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Abstract: Triple-negative breast cancer (TNBC) is the subtype with the least favourable outcomes in breast cancer. 
Besides chemotherapy, there is a chronic lack of other effective treatments. Advances in omic technologies have 
liberated us from the ambiguity of TNBC heterogeneity in terms of cancer cell and immune microenvironment in 
recent years. This new understanding of TNBC pathology has already led to the exploitation of novel nanoparticu-
late systems, including tumor vaccines, oncolytic viruses, and antibody derivatives. The revolutionary ideas in the 
therapeutic landscape provide new opportunities for TNBC patients. Translating these experimental medicines into 
clinical benefit is both appreciated and challenging. In this review, we describe the prospective nanobiotherapy of 
TNBC that has been developed to overcome clinical obstacles, and provide our vision for this booming field at the 
overlap of cancer biotherapy and nanomaterial design.
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Introduction

Triple-negative breast cancer (TNBC) is the 
most aggressive, metastatic, and refractory 
subtype of breast cancer. TNBC has no res- 
ponse to endocrine therapy and anti-HER-2 tar-
geted therapy because of few expressions of 
estrogen receptor and progesterone receptor 
and few amplifications of ERBB2 (commonly 
referred to as human epidermal growth factor 
receptor 2 [HER2]) [1, 2]. Compared to other 
solid tumors, TNBC is more heterogeneous, 
which lead to poor prognosis, high risk of 
relapse, short progression-free survival and 
low overall survival. Currently, the TNBC is treat-
ed with anticancer agents alone or in com- 
bination with surgery or radiation therapy. Che- 
motherapy supplies a major part of the thera-
peutic modality [3, 4]. In the last few decad- 
es, effective alternatives for biotherapy have 
improved the therapeutic outcome, prognos- 
tic value, and diagnostic value of TNBC [5-7]. 
Patients with BRCA1/2 gene mutations can be 

treated with poly (ADP-ribose) polymerase in- 
hibitors such as olaparib (Lynparza) and tala-
zoparib (Talzenna) [8-10]. To date, pembroli-
zumab (Keytruda), an immune checkpoint in- 
hibitor, is the only anti-PD-1 monoclonal anti-
body that the FDA has approved for TNBC [11, 
12]. Furthermore, the TROP2 antibody-drug 
conjugate sacituzumab (Trodelvy), conjugated 
to the chemotherapeutic SN-38, has already 
been FDA-approved for TNBC [13, 14]. 

Targeted delivery to TNBC is a hot topic among 
researchers. In this context, nanoparticle deliv-
ery systems have proven to be effective in pro-
viding considerable tumor delivery via acti- 
ve- and passive-targeting mechanisms [15-17]. 
The shortcomings and limits of nanomaterial-
based biotherapy approaches are currently 
being addressed in the landscape of product 
development for nanomaterial-based biothe- 
rapy approaches. An expanding landscape of 
innovation approaches for nanomaterial-based 
biotherapy management is currently address-
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Figure 1. Graphical abstract. Triple-negative breast cancer (TNBC) exhibits 
poor prognosis, high risk of relapse, short progression-free survival and low 
overall survival. The review expounds on the heterogeneity of TNBC and an-
titumor mechanism of nanobio-drug delivery system. The review also criti-
cally discusses the nanobiotherapeutic strategies to target immune micro-
environment for managing TNBC from three aspects: active immunization, 
passive immunization and immune regulation.

ing the shortcomings and limitations, including 
increasing biodistribution and therapeutic win-
dow with intravenous administration [18], spe-
cific tumor targeting [19], reducing treatment-
related adverse events [20]. Here, we discuss 
the currently heterogeneous entirety of the 
TNBC ecosystem and its immune-related char-
acteristics, as well as expanding nanobiothera-
peutic options (Figure 1). Since this review con-
centrates on nano-delivery systems relevant to 
TNBC cells and immune microenvironment, the 
nanomedicines that respond to tumor microen-
vironment (TME) characteristics and matrix 
components will not be extensively discussed, 
such as stromal cells [21], hypoxia [22], low pH 
[23], and redox status [24].

Heterogeneity of triple negative breast cancer 
in tumor microenvironment

The TME of TNBC is a heterogeneous and com-
plex organization composed of cancer cells, 

RNA-seq are henceforth commonly consider- 
ed for onco-immunology studies: standard  
bulk RNA-seq and single-cell RNA-seq [29]. 
Technological improvements in single-cell anal-
yses are offering unprecedented prospects for 
the reinterpretation of TNBC heterogeneity. As 
a surrogate of what scRNA-seq analysis can 
produce, more than 50 deconvolution algo-
rithms for bulk RNA-seq data are published, 
such as TIMER (https://cistrome.shinyapps.io/
timer/), CIBERSORT (https://cibersort.stanford.
edu/), ABIS (https://giannimonaco.shinyapps.
io/ABIS/), EPIC (https://gfellerlab.shinyapps.io/
EPIC_1-1/) and so on.

Previously, heterogeneity studies primarily pro-
vided more explanations for the genomic, tran-
scriptomic, and proteomic properties of intrin-
sic TNBC cells [30, 31]. As is widely accepted, 
TNBC is classified into four transcriptome-
based subtypes relied on analyses of bulk 
mRNA profiles: basal-like 1 and 2, luminal 

stroma and endothelial cells, 
innate and adaptive immune 
cells, and transformed extra-
cellular matrix [25]. Over the 
last decade, it has become 
increasingly clear that the 
components in the TME ham-
per antitumor response and 
help the progression and me- 
tastasis of TNBC [26]. The im- 
mune TME is modified by  
the pathogenic mechanisms of 
cancer cells and carcinogens 
[5]. The TNBC landscape is the 
entirety of a coordinated eco-
system that relates to intrin- 
sic characteristics caused by 
immune editing. Currently, the 
intrinsic and extrinsic features 
of TNBC cells have been evalu-
ated separately due to com- 
plementary biological features 
[27, 28]. Among various tech-
niques deployed to assess 
gene expression, RNA sequen- 
cing (RNA-seq) can provide qu- 
alitative (RNA sequence) and 
quantitative (RNA abundance) 
analyses of either targeted 
mRNA transcripts or the com-
plete transcriptome of a par-
ticular tissue. Two methods of 
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Figure 2. Four subtypes of TNBC immune TME. Fully inflamed (FI): a uniformly high number of CD8+ tumor-infiltrat-
ing lymphocytes in tumors. Immune desert (ID): Tumors have a uniformly low number of CD8+ tumor-infiltrating lym-
phocytes. Stroma-restricted (SR): low number of TILs limited to tumor stroma. Margin-restricted (MR): low number 
of TILs limited to tumor margin.

androgen receptor (LAR), and mesenchymal 
[28]. Basal-like 1 has significant proliferative 
activity (expressed Ki67 genes) and prolifera-
tion gene drivers. The phenotype of basal-like  
2 is basal-myoepithelial. The LAR subtype is 
associated with malignancies that demonstra- 
te apocrine differentiation on histologic inspec-
tion and express high quantities of androgen 
receptor hormones. The mesenchymal subtype 
shows epithelial/mesenchymal transition and 
PIK3CA mutation, and have extracellular matrix 
interaction genes. Indeed, a genomic and tran-
scriptomic investigation verified these subtypes 
in a large cohort of Chinese patients, confirm-
ing basal-like, LAR, and mesenchymal as TNBC 
cell-intrinsic subtypes [32]. Recently, the same 
team conducted integrative clustering analysis 
to build a subtype set that included both the 
sample proteome and the phosphoproteome 
[33]. They stratified tumor samples into four 
proteomic subgroups (named iP-1-4) that dif-
fered in prognosis significantly. Their study also 
revealed subtype-specific signaling networks, 
metabolic reprogramming, and signature regu-
lators that highlighted subtype-specific biologi-
cal traits. It is expected to be employed in the 
clinic as a reference framework for targeted 
therapy of TNBC.

During the past two decades, the complicated 
nature of the TME has been increasingly appar-
ent to researchers [34, 35]. Four subtypes of 

immune TME subtypes (Figure 2), respectively, 
margin-restricted (MR), immune desert (ID), 
fully inflamed (FI) and stroma-restricted (SR), 
were proposed on the basis of immune cell 
numbers and their spatial distribution within 
whole sections of TNBC tumors and gene 
expression profiling [27]. Tumors defined as 
immune desert or fully inflamed have a uni-
formly low or high number of CD8+ tumor-infil-
trating lymphocytes (TILs). Margin restricted 
and stroma restricted, respectively, refer to 
CD8+ TILs limited to the tumor margins or stro-
ma, and both have low numbers of TILs [36]. 
Keren et al. [37] revealed that lineage enrich-
ment of immunoregulatory proteins was associ-
ated with tumor construction. Immune desert 
tumors present few immune cell infiltrates, 
which primarily consist of PD-L1+ tumor-associ-
ated macrophages and exhausted T cells. Fully 
inflamed tumors have PD-1 expressed on CD8 
T cells and IDO and PD-L1 mainly on tumor 
cells. Compartmentalized tumors have PD-1 
expressed on CD4 T cells, whereas IDO and 
PD-L1 are predominantly expressed on other 
immune cells. A subset of compartmentalized 
tumors had a gradient of HLA-DR and H3K9ac/
H3K27me3 from the boundary to the tumor 
center, indicating that the tumor-immune bo- 
undary is a particularly special region of im- 
mune suppression with changed expression 
profiles by both tumor and immune cells. 
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Figure 3. Mechanism of passive targeting and active targeting. Passive targeting: a manifestation identified as the 
enhanced permeability and retention (EPR) effect. This phenomenon arises as a result of the disordered tumor 
vascular structure, enhanced vascular permeability, and lymphatic obstruction, resulting in fluid retention and drug 
accumulation in the tumor at a high level. Active targeting: linking the exterior of nanoparticles to specific targeting 
payloads like aptamers, antibodies, and peptides that are responsive to antigens or receptors on the tumor cell. 
This is in pursuit of maximum payload transport, improved half-life and systemic circulation, and minimal systemic 
or non-specific toxicity.

Furthermore, another study improves on the 
work of Keren et al. by profiling the proteins 
involved in cell-to-cell crosstalk and setting up 
a connection between the spatial architecture 
of cells with different expression patterns and 
clinical outcomes [38]. It demonstrated that 
the co-expression pair of functional proteins in 
patients’ cells was a trademark of a complex 
TIME, pointing to highly specific cellular pheno-
types. The four most important co-expression 
profiles were CD45RO + H3K27me3, CD45RO 
+ H3K9ac, CD45RO + HLA Class 1, and HLA-
DR + IDO, which were associated with recur-
rence and survival.

Antitumor mechanism of nanobio-drug deliv-
ery system

Drug delivery to TNBC tumors is difficult due to 
the lack of specific cellular receptors (ER, PR, 

and HER2) [39]. Some of the typically utilized 
nanocarriers that have been evaluated for the 
therapeutics delivery are polymeric nanoparti-
cles, micelles, liposomes, dendrimers, nano-
conjugates, albumin nanoparticles, and carbon 
nanotubes [40, 41]. Furthermore, nanobiolo- 
gy-based delivery systems have proven to be 
effective in tumor delivery via active- and pas-
sive-targeting mechanisms [42, 43] (Figure 3). 
All these strategies are further modified to de- 
liver not only chemotherapeutics but also oligo-
nucleotides or proteins. 

Passive targeting happens due to a manifesta-
tion identified as the enhanced permeability 
and retention (EPR) effect. This phenomenon 
arises as a result of the disordered tumor vas-
cular structure, enhanced vascular permeabili-
ty, and lymphatic obstruction, resulting in fluid 
retention and drug accumulation in the tumor 
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at a high level [44]. The EPR effect increases 
the efficacy and antitumor effects while reduc-
ing the toxic and side effects on normal tissues, 
which provided a great impetus for develop-
ment and studies of nanomedicines. Recently, 
Cui and colleagues presented a mitochondrion-
targeted copper-depleting nanoparticle (CDN) 
[45]. The positively charged exterior of CDN can 
facilitate the accumulation of particles as well 
as the selective robbery of copper in the mito-
chondrion. Oxidative phosphorylation (OXPH- 
OS) activity was suppressed and ATP genera-
tion was decreased, eventually leading to cell 
death. A follow-up animal experiment confirm- 
ed that by targeting mitochondrion, CDN con-
siderably decreased adverse effects when 
compared to conventional copper chelating 
medicines. Hence, reasonable nanoparticle 
design that takes advantage of the mitochon-
drion microenvironment can enhance specific 
mitochondrion targeting and improve treat-
ment outcomes. In addition, the therapeutic 
window of passive targeting nanoparticles is 
usually compromised for safety application, 
ultimately leading to limited concentration in 
the tumor center [46]. Targeting tumors with 
EPR effects alone remains controversial [47-
49]. Some people have proposed that EPR 
effects can only be observed in mouse and 
cannot be duplicated in humans, and that het-
erogenous and dynamic TME may invalidate 
EPR effects [47]. Surprisingly, the latest re- 
search even reverses EPR effects. Only 26 
gaps were discovered in 313 detected blood 
capillaries from all experimental models, and 
the entire gap percentage is only 0.048 per-
cent of the blood capillary surface area, while 
the number of inter-endothelial gaps is 60 
times lower than the accumulated nanomateri-
als [47, 50]. In a follow-up study, Sun et al. 
investigated the design criteria for nanomedi-
cine in three preclinical cancer models using 
five clinically used nanomedicine drugs. The 
EPR effect in tumors and normal tissues has 
been observed not only in nanomedicines but 
also in small compounds with a high affinity for 
protein. Drug concentration in tumors is deter-
mined by the EPR effect and binding capacity to 
plasma proteins and tumors [51]. Overvalua- 
tion of EPR effects would result in inadequate 
anti-tumor activity, prompting additional study 
to exploit nanoparticles with the active target-
ing capability detailed below.

Active targeting depends on linking the exterior 
of nanoparticles to specific targeting payloads 
like aptamers, antibodies, and peptides that 
are responsive to antigens or receptors on the 
tumor cell [52, 53]. This mechanism has sever-
al benefits over passive targeting, including 
precise targeted delivery, decreased immuno-
genic reaction, increased circulation time, and 
an improved therapeutic window with injection 
administration [40]. This is in pursuit of maxi-
mum payload transport, improved half-life and 
systemic circulation, and minimal systemic or 
non-specific toxicity. Pang et al. [54] developed 
a MoS2-BSA-Apt nanosheet with strong specif-
ic recognition by incorporating NAA with bovine 
serum albumin (BSA) and MoS2. Accordingly, 
superb targeting, optimal biological distribu-
tion, and an evident suppressive effect on 
TNBC could be examined. Du et al. [52] coupled 
18 nm iron oxide nanoparticles (IOs) with a 
tumor-targeting peptide called CREKA (Cys-Arg-
Glu-Lys-Ala), since CREKA could selectively link 
to fibrin-fibronectin compounds that are abun-
dantly expressed in TNBC cells. According to 
MRI and MPI evidence the targeting molecule 
increases the intratumoral distribution homo-
geneity of nanoparticles. Here, we supply sev-
eral information about bionano-delivery works 
in Table 1. However, NPs are still subjected to 
“protein corona” throughout systemic distribu-
tion, leading to off-target orientation, decreas- 
ed effectiveness, and unfavorable toxicity [55, 
56]. Rational matched design, in vitro and in 
vivo evaluation, and intelligence analysis tools 
should be explored to acquire an considerable 
insight of the challenges upon mutual effect  
of biosubstance-NP, involving particles size, 
charge, surface chemistry, temperature, and 
pH [57]. For example, prior research discover- 
ed that the hydroxyl group availability of gra-
phene affects the biosorption of typical plasma 
proteins, and secondary structural variations 
also have a contribution to biosorption occur-
rence [58]. According to this phenomenon, 
hydrophilicity modification could be an approa- 
ch to prevent protein corona. Enhancing EPR 
efficacy or generating active tumor binding ca- 
pacity can both improve the targeting proper-
ties of nanoparticles.

Nanobiological therapy for triple negative 
breast cancer

Cancer nanobiological therapy is an innovative 
method medium for therapeutic drug adminis-
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Table 1. The summary of different nano-delivery works
Reference Nano delivery system Payload Animal model Effect
[64] spherical nucleic acids (SNAs) The SNAs comprise immunostimula-

tory oligonucleotides (CpG-1826) as 
adjuvants and encapsulate lysates 
derived from TNBC cell lines as 
antigens

EMT6 mouse mammary 
carcinoma model

Tumor cell lysate-loaded SNAs vaccines enhanced the co-deliv-
ery of the adjuvant and antigen to immune cells in comparison 
to non-SNA conjugated mixtures of lysates and oligonucleotides. 
Oxidized TNBC lysates increased anti-tumor effects of SNAs 
through enhanced activation of dendritic cells and the induction 
of long-term immunological memory.

[65] a hybrid ultrasound responsive 
self-healing nanocomposite hydro-
gel (NC gel) system

membrane-coated R837-PLGA 4T1 orthotopic breast 
tumor model with spon-
taneous metastases

Significant anti-tumor immune efficiency was confirmed after 
multiple rounds of ultrasonic stimulation in animals inoculated 
with such nanovaccines encased in hydrogel.

[67] α-lactalbumin (α-LA)-engineered 
breast cancer-derived exosomes

human neutrophil elastase (ELANE) 
and Hiltonol (TLR3 agonist)

MDA-MB-231 mouse 
model and patient-de-
rived tumor organoids

HELA-Exos had substantial anticancer effects in organoid and 
animal models of TNBC, promoting cDC1 activation in situ and 
eventually triggering strong tumor-specific immune responses of 
CD8 T cells.

[68] self-assembled by a near-infrared 
(NIR)-absorbing semiconduct-
ing polymer and an amphipathic 
polymer

conjugated with a Toll-like receptor 
7 (TLR7) agonist via an acid-labile 
linker

4T1 bilateral tumor 
model

Experimental animals establish immunological memory with 
high infiltration and proportion of various T cell subsets.

[72] iRGD-liposome recombinant NDV that expressed the 
DC chemokine MIP-3

4T1 tumor model iNDV3α-LP enhanced tumor ICD effect as a result of increased 
viral replication. The immunosuppressive TME was reversed 
when OVs triggered significantly suppressed tumor angiogenesis 
and intense tumor-specific cellular and humoral immunity.

[79] polymer nanoparticles named P/
PEALsiCD155

PD-L1 and siCD155 4T1 tumor model P/PEALsiCD155 NPs can efficiently target the tumor and trigger a 
significant intra-tumor anti-tumor response of CD8 TILs in the 
4T1 TNBC tumor model. In addition to achieving spatiotemporal 
targeting of the surface receptor and intracellular mRNA, P/
PEALsiCD155 NPs may enhance CD155-mediated immune surveil-
lance in the early stages while inhibiting CD155-mediated im-
munological escape in the later stages.

[84] an epigenetic nanoinducer OPEN, 
decorated by a T lymphocyte 
membrane that is engineered with 
programmed cell death protein 1 
(PD1)

IFN inducer ORY-1001 4T1 mammary tumor 
model

OPEN enhances IFNs expression while hampering IFN-induced 
immune checkpoint upregulation, leading to an 8- and 29-fold 
increase, respectively, in intratumoral infiltration of total and 
active cytotoxic T cells, as well as a substantial suppression of 
xenograft tumor progression. OPEN’s unique shell generally 
expresses other ICRs, providing the ability to recognize and block 
various ICLs, enabling OPEN to overcome multigenic resistance 
to ICB induced by IFN.

[90] E64-DNA, a lysosome-targeted 
DNA nanodevice

E64 E0771 mammary tumor 
model

E64-DNA selectively targeting TAMs with organelle-level specific-
ity. Reprograming the lysosome endows the nanoparticles with 
a novel, therapeutically effective property. Reduced cysteine 
protease activity in M2-like TAM lysosomes activates CD8 T lym-
phocytes and slows cancer progression. As a result, enhancing 
antigen presentation in M2-like TAMs improves adaptive immune 
response even in suppressive TME.
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[99] Fe3O4 magnetic nanoparticles 
that were decorated with 3-amino-
propyltriethoxysilane

CpG (FeNP/CpG) 4T1 tumor model FeNP/CpG suppressed tumor growth and lung metastasis by in-
creasing CpG absorption of bone marrow derived DCs (BMDCs). 
It also inhibits adverse reactions of free CpG as a single agent 
therapy, such as systemic inflammation that is out-of-control.

[100] a unique gene-delivery nanopar-
ticle named FDMCA

plasmid-encoded MIP-3 4T1 mammary tumor 
model

The expression of CD80, CD86, and MHCII in DCs was upregu-
lated, substantially boosting DC maturation and suppressing 
macrophage M2 polarization. a considerably lower incidence of 
CD31 vasculature in vivo. Lung metastases were considerably 
suppressed.

[109] chitosan-lactate nanocomposites CD73 siRNA 4T1 tumor model In 4T1 breast cancer-bearing mice, application of CD73 siRNA-
loaded chitosan-lactate nanocomposites in combination with 
tumor lysate pulsed DCs vaccination resulted in significant 
antitumor activity [110].

[116] Poly (b-amino esters) CRISPR-Cas9 genome engineering 
system

4T1 tumor model In TME, knockout of Cdk5 drives PD-L1 to be downregulated, 
which results in significant T cell-mediated immunological ef-
fects. This effect inhibits tumor proliferation and invasion.

[121] hyaluronic acid-based nanopar-
ticles called TCiGNPs

granzyme B MDA-MB-231 mam-
mary tumor model

TCiGNPs are destroyed by hyaluronidase in TME, and granzyme 
B is released to provide antitumor activity.

[123] lipid-protamine-DNA nanocom-
posite

a recombinant plasmid 4T1 tumor model lipid-protamine-DNA nanocomposite with a recombinant plasmid 
expresses proteins to snare IL-10. the utilization of these nano-
components improves CTL infiltration and suppresses tumor 
progression.

[124] lipid nanocarriers agonists of the CSF-1 receptor and 
MAPK pathways

4T1 mammary tumor 
model

improve the anti-tumor M1-like phenotype at TME and tremen-
dously decrease cancer progression.

[125] Pluronic F127 PTX and IL-12 4T1 tumor model significantly enhancing CTL-mediated immune activity and induc-
ing M1 polarization of macrophages, inhibiting immunosuppres-
sive TME.

[126] DC2.4-derived nanovesicles doxorubicin (DOX) and pro-inflamma-
tory cytokines (IL-2 and IFN-γ)

4T1 tumor model biomimetic nanovesicles propelled CD45 leucocytes and Ly6G 
neutrophils into the TME.



Nanobiotherapeutic strategies of triple-negative breast cancer

4090 Am J Cancer Res 2022;12(9):4083-4102

Figure 4. Several nano-biotherapeutic methods to target immune microenvironment of TNBC. A. Summary of the 
functional effects underlying TME cells regulation by bio-nanoparticles. B. The involvement of immune cells in the 
immune response to tumor cells’ ICD induced by nanoparticles. C. Nanoparticles release their payloads and exert 
functional effects in the tumor microenvironment and inside the cells.

tration that has a significant effect on the TME 
[59]. The integration of nanotechnology with 
biotherapy is one of the most promising areas 
in anticancer therapy. Nanoparticle-based bio-
therapy enables the specific targeting of cer-
tain immune cells and signalling basis of the 
immunosuppressive TME, preventing tumor im- 
mune escape and increasing therapy efficacy 
and anti-tumor activities [60, 61] (Figure 4). 
Bio-nanoparticles can kill the tumor cells di- 
rectly. Currently, the guidelines of tumor bio-
therapy is transforming, and there is growing 
awareness of improving the autoimmunity of 
tumor patients. In this regard, three strategies 
are mainly adopted: active immunization, pas-
sive immunization and immune regulation.

Active immunization

Active immunization mainly depends on the 
mobilization of organic immunity. It is closely 

related to the individual’s immune traits, which 
determine whether the recovery can be suc-
cessful or not. Here, we address the involve-
ment of several biomaterials in the formulation 
of cellular vaccines and oncolytic viruses to 
restore immunity via activating and expanding 
tumor-specific activities of the host immune 
system.

Cellular vaccines 

Cellular vaccines generally target dendritic cells 
(DCs), the most important antigen-presenting 
cells, to promote anti-tumor immunity. Succee- 
ding applications in sequence-based bioinfor-
matics have improved our capability to recog-
nize and purify specific antigens. Cellular vac-
cines involving nanomaterials improve the ef- 
ficacy of cancer-immunity reactions by insti- 
gating the mass-recruitment and activation of 
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immune cells against tumors with the help of 
immunogenic specific antigens or stimulating 
factors [62, 63]. Tumor cell lysate-loaded SNAs 
vaccines enhanced the co-delivery of the adju-
vant and antigen to immune cells in compari-
son to non-SNA conjugated mixtures of lysates 
and oligonucleotides. Oxidized TNBC lysates 
increased anti-tumor effects of SNAs through 
enhanced activation of dendritic cells and the 
induction of long-term immunological memory 
[64]. In addition to just injecting nanovaccines 
for immunization, a recent attempt to design  
a telecontrolled nanovaccine platform for per-
sonalized cancer immunotherapy has been ac- 
complished. The individualized nanovaccines 
were generated by covering the membranes of 
4T1 cells with R837-loaded nanocarriers and 
then encapsulated into the ultrasound-respon-
sive self-healing hydrogel system. Significant 
anti-tumor immune efficiency was confirmed 
after multiple rounds of ultrasonic stimulation 
in animals inoculated with such nanovaccines 
encased in hydrogel [65]. In situ nanovaccines 
can deliver payload to target cells and the mi- 
croenvironment to achieve a spatiotemporal 
release, improving therapeutic effects and de- 
creasing adverse reactions [66]. HELA-Exos,  
an in situ DC vaccine, is served for the treat-
ment of TNBC by delivering TLR3 agonist Hil- 
tonol as well as the ICD inducers ELANE via 
employing modified tumor-cell-derived extra-
cellular vesicles. HELA-Exos had substantial 
anticancer effects in organoid and animal mo- 
dels of TNBC, promoting cDC1 activation in situ 
and eventually triggering strong tumor-specific 
immune responses of CD8 T cells [67]. SPNI,  
an acidic-TME-responsive nanoparticle, allows 
for specific stimulation of TLR7 agonists to 
mature DCs. Eventually, experimental animals 
establish immunological memory with high in- 
filtration and proportion of various T cell sub-
sets [68]. What calls for special attention is 
that these vaccinations have the possibility of 
triggering mild-to-moderate adverse effects. 
Furthermore, clinical efficacy must be con-
firmed further.

Oncolytic viruses 

After being delivered into cancer cells, oncolyt-
ic viruses actively proliferate and lyse the tumor 
cells. They can trigger the immune response by 
reprogramming cancers to get “hot” (ready to 
engage the immune system), ultimately result-

ing in persistent tumoricidal activity [69, 70]. 
However, antigen-presenting cells interact with 
OVs because they are regarded as xenogeneic. 
Because of this antiviral immunity, OVs would 
most likely be eliminated from the system 
before reaching the cancer cells [71]. Artificially 
modified OVs, as well as formulations with a 
suitable vehicle, an active targeted part, and a 
better exposure profile, are usually required to 
further improve the therapeutic efficacy. In a 
study, the recombinant NDV that expressed the 
DC chemokine MIP-3 was encapsulated in an 
iRGD-liposome and named iNDV3-LP. The re- 
sults showed that iNDV3α-LP enhanced tumor 
ICD effect as a result of increased viral repli- 
cation. The immunosuppressive TME was re- 
versed when OVs triggered significantly sup-
pressed tumor angiogenesis and intense tu- 
mor-specific cellular and humoral immunity 
[72]. To overcome the hurdles associated with 
therapy of progressive and metastatic neo-
plasms, Howard et al. [73] employ the magne- 
tic targeting of bacterially produced MAG to 
boost the distribution of OVs. Through increas-
ing concentration in solid tumors and evading 
immunosurveillance for systemic toxicity re- 
duction, this unique biotechnological strategy 
clearly illustrates that the MAG-OV compound 
enables several levels of specific tumor mag-
netic targeting. Recombination with other ge- 
nes promoting the expression of immune stim-
ulants was recently explored to evaluate the 
effect of OVs on TNBC. Subsequent research 
looked into VSV’s capacity to suppress TNBC 
progression [74]. In mouse and human TNBC 
cell models, the cytotoxic effect of recombinant 
VSV (VSVd51) was evaluated, and its efficacy  
in antitumor immune reactions was confirmed. 
VSV has considerable therapeutic efficacy by 
recruiting NK cells and CD8 T cells. VSV, in com-
bination with checkpoint blockade, may be able 
to treat TNBC due to its function on the immune 
system. This influence on the immune system 
clearly indicates that VSV, integrated with 
checkpoint blockade, may be beneficial in the 
management of TNBC. Moreover, virus-like na- 
nocomposites, also defined as noninfectious 
protein shells or capsids of viruses without a 
genome, can be employed as nanomaterials 
alone or in combination with a variety of immu-
noregulatory stimulants. Tumor vaccines based 
on the oncolytic vesicular stomatitis virus have 
been demonstrated in research to enhance 
TNBC outcome via boosting the activities of 
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natural killer cells and CD8+ T lymphocytes 
[75]. However, because cancer patients are fre-
quently treated with chemotherapy, radiothera-
py, as well as other therapies that may sup-
press the immune response, there is a poten- 
tial that OV would cause significant side effects 
associated with virus infection.

Passive immunization

Some individuals cannot generate an adequate 
immune response on their own. Derivatives of 
antibodies and immune cells are natural nano-
materials that directly kill tumor cells and sup-
ply immediate anti-tumor immunity once put 
into treatment. In this section, we will discuss 
nanobiotherapy of antibody derivatives and en- 
gineered immune cells to treat TNBC.

Antibody derivatives 

The advances of new-format therapeutic anti-
bodies in cancer therapy suggest that multi-
functionalization will be a major focus in anti-
body development [6, 76]. Due to the anti- 
body’s excellent targeting capabilities, antibo- 
dy conjugates, such as ADCs and AOCs, demon-
strate enhanced bioavailability properties to kill 
tumor cells with payload-induced cytotoxicity 
and oligonucleotide functionality [77, 78]. A 
recent attempt to develop polymer nanoparti-
cles named P/PEALsiCD155 realized the asyn- 
chronous blockade of PD-L1 and CD155. P/
PEALsiCD155 NPs can efficiently target the tumor 
and trigger a significant intra-tumor anti-tumor 
response of CD8 TILs in the 4T1 TNBC tumor 
model. In addition to achieving spatiotemporal 
targeting of the surface receptor and intracel-
lular mRNA, P/PEALsiCD155 NPs may enhance 
CD155-mediated immune surveillance in the 
early stages while inhibiting CD155-mediated 
immunological escape in the later stages [79]. 
Free adenosine inhibits effective CD8 T cell 
activation within LNs and protects tumor cells 
by inhibiting CD8 T cell killing effects. The ade-
nosine receptor 2A inhibitor SCH-58261-loaded 
aPD1-ANCs allowed for the co-delivery of ICB 
and adenosine inhibitors to targeted immune 
cells, as well as specific ANC accumulation 
among blood plasma and LN-resident lympho-
cytes [80]. Multispecific antibody-based treat-
ments, such as T cell activation and engage-
ment of innate and adaptive immune cells, 
have been intensively researched to leverage 

the local TME in an antigen-dependent manner. 
The nanocarrier platform of synthetic multiva-
lent antibodies retargeted exosomes (SMART-
Exos) was employed to redirect and activate 
cytotoxic T lymphocytes against TNBC cells.  
In an in vitro cytotoxicity experiment and a 
human TNBC xenograft mouse model, SMART-
Exos expressing CD3 and EGFR targeting anti-
bodies were capable of crosslinking T cells  
and EGFR-positive TNBC cells and inducing a 
powerful antitumor immune response [81].  
In addition, Chen et al. developed dual- 
functional super bispecific nano-antibodies 
S-BsNACSF1R&CD47 and S-BsNAKLRG1&PDL1 on the 
basis of a versatile antibody-immobilization 
platform named Fc-NPs. S-BsNA could estab-
lish a close physical connection between effec-
tor cells and tumor cells. Activated innate 
immune cells may produce an amplified antitu-
mor effect by directly phagocytizing (for TAMs) 
or delivering cytolytic granules (for NK cells) to 
surrounding tumor cells [82]. Because of low 
penetration into solid tumors and Fc-mediated 
bystander activation of the immune system, 
the application of full-length antibodies in can-
cer treatment is limited in some circumstances 
[83]. Recent advancements in antibody engi-
neering have improved the synthesis of several 
types of antibody fragments. Further develop-
ment based on these simplified antibodies is 
expected to solve current problems.

Immune cell engineering

The potential to treat cancer by the back-infu-
sion of native therapeutic cells is extraordinary. 
However, due to the quick loss of functioning 
induced by plenty of immunosuppressive me- 
chanisms within the TME and limited tumor 
penetration after in vivo transfer, its tumoricid-
al effect against TNBC remains elusive. A vari-
ety of nanomaterial-engineered immune cell 
delivery strategies have been suggested as 
potential approaches to clinical translation due 
to their enhanced clinical potency and safety. 
Because of their small cellular size, high nucle-
us-to-cytoplasm ratio, nonphagocytic nature, 
and low rates of endocytosis, T cells do not 
take up nanoparticles as readily as cancer 
cells. There has been little research that 
applies to direct T cell-targeted therapeutic 
delivery utilizing nanomaterials. For the con- 
trol-release of the IFN inducer ORY-1001, Zhai 
et al. [84] constructed an epigenetic nanoin-
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ducer OPEN, decorated by a T lymphocyte 
membrane that is engineered with programmed 
cell death protein 1 (PD1). OPEN enhances 
IFNs expression while hampering IFN-induced 
immune checkpoint upregulation, leading to  
an 8- and 29-fold increase, respectively, in in- 
tratumoral infiltration of total and active cyto-
toxic T cells, as well as a substantial suppres-
sion of xenograft tumor progression. OPEN’s 
unique shell generally expresses other ICRs, 
providing the ability to recognize and block vari-
ous ICLs, enabling OPEN to overcome multigen-
ic resistance to ICB induced by IFN. To date, 
allogeneic NK cells have been clinically validat-
ed for adoptive transfer immunotherapy [85, 
86]. On the other hand, NK cells have a short 
half-life in the bloodstream and do not have 
tumor-specific cell receptors [87]. A recent 
study to generate aptamer (PDGC21-T)-engi- 
neered NK cells (ApEn-NK) revealed that ApEn-
NK attached to TNBC cells preferentially and 
caused apoptosis in target cells in vitro [88].  
In addition, ApEn-NK treatment inhibited lung 
metastasis more effectively than parental NK- 
92 cell treatment, according to ex vivo imaging 
in the MDA-MB-231 xenograft model. Notably, 
as ApEn-NKs proliferate in vivo, surface-engi-
neered aptamers will get diluted. The antigen-
destroying property of M2-like TAMs in tumors 
is unfavorable because it limits CD8 T cell acti-
vation [89]. However, it is unclear whether anti-
gen presentation by TAMs happens immediate-
ly at the tumor site or in the tumor-draining 
lymph node. E64-DNA was a lysosome-target-
ed DNA nanodevice delivering the classical cys-
teine protease inhibitor E64 and selectively  
targeting TAMs with organelle-level specificity. 
Reprograming the lysosome endows the nano- 
particles with a novel, therapeutically effective 
property. Reduced cysteine protease activity  
in M2-like TAM lysosomes activates CD8 T lym-
phocytes and slows cancer progression. As a 
result, enhancing antigen presentation in M2- 
like TAMs improves adaptive immune response 
even in suppressive TME [90]. To date, there 
has been no report of nanoparticles engineer- 
ed into CAR cells for TNBC treatment. In other 
types of cancer related studies, several engi-
neered immune cells could eliminate MDSCs  
or tumor-associated fibroblast that are impor-
tantly referred for TNBC treatment [91, 92]. The 
utilization of new biomaterial-based composi-
tions, the development of innovative nano- 
carrier mechanisms for manufacturing CAR 

cells in vivo, and the investigation of multifunc-
tional nanocarriers with precise cargo localiza-
tion and controlled release should all be the 
focus of further optimization and enhancement 
[93, 94].

Immune regulation

Immune regulation has been increasingly ex- 
ploited in TNBC treatment owing to the signifi-
cant immune reaction to cancer cells. Nume- 
rous nanocarriers have been generated to 
boost immune responses to TNBC [95, 96]. In 
the below section, we will be discussing nano-
system-mediated immune regulation therapeu-
tics delivering DNA, RNA, and cytokines for 
managing TNBC. 

DNA 

The encapsulation of DNA-nanoparticles allows 
the entire delivery platform to contain both 
nanocarriers and DNA features, and in certain 
circumstances, synergistic benefits may be 
obtained. The DNA-nanoparticles not only ser- 
ve as a vehicle to prevent DNA from quick eli- 
mination in the circulatory system and deliver 
DNA to the tumor location, but also facilitate 
the absorption, improve intrinsic distribution, 
and prolong DNA retention in tumor tissues, 
leading to cancer remission [97, 98]. DNA has 
higher stability than RNA and is less prone to 
degeneration by endonucleases, rendering it 
an appealing alternative for the therapy of 
many malignancies. Zhang et al. [99] devel-
oped Fe3O4 magnetic nanoparticles that were 
decorated with 3-aminopropyltriethoxysilane 
and loaded with CpG (FeNP/CpG). In vivo, FeNP/
CpG suppressed tumor growth and lung me- 
tastasis by increasing CpG absorption of bone 
marrow derived DCs (BMDCs). It also inhibits 
adverse reactions of free CpG as a single agent 
therapy, such as systemic inflammation that  
is out-of-control. He et al. [100] developed a 
unique gene-delivery nanoparticle named FD- 
MCA that can not only convey plasmid-encoded 
MIP-3 to TNBC cells but also release MIP-3 to 
trigger the immune response. The expression 
of CD80, CD86, and MHCII in DCs was upregu-
lated when 4T1 tumors were transfected with 
FDMCA-pMIP-3, substantially boosting DC mat-
uration and suppressing macrophage M2 po- 
larization. The vessel count in each group dem-
onstrated that FDMCA-pMIP-3-treated tumor 
tissues had a considerably lower incidence of 
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CD31 vasculature in vivo. Lung metastases in 
mice treated with FDMCA-pMIP-3 were consid-
erably suppressed in the Balb/c mouse model 
of 4T1 mammary tumor. In order to promote 
ICD, NA could potentially act as scaffolding, 
delivering numerous anti-agents to tumor cells 
[101]. Hence, NAA-guided active targeting has 
gained a great deal of attention. Unlike anti- 
bodies, NAA is usually non-immunogenic or 
low-immunogenic [102]. Since DNA is negative 
charged and reactive to its surroundings, it is 
tough for it to cross through the cell membrane 
[103, 104]. Relying on genetic engineering te- 
chnology such as Crispr, viral vectors including 
lentiviruses, adenoviruses, and adeno-associ-
ated viruses can transfer DNA to tumors [105]. 
Nonetheless, the immune adverse response 
and off-target risks induced by virus-based 
DNA-delivery particles generate a sense of cau-
tion. Furthermore, tumor heterogeneity and 
adaptive resistance pose challenges to single 
DNA delivery.

RNA 

Exonic, intronic, and untranslated regions can 
be targeted by RNA nanotechnology, which  
can interact with pre-RNA (in the nucleus) and 
upregulate or downregulate gene expression 
[106]. Because of their capacity to block a vari-
ety of genes engaged in immunosuppression, 
RNA-based nano-delivery systems have higher 
specificity, a larger range of targets, and strong 
pharmacological characteristics [107, 108]. Tar- 
geting CD73 as a management option for TNBC 
could be a possibility. In 4T1 breast cancer-
bearing mice, application of CD73 siRNA-load-
ed chitosan-lactate nanocomposites in combi-
nation with tumor lysate pulsed DCs vaccina- 
tion resulted in significant antitumor activity 
[109]. Increased adenosine formation in the 
TME was discovered as a consequence of CD- 
73 overexpression [110]. Adenosine regulates 
T lymphocytes’ reactions and differentiation via 
interacting with various receptors on immune 
cells, primarily A2AR [111]. For silencing the 
A2AR gene, Masjedi et al. [112] developed 
PEG-chitosan-lactate nanocarriers loaded with 
A2AR-specific siRNA. Suppressing A2AR in T 
cells restricted their maturation into Tregs by 
downregulating the PKA/CREB axis and upreg-
ulating NF-κB. PEG = MT/PC/siVEGF/siPIGF 
NPs is an innovative dual-stage pH-sensitive 
carrier that can promote reeducation in the 

type-switch of M2 macrophages into M1 mac-
rophages and reverse the tumor-immunosup-
pressive TME [113]. TME also plays an essen-
tial part in tumor growth and progression, pro- 
voking various strategies for tumoricidal thera-
pies. T cell activity has been reported to be 
influenced by acidic TME. Lactate dehydroge-
nase A, which converts pyruvate to lactic acid 
in tumor cells, is essential for tumor acidity 
[114]. It was established that cationic lipid 
nanomaterial delivery of siRNAs targeting lac-
tate dehydrogenase A in 4T1 breast tumor-
bearing mice neutralizes tumor pH, induces 
penetration of CD8 T and NK cells, and inhibits 
cancer formation [115]. Poly (b-amino esters) 
has recently been employed in vivo to deliver 
the CRISPR-Cas9 genome engineering system 
and knockdown Cdk5 [116]. In TME, knockout 
of Cdk5 drives PD-L1 to be downregulated, 
which results in significant T cell-mediated 
immunological effects. In 4T1 tumor-bearing 
mice, this effect inhibits tumor proliferation 
and invasion. Due to high transfection efficien-
cy, viral vectors are appealing, even though 
they have challenges with safety and immu- 
nogenicity.

Cytokines 

Cytokines are immunological components that 
play a significant part in the anti-tumor immune 
reaction. The application of cytokines as tumor-
icidal drugs or targets in cancer treatment has 
proven to be tremendously promise [117]. 
Despite their promising curative effects, cyto-
kine therapies are limited by systemic side 
effects caused by non-specific absorption of 
circulating cytokines by cell types particularly 
rich in the relevant receptor. To counteract 
these unfavorable consequences, cytokine at- 
tachment to nanoparticles was investigated, 
and it has since become a well-accepted 
approach for extending blood circulation and 
decreasing adverse effects in normal tissues 
[118]. Mitragotri and colleagues recently pub-
lished an article presenting a cell-based deliv-
ery approach in which IFN-γ “backpacks” were 
attached to macrophage surfaces [119]. The 
macrophage-cytokine nanodrug avoided pha- 
gocytosis over five days in vitro. When com-
pared to free IFN-γ therapy in a 4T1 breast 
tumor model, combined macrophage boosted 
M1 macrophage polarization and improved 
overall survival. Granzyme B is a cytotoxic ser-
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ine protease produced by CD8 T lymphocytes 
and natural killer cells following cellular immune 
activation [120]. To imitate the functionality 
and consequences of CD8 T cell and NK cell 
stimulation, Qian and colleagues [121] devel-
oped innovative hyaluronic acid-based nano- 
particles called TCiGNPs for delivering gran-
zyme B to tumor tissues. TCiGNPs are destroy- 
ed by hyaluronidase in TME, and granzyme B is 
released to provide antitumor activity, accord-
ing to an in vivo assay utilizing MDA-MB-231 
mammary mouse model. TME immunosuppres-
sion is primarily mediated by IL-10, a significant 
cytokine [122]. Shen et al. [123] generated a 
lipid-protamine-DNA nanocomposite with a 
recombinant plasmid expressing proteins to 
snare IL-10. In the 4T1 breast cancer mouse 
model, the utilization of these nanocompo-
nents improves CTL infiltration and suppresses 
tumor progression. In the extremely invasive 
4T1 mammary tumor model, Ramesh et al. 
[124] revealed that lipid nanocarriers loaded 
with agonists of the CSF-1 receptor and MAPK 
pathways improve the anti-tumor M1-like phe-
notype at TME and tremendously decrease 
cancer progression. In addition, cytokines can 
be adsorbed and delivered by nano sponges to 
the precise site. Hu et al. [125] utilized Pluronic 
F127 as a hydrophilic thermo-sponge shell to 
co-deliver PTX and IL-12, significantly enhanc-
ing CTL-mediated immune activity and inducing 
M1 polarization of macrophages, inhibiting 
immunosuppressive TME. Furthermore, Wu et 
al. [126] generated DC2.4-derived nanovesi-
cles to deliver DOX and cytokines (IL-2 and IFN-
γ), and found that these biomimetic nanove- 
sicles propelled CD45 leucocytes and Ly6G 
neutrophils into the TME.

Future directions and outlook

Currently, the biological mechanisms involved 
in TNBC are still abstruse. Bidirectional com- 
munication between the tumor cells and TME 
substances includes the corresponding regula-
tors and metabolic cross-talk in TME [127]. 
Increased TME cognition in TNBC provides a 
wealth of information about potential therapeu-
tic strategies [26]. A growing body of research 
indicates that nanobio-delivery systems offer a 
great deal of opportunity in terms of improv- 
ing therapeutic outcomes. Nanotechnology can 
modify TME and regulate the immune response 
against TNBC by stimulating DC maturation and 

activation [128], re-educating TAM differentia-
tion [129], or triggering the CTL response [130]. 
Biosubstance-derived compounds can also in- 
crease nanoparticle targeting, biocompatibility, 
and safety [131], as well as provide a sustain-
able and effective treatment option for TNBC 
and metastatic spread via facilitating patients’ 
innate immune defenses and modulating im- 
mune system, or combinatorial. Accurate iden-
tification of biological properties and interac-
tions will encourage the innovation of next- 
generation nanotechnology for combinatorial 
therapy for effective tumor treatment.

Furthermore, nanodrug delivery systems are a 
new area of science that is gaining attention, 
and their clinical application is still in its ear- 
ly stages [132]. Actually, tremendous hurdles 
exist for the application of clinically feasible 
therapeutics in this field and need to be solved 
to establish a considerable level of integration 
among nano-delivery systems, immune res- 
ponse, and adverse reactions. Firstly, nonbio-
based nanoparticles usually have a response 
to TME owing to chemical activity toward acid 
and reactive oxygen species, but they have lim-
ited targeting capabilities (most depending on 
EPR) [44]. Even though they have active target-
ing feasibility with strong biocompatibility, na- 
tural bio-based nanoparticles rarely permeate 
internal tumors. The nanotherapeutic aspects 
are projected to widen, and the combination of 
the advantages of these two targeting mecha-
nisms should guarantee both biosafety and 
tumor-antagonizing effect [133]. Secondly, na- 
nobio-system administration methods remain 
unsatisfying. The majority of research has 
focused on delivering nanobio-medicines via 
intravenous infusion. Patients suffer from con-
tinuous and multiple injection punctures, which 
becomes a new hurdle to overcome. Oral 
administration with less pain and improved 
compliance seems to be a novel and innovative 
approach that may be a beneficial supply str- 
ategy in upcoming cancer treatments [134]. 
Thirdly, biosafety is essential for clinical appli- 
ed generalization. The observation time for the 
biosafety of the nanomaterials ranges from 12 
to 72 hours, which is insufficient. To completely 
avoid potential negative effects, the observa-
tion time needs to be extended. Furthermore, 
the possible biosafety hazards of biosubstan- 
ce-based nano-formulation must be consid-
ered. For example, the off-target possibilities  
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of NA still exist within patients and are hard  
to trace [135]. The process of cell or protein 
nanoparticle fabrication may denature pro-
teins, and some suspect antigens may induce 
abnormal immune activation [136]. Overall, re- 
searchers need to overcome the above limita-
tions to perfect the nano-immunotherapy strat-
egies of TNBC, and we anticipate that remark-
able improvement toward clinical translation 
will be accomplished in the upcoming future.

Conclusions

The heterogeneity of TNBC has served as the 
foundation for the development of viable bio-
therapeutic alternatives. A more integrated and 
coordinated understanding of the intrinsic and 
extrinsic characteristics of the TNBC ecosys-
tem will be a significant advance for biotherapy 
in extending clinical benefit. While immunother-
apy has provided novel and effective therapeu-
tic options, utilizing such immunostimulatory 
drugs without modifications has resulted in  
disadvantages such as rapid elimination and 
off-target effect. Nanoparticle-based immuno-
therapy holds great potential to overcome the- 
se limitations, so as to extend clinical benefit 
and improve the outcomes of patients with 
TNBC. An expanding amount of research has 
demonstrated promising efficacy and tolerabil-
ity of nanomaterials-mediated cancer immuno-
therapy in addition to these general immuno-
therapy techniques. However, biosubstance- 
based nanoparticles are still far from clinical 
application according to the current status and 
existing obstacles. It is crucial to maintain 
focus on how to translate these strategies 
towards a clinic in the future. 
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