression, activate GPR132, and 
prompt TAMs to differentiate into the protumor 
M2 type, finally promoting breast cancer cell 
metastasis [53]. Moreover, we also found that 
the Hippo pathway was highly upregulated in 
the high-IRR group compared with the low-IRR 
group. Recent studies have indicated that some 
oncogenic pathways play regulatory roles in 
cancer cell metabolism, such as the Hippo sig-
naling pathway, whose activation and upregula-
tion of its downstream effectors YAP and TAZ 
promote the glycolytic pathway to increase glu-
cose uptake, lactate production and cell growth 
[54]. Thus, it can be inferred that the Hippo 
pathway is critical for the immunosuppressive 
microenvironment in the high-IRR group. Im- 
portantly, Roberta et al. found that inhibition of 
tumor glycolysis is beneficial to the therapeutic 
efficacy of CTLA-4 blockade [55]. Gong et al. 
reported that lactate dehydrogenase inhibitor 
therapy could sensitize TNBC with high glyco-
lytic activity to ICIs [56]. Therefore, we pro-
posed that ameliorating the hypoxic environ-
ment and inhibiting glycolytic activity have the 
potential to overcome the suppressive TIME 
and improve the immunotherapeutic response 
in high-IRR patients.

Generally, a higher TMB is associated with a 
higher neoantigen load, which is more likely to 
trigger T-cell infiltration and benefit from immu-
notherapy. Unexpectedly, in our study, although 
patients in the high-IRR group had a higher 
TMB than those in the low-IRR group, they 
showed lower immunogenicity and CTL infiltra-
tion. Similarly, one study indicated that TMB 
does not correlate with CD8 T-cell infiltration 
and immunotherapy efficacy in some tumor 
types, such as breast cancer and prostate can-
cer [57]. Denis et al. reported that 5% of TMB-
low patients can respond well to ICIs, and > 
50% of TMB-high patients do not respond  
[58]. These discoveries demonstrate that the 

immune response in the human body is a com-
plex process. Multiple other variables in the 
immune system, such as antigen presentation 
and TIME characteristics, should also be taken 
into account in a composite model.

Finally, we assessed the performance of the 
IRR model for predicting immunotherapeutic 
response. The IRR score exhibited a favorable 
performance for predicting responses to anti-
PD-1 therapy in 29 TNBC patients, which indi-
cated that the IRR was a promising predictor 
for immunotherapy. In addition, we used the 
TIDE algorithm and the submap analysis to esti-
mate the predictive efficiency for response to 
ICI therapy in different risk groups. The TIDE 
score is a combined evaluation of two kinds of 
tumor immune escape mechanisms. One is 
that cytotoxic T-cell infiltration is high in some 
tumors, but T cells remain in a dysfunctional 
state. The other is that T cells are excluded due 
to immunosuppressive factors in tumor tissue 
[27]. Interestingly, we observed a negative cor-
relation between the IRR score and dysfunc- 
tion score but a positive correlation between 
the IRR score and exclusion score. Therefore, 
we speculate that tumorigenesis in the low- 
IRR group is mainly associated with dysfunc-
tion of cytotoxic T cells, which indicates a favor-
able response to ICI treatment. In the high-IRR 
group, tumorigenesis is mainly induced by the 
exclusion of T cells and an immunosuppressive 
microenvironment. More interestingly, in the 
submap analysis, only patients in the low-IRR 
group showed promising responses to anti-
PD-1 therapy after Bonferroni correlation. 
These analyses suggested that low-IRR TNBC 
patients are more sensitive to ICI therapy  
than patients with high IRR. Our model may be 
a useful tool to help clinicians conduct 
immunotherapies.

Although our model is robust in evaluating 
prognosis and predicting therapy response for 
TNBC patients, it should be emphasized that 
because our study is retrospective and relative-
ly small-scale, further validation in larger pro-
spective randomized trials is needed. Thus, 
future investigations should be performed to 
validate its predictive efficacy and compare it 
with other biomarkers.

In conclusion, we established a robust model 
for immune risk evaluation and immunothera-
peutic response prediction. The IRR model 
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could be an effective tool to identify TNBC 
patients who may benefit from immunotherapy 
and facilitate the optimization of therapeutic 
regimens. Our findings also suggested that ICIs 
combined with glycolytic inhibitors may be a 
potential treatment strategy for high-IRR TNBC 
patients.
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Table S1. 29 Immune signatures and their contained genes
Cell types/Pathways Genes
ADCS CD83, LAMP3, CCL1

APC CO inhibition C10orf54, CD274, LGALS9, PDCD1LG2, PVRL3

APC CO stimulation CD40, CD58, CD70, ICOSLG, SLAMF1, TNFSF14, TNFSF15, TNFSF18, TNFSF4, TNFSF8, TNFSF9

B cells BACH2, BANK1, BLK, BTLA, CD79A, CD79B, FCRL1, FCRL3, HVCN1, RALGPS2

CCR CCL16, TPO, TGFBR2, CXCL2, CCL14, TGFBR3, IL11RA, CCL11, IL4I1, IL33, CXCL12, CXCL10, BMPER, BMP8A, 
CXCL11, IL21R, IL17B, TNFRSF9, ILF2, CX3CR1, CCR8, TNFSF12, CSF3, TNFSF4, BMP3, CX3CL1, BMP5, CXCR2,  
TNFRSF10D, BMP2, CXCL14, CCL28, CXCL3, BMP6, CCL21, CXCL9, CCL23, IL6, TNFRSF18, IL17RD, IL17D, IL27, 
CCL7, IL1R1, CXCR4, CXCR2P1, TGFB1I1, IFNGR1, IL9R, IL1RAPL1, IL11, CSF1, IL20RA, IL25, TNFRSF4, IL18, 
ILF3, CCL20, TNFRSF12A, IL6ST, CXCL13, IL12B, TNFRSF8, IL6R, BMPR2, IFNE, IL1RAPL2, IL3RA, BMP4, CCL24, 
TNFSF13B, CCR4, IL2RA, IL32, TNFRSF10C, IL22RA1, BMPR1A, CXCR5, CXCR3, IFNA8, IL17REL, IFNB1, IFNAR1, 
TNFRSF1B, CCL17, IFNL1, IL16, IL1RL1, ILK, CCL25, ILDR2, CXCR1, IL36RN, IL34, TGFB1, IFNG, IL19, ILKAP, BMP2K, 
CCR10, ILDR1, EPO, CCR7, IL17C, IL23A, CCR5, IL7, EPOR, CCL13, IL2RG, IL31RA, TNFAIP6, IFNL2, BMP1, IL12RB1, 
TNFAIP8, IL4R, TNFRSF6B, TNFAIP8L1, TNFRSF10B, IFNL3, CCL5, CXCL6, CXCL1, CCR3, TNFSF11, CSF1R, IL21, 
IL1RAP, IL12RB2, CCL1, IL17RA, CCR1, IL1RN, TNFRSF11B, TNFRSF14, IL13, IL2RB, BMP8B, CCL2, IL24, IL18RAP, 
TGFBI, TNFSF10, TNFRSF11A, CXCL5, IL5RA, TNFSF9, IL1RL2, TNFRSF13C, IL36G, IL15RA, TNFRSF21, CXCL8, 
IL22RA2, TNFAIP8L2, IL18R1, IFNLR1, CXCR6, CCL3L3, TNFRSF1A, IL17RE, IFNGR2, IL17RC, TNFAIP8L3, ILVBL, 
TGFBRAP1, CCL4L1, CSF2RA, CCRN4L, CCL26, TNFAIP1, CCRL2, IFNA10, TNFRSF17, IFNA13, IL20, IL18BP, CCL3L1, 
TNFSF12, TNFSF13, IL5, IL23R, IL26, TNF, TGFA, CSF2, IL1F10, CXCL17, TNFSF13, IFNA4, IL37, IL12A, IL7R, IFNA1, 
IL1A, IL4, IL2, CCL22, CSF3R, IL10, IFNK

CD8+ T cells CD8A

Check-point IDO1, LAG3, CTLA4, TNFRSF9, ICOS, CD80, PDCD1LG2, TIGIT, CD70, TNFSF9, ICOSLG, KIR3DL1, CD86, PDCD1, LAIR1, 
TNFRSF8, TNFSF15, TNFRSF14, IDO2, CD276, CD40, TNFRSF4, TNFSF14, HHLA2, CD244, CD274, HAVCR2, CD27, 
BTLA, LGALS9, TMIGD2, CD28, CD48, TNFRSF25, CD40LG, ADORA2A, VTCN1, CD160, CD44, TNFSF18, TNFRSF18, 
BTNL2, C10orf54, CD200R1, TNFSF4, CD200, NRP1

Cytolytic activity PRF1, GZMA

DCS CCL17, CCL22, CD209, CCL13

HLA HLA-E, HLA-DPB2, HLA-C, HLA-J, HLA-DQB1, HLA-DQB2, HLA-DQA2, HLA-DQA1, HLA-A, HLA-DMA, HLA-DOB, HLA-DRB1, 
HLA-H, HLA-B, HLA-DRB5, HLA-DOA, HLA-DPB1, HLA-DRA, HLA-DRB6, HLA-L, HLA-F, HLA-G, HLA-DMB, HLA-DPA1

IDCS CD1A, CD1E

Inflammation-promoting CCL5, CD19, CD8B, CXCL10, CXCL13, CXCL9, GNLY, GZMB, IFNG, IL12A, IL12B, IRF1, PRF1, STAT1, TBX21

Macrophages C11orf45, CD68, CLEC5A, CYBB, FUCA1, GPNMB, HS3ST2, LGMN, MMP9, TM4SF19

Mast cells CMA1, MS4A2, TPSAB1

MHC class I B2M, HLA-A, TAP1

Neutrophils EVI2B, HSD17B11, KDM6B, MEGF9, MNDA, NLRP12, PADI4, SELL, TRANK1, V-NN3

NK cells KLRC1, KLRF1

Parainflammation CXCL10, PLAT, CCND1, LGMN, PLAUR, AIM2, MMP7, ICAM1, MX2, CXCL9, ANXA1, TLR2, PLA2G2D, ITGA2, MX1, 
HMOX1, CD276, TIRAP, IL33, PTGES, TNFRSF12A, SCARB1, CD14, BLNK, IFIT3, RETNLB, IFIT2, ISG15, OAS2, REL, 
OAS3, CD44, PPARG, BST2, OAS1, NOX1, PLA2G2A, IFIT1, IFITM3, IL1RN

PDCS CLEC4C, CXCR3, GZMB, IL3RA, IRF7, IRF8, LILRA4, PHEX, PLD4, PTCRA

T cell co-inhibition BTLA, C10orf54, CD160, CD244, CD274, CTLA4, HAVCR2, LAG3, LAIR1, TIGIT

T cell co-stimulation CD2, CD226, CD27, CD28, CD40LG, ICOS, SLAMF1, TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9, TNFSF14

T helper cells CD4

TFH PDCD1, CXCL13, CXCR5

TH1 cells IFNG, TBX21, CTLA4, STAT4, CD38, IL12RB2, LTA, CSF2

TH2 cells PMCH, LAIR2, SMAD2, CXCR6, GATA3, IL26

TIL ITM2C, CD38, THEMIS2, GLYR1, ICOS, F5, TIGIT, KLRD1, IRF4, PRKCQ, FCRL5, SIRPG, LPXN, IL2RG, CCL5, LCK, 
TRAF3IP3, CD86, MAL, LILRB1, DOK2, CD6, PAG1, LAX1, PLEK, PIK3CD, SLAMF1, XCL1, GPR171, XCL2, TBX21, CD2, 
CD53, KLHL6, SLAMF6, CD40, SIT1, TNFRSF4, CD79A, CD247, LCP2, CD3D, CD27, SH2D1A, FYB, ARHGAP30, ACAP1, 
CST7, CD3G, IL2RB, CD3E, FCRL3, CORO1A, ITK, TCL1A, CYBB, CSF2RB, IKZF1, NCF4, DOCK2, CCR2, PTPRC, PLAC8, 
NCKAP1L, IL7R, CD28, STAT4, CD8A, LY9, CD48, HCST, PTPRCAP, SASH3, ARHGAP25, LAT, TRAT1, IL10RA, PAX5, 
CCR7, DOCK11, PARVG, SPNS1, CD52, HCLS1, ARHGAP9, GIMAP6, PRKCB, MS4A1, GPR18, TBC1D10C, GVINP1, 
P2RY8, EVI2B, VAMP5, KLRK1, SELL, MPEG1, MS4A6A, ARHGAP15, MFNG, GZMK, SELPLG, TARP, GIMAP7, FAM65B, 
INPP5D, ITGA4, MZB1, GPSM3, STK10, CLEC2D, IL16, NLRC3, GIMAP5, GIMAP4, IFFO1, CFH, PVRIG, CFHR1

TREG IL12RB2, TMPRSS6, CTSC, LAPTM4B, TFRC, RNF145, NETO2, ADAT2, CHST2, CTLA4, NFE2L3, LIMA1, IL1R2, ICOS, 
HSDL2, HTATIP2, FKBP1A, TIGIT, CCR8, LTA, SLC35F2, IL21R, AHCYL1, SOCS2, ETV7, BCL2L1, RRAGB, ACSL4, 
CHRNA6, BATF, LAX1, ADPRH, TNFRSF4, ANKRD10, CD274, CASP1, LY75, NPTN, SSTR3, GRSF1, CSF2RB, TMEM184C, 
NDFIP2, ZBTB38, ERI1, TRAF3, NAB1, HS3ST3B1, LAYN, JAK1, VDR, LEPROT, GCNT1, PTPRJ, IKZF2, CSF1, ENTPD1, 
TNFRSF18, METTL7A, KSR1, SSH1, CADM1, IL1R1, ACP5, CHST7, THADA, CD177, NFAT5, ZNF282, MAGEH1

TYPE I IFN RESPONSE DDX4, IFIT1, IFIT2, IFIT3, IRF7, ISG20, MX1, MX2, RSAD2, TNFSF10

TYPE II IFN RESPONSE GPR146, SELP, AHR
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Figure S1. Workflow chart of the study. A. The METABRIC cohort was divided into immune-active and immune-inac-
tive subgroups by ssGSEA and hierarchical clustering based on the transcriptome data of patients; B. A prognostic 
gene signature was constructed by integrated methods and validated in three external cohorts; C. Differences in 
microenvironment components, molecular characteristics and response to therapy between the low- and high-IRR 
groups were evaluated.
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Figure S2. Survival differences in the immune-active and immune-inactive groups. (A-C) Comparison of OS (A), BCSS 
(B) and RFS (C) between the immune-active and immune-inactive groups by Kaplan-Meier analysis; (D, E) GO and 
KEGG enrichment analysis of 640 DEGs. The top 5 upregulated and downregulated functions ranked by p value are 
displayed.
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Figure S3. Construction for immune-related risk gene signature. (A) LASSO Cox regression analysis for selecting 
robust prognostic genes. The black solid vertical lines represent the partial likelihood deviance ± standard error of 
each lambda. The left vertical dotted line was drawn at the minimum criteria, and the right line was drawn at the 
1-SE criteria; (B) LASSO coefficient profiles of the 243 prognosis-related genes. (C-F) Principal component analysis 
of the high- and low-IRR groups in the METABRIC (C), GSE103091 (D), GSE21653 (E) and GSE20685 (F) datasets.
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Figure S4. Prognostic value in different clinical subgroups of the METABRIC dataset. A. Sankey diagram illustrating 
the flows from immune infiltration to IRR group and vital status in the METABRIC cohort; B-F. Kaplan-Meier survival 
curves of OS in age and stage subgroups stratified by IRR score.
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Figure S5. Validation of IRR model performance on risk stratification in three GEO datasets. A-C. Distribution of 
IRR scores for patients with different clinical outcomes in three GEO cohorts; D-G. Kaplan-Meier survival curves for 
the high- and low-IRR groups in three GEO cohorts; H-J. ROC curves of IRR scores with regard to 3-, 5- and 10-year 
survival in three GEO cohorts.
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Table S2. Univariate and multivariate Cox regression analyses of clinical variables in the METABRIC 
and GEO datasets

METABRIC-OS
Univariate Multivariate

HR p-value HR p-value
Age (vs. < 60)
    ≥60 1.48 (1.02-2.14) 0.037 1.47 (1.02-2.14) 0.041
Grade (vs. Grade 1/2)
    Grade 3 1.24 (0.71-2.18) 0.45
Stage (vs. stage I)
    Stage II 1.41 (0.90-2.21) 0.134 1.23 (0.78-1.94) 0.379
    Stage III 2.79 (1.53-5.09) 0.001 2.47 (1.35-4.53) 0.003
IRR (vs. low)
    high 2.85 (1.92-4.23) < 0.0001 2.74 (1.84-4.08) < 0.0001
Chemotherapy (vs. NO)
    YES 1.09 (0.75-1.58) 0.663
Radiotherapy (vs. NO)
    YES 0.86 (0.56-1.30) 0.467
GSE103091-OS
Age (vs. < 60)
    ≥60 3.19 (1.50-6.76) 0.003 3.23 (1.52-6.85) 0.002
IRR (vs. low)
    high 2.72 (1.30-5.69) 0.008 2.76 (1.32-5.79) 0.007
GSE21653-DFS
Age (vs. < 60)
    ≥60 1.86 (0.80-4.31) 0.148
Grade (vs. Grade 1/2)
    Grade 3 0.50 (0.19-1.37) 0.178
T (vs. T1)
    T2 0.53 (0.16-1.73) 0.295
    T3 1.18 (0.36-3.84) 0.784
N (vs. N0)
    N1 2.43 (1.05-5.64) 0.039 3.08 (1.30-7.27) 0.01
IRR (vs. low)
    high 2.72 (1.16-6.39) 0.022 3.38 (1.41-8.07) 0.006
GSE20685-OS
Age (vs. < 60)
    ≥60 1.01 (0.95-1.08) 0.738
Stage (vs. stage I)
    Stage II 2.34 (0.29-19) 0.427 2.27 (0.28-18.5) 0.445
    Stage III/IV 17.19 (1.55-190.72) 0.021 22.04 (1.90-255.84) 0.013
IRR (vs. low)
    high 2.05 (1.15-3.64) 0.015 2.30 (1.22-4.34) 0.01
Abbreviation: HR, Hazard ratio; IRR, immune-related risk; OS, overall survival; DFS, disease-free survival.
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Figure S6. Distribution of 22 immune cell types in the METABRIC cohort. A. Boxplot showing the distribution tenden-
cies of 22 immune cell types in the METABRIC cohort; B. Stacked bar plots illustrating the infiltration patterns of 22 
immune cell types in the high- and low-IRR groups.
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Figure S7. GSVA based on KEGG gene sets in the METABRIC and three GEO cohorts. A. Volcano plots showing en-
riched KEGG pathways identified by GSVA in the high- and low-IRR groups (|Log2FC| > 0.1; p value < 0.01); B. Venn 
plot showing 18 commonly upregulated KEGG pathways in the high-IRR group of four cohorts; C. Heatmap showing 
the enrichment scores of 18 enriched KEGG pathways in the METABRIC cohort; D. Statistic significance of 18 en-
riched KEGG pathways in the high-IRR group versus the low-IRR group of the METABRIC cohort.
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Figure S8. A. Heatmap displaying the normalized ssGSEA scores of 10 oncogenic pathways in the high- and low-IRR 
groups of the METABRIC cohort; B. Boxplot showing the enriched scores of 10 oncogenic pathways in the high- and 
low-IRR groups of the METABRIC cohort.

Figure S9. (A, B) Comparison of the expression levels of immune checkpoints (A) and HLA family genes (B) in the 
high- and low-IRR groups of the METABRIC cohort.
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Figure S10. High-IRR patients showed more resistance to chemotherapy. A. Estimated chemotherapy responses of 
the high- and low-IRR patients for eight common chemotherapy drugs in TNBC treatment. B. GSEA showed that re-
sponse to the ionizing radiation pathway was enriched in the low-IRR group. C. GSEA showed that doxorubicin resis-
tance pathway was enriched in the high-IRR group. D. Boxplot illustrating the distribution of IRR scores for different 
neoadjuvant chemotherapy responses of 88 patients treated with neoadjuvant anthracyclines and/or taxanes in 
the GSE106977 cohort. E. Bar graph showing the proportions of different responses to neoadjuvant anthracyclines 
and/or taxanes treatment in the high- and low-IRR groups of the GSE106977 cohort. 



Risk model for TNBC patients

12 

Figure S11. Survival analyses for patients stratified by combining the IRR score and adjuvant chemotherapy or 
radiotherapy in the METABRIC cohort.

Figure S12. Prediction of immunotherapy response based on the TIDE algorithm. A. Correlation analyses for TIDE, 
Dysfunction, and Exclusion scores with the IRR score. B. Bar graph showing the numbers of different clinical re-
sponses to immunotherapy estimated by the TIDE algorithm in the high- and low-IRR groups for the METABRIC 
cohort. Boxplot illustrating the distribution of IRR scores of patients with different immunotherapeutic responses 
estimated by the TIDE algorithm in the METABRIC cohort. NR, non-responder; R, responder.


