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Abstract: Brain metastasis (BM) is a common complication in cancer patients with advanced disease and attributes 
to treatment failure and final mortality. Currently there are several therapeutic options available; however these are 
only suitable for limited subpopulation: surgical resection or radiosurgery for cases with a limited number of lesions, 
targeted therapies for approximately 18% of patients, and immune checkpoint inhibitors with a response rate of 
20-30%. Thus, there is a pressing need for development of novel diagnostic and therapeutic options. This overview 
article aims to provide research advances in disease model, targeted therapy, blood brain barrier (BBB) opening 
strategies, imaging and its incorporation with artificial intelligence, external radiotherapy, and internal targeted ra-
dionuclide theragnostics. Finally, a distinct type of BM, leptomeningeal metastasis is also covered.

Keywords: Brain metastasis, model, blood-brain barrier, imaging, artificial intelligence, targeted therapy, nuclear 
medicine

Introduction

An estimated 1,918,030 new diagnosed can-
cer patients and 609,360 cancer-related 
deaths in 2022 have been documented [1]. 
Despite encouraging survival progress for 
breast and prostate cancers, there are only  
limited numbers of cancer types that can be 
successfully cured [2]. Metastasis is attributed 
for 90% of treatment failure [3]. Brain metasta-
sis (BM) is a common complication in cancer 
patients. In a population-based study, the prog-
nosis for BM is relatively poor, ranging from 2  
to 12 months depending on the primary cancer 
types [4]. Unlike liver or lung metastasis, BM 
has preferred origins including breast cancer, 
lung cancer and melanoma, namely organotro-
pism [4-6]. It is noteworthy that brain is also 
vulnerable to being metastasized by other 
malignancies like leukemia, sarcoma, and pan-
creatic cancer [7-9]. Given the ever-prolonging 
survival thanks for development in diagnosis 
and treatment in non-small cell lung cancer 
(NSCLC, but not SCLC), breast cancer and mel-
anoma, which are the major origins of BM, the 
incidence of BM is expected to increase in the 

future [10-13]. Its exact epidemiological data 
have not been reported, instead of data with 
best approximation [4]. Furthermore, the cur-
rent incidence of BM may be largely underesti-
mated due to the following facts: 1) lack of  
mandatory surveillance of BM in clinically suspi-
cious patients; and 2) lack of mandatory report-
ing of BM status for every cancer patient. The 
best currently available data for BM is derived 
from the SEER database, a population-based 
database covering approximately 21% of USA 
citizens [4]. 

The clinical management of BM is a compre-
hensive decision-making process, necessitat-
ing multidisciplinary discussions including med-
ical oncologists, radiologists, radiotherapists, 
surgeons, nurses, general practitioners and so 
on. Since cancer cure may unlikely be achieved 
in such patients, quality-of-life, treatment-relat-
ed toxicity, overall survival benefit, manage-
ment of primary lesions and other possible 
metastatic lesions are also considered instead 
of merely BM control. Current therapeutics for 
BM are limited, with possible options including 
chemotherapy, radiotherapy, surgery, and up- 
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coming novel therapies such as immunothera-
py and targeted therapies [14]. For the chemo-
therapy, the re-proposing of Temozolomide 
(TMZ), an alkylating agent for high grade brain 
tumours, or usage of capecitabine or etoposide 
have been proved to associate with therapeu- 
tic response [15-17]. However, these results 
have not yet been confirmed in large random-
ized controlled trials. Surgery and radiotherapy 
are feasible local therapeutics for highly select-
ed patients; however, the post-treatment cogni-
tive or neurological function should be carefully  
protected by hippocampus avoidance or by 
meticulously-designed surgery plan [18]. Up- 
coming therapeutics like targeted therapy (dis-
cussed as a separate section below) and 
immune check point inhibitors show promising 
results, with successful examples as immune 
therapy in melanoma-derived BM and EFGR 
targeted therapy in NSCLC-derived BM [19, 20]. 
Besides cancer-targeted treatment, physical 
treatment, speech therapy, palliative care, and 
other dedicated therapies for improved general 
well-being of patients is also suggested.

This review article attempts to present a few 
aspects regarding BM research and clinical 
management, including disease models (or- 
ganoid and animal models) for translational 
research, preclinical and clinical studies on  
targeted therapies for BM, advances in the 
trans-BBB drug delivery, the proactive roles of 
imaging, together with artificial intelligence (AI) 
in diagnosis of BM, development in the exter- 
nal radiotherapy and immune checkpoint inhib-
itors in BM, the emerging role of nuclear medi-
cine in management of BM, and lastly the cur-
rent understanding of leptomeningeal metasta-
sis. Unless specified, BM is meant for paren-
chymal brain metastasis, and another type of 
metastasis with central nervous system in- 
volvement, leptomeningeal metastasis (LM), 
will be discussed in a separate section.

Disease models for BM

Organoid models

Based on human embryonic stem cells, an 
organoid model resembling brain metastasis 
was established, reproducing the stepwise pro-
cessing of metastasis formation: cell adhesion, 
proliferation, and migration, in addition to cell-
cell interactions [21]. Translational potential of 
this model was exemplified by the test of  

EGFR-targeting gefitinib [21]. Unlike conven-
tional 2D cell culture, organoid consists of a 
group of in vitro cells that form a small 3D  
nodule with similar in vivo tumor architecture. 
Brain metastasis organoid can be constructed 
to mimic the microenvironment of BM with the 
cancer cells derived from a human specimen or 
cell bank and human cerebral organoids based 
on embryonic stem cell [21]. This model can 
reproduce the malignant behaviours like cell 
adhesion, proliferation, migration, and intercel-
lular crosstalk and can be used as a drug  
testing platform. Firstly, cellular engineering of 
cancer cells with lentivirus carrying cytome- 
galovirus immediate-early promoter-mCherry-
T2A-Luc for in vitro tracing is performed. 
Secondly, co-culture engineered cancer cells 
with cerebral organoids is followed. When the 
brain metastasis organoid is formed, it is trans-
ferred to a container of bigger volume for stabi-
lization, and finally transferred to a spinner 
flask for further research.

Organoid distinguishes itself by the following 
benefits: 1) easy operations with avoided ani-
mal care, extensive imaging surveillance of 
tumor growth and possible ethical issue; 2) 
easy in vitro management: for genetic manipu-
lation, drug delivery, and real time and repeat-
able surveillance especially for time-depend- 
ent biological process; 3) parallel and high-
throughput production beneficial for batch drug 
screening [22]; and 4) direct observation and 
intervention upon cellular microenvironment. In 
the meantime, it should be bear in mind about 
its disadvantages: 1) lack of reproduction of 
the in vivo physiological process crucial for  
pro-drug study, for which the in vivo activation 
is required for desired activity; 2) lack of the 
inter-organs/system interplay, because the 
organoid only focuses on the local part of the 
tumor, irrelevant for the studies like abscopal 
effect of immune checkpoint inhibitors; and 3) 
requiring further confirmation from the animal 
study.

Animal models

Currently available BM animal models can be 
classified as 1) either ectopic or orthotopic 
model by tumor sites; 2) either allotransplants 
or xenotransplants by whether the donor and 
the host are the same species. Patient-derived 
xenograft (PDX) is a specialized type of xeno-
graft dedicated to maximally recapitulate the 
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human tumor cell biology usually in immune 
compromised animals. Practically, for better 
animal care and welfare during animal studies, 
humane endpoint was proposed covering a 
wide spectrum of indicators like behaviour, 
body weight, tumor size and so on, for deter-
mining whether the animals under experiment 
are extremely suffering and for helping to make 
the decision of euthanasia [23].

Ectopic animal models: Ectopic BM model is an 
easy, convenient disease model for research, 
which is mainly constructed by subcutaneous 
inoculation or implantation of tumor cells or tis-
sues. However, this model neglects the most 
unique microenvironment in brain, i.e. pres-
ence of BBB and associated limited drug pen-
etration [24, 25], presence of astrocytes that 
facilitate the tumor cell homing and treatment 
resistance [26] and the densely cellular envi-
ronment. Intuitively, limited drug penetration 
and associated poorer treatment response in 
BM, compared with extracranial counterparts, 
have been observed [25, 27]. Thus, such mod-
els can be used for preliminary screening of 
therapeutic agents and further validation with 
orthotopic BM models is strongly recom- 
mended.

Orthotopic animal models: Tumor microenvi- 
ronment is crucial for recapitulating biological  
processes like cell adhesion, cell-cell interac-
tion and immune response during carcinogen-
esis and metastatic formation [21]. Uniqueness 
of brain tissue microenvironment conveys the 
characteristics of BM, compared with primary 
parent lesions, which may drive the genetic dis-
parity in BM. Brain tissue is cellularly dense, 
with BBB and cerebrospinal fluid (CSF), and 
presence of stromal cells like glial cells and 
neurotransmitter [28]. BBB is crucial for the 
dynamic evolution of cancer cells travelling 
from primary site to the physiologically isolated 
organ of brain. Further, comparison of genetic 
profiles shows that metastatic tumor cells are 
harboring many novel additional mutations 
than primary parent cells, and losing mutations 
inherited from parent cells as well [29]. Thus, 
an orthotopic model is essential for fully trans-
lational studies elaborating on in vivo genetic 
mutation and targeted therapy. 

Xenotransplants of BM: In immune compro-
mised mice, human cell lines of common can-
cer types are seeded via intracardiac, intraca-

rotid or orthotopic injection to develop BMs 
including those originated from lung cancer, 
melanoma, breast cancer, etc. [30]. The cell 
lines used here can be edited genetically with 
addition of reporter genes for in vivo imaging 
surveillance and the tumor takes approxima- 
tely 5-7 weeks to reach the humane endpoint. 
Xenograft models may retain the characteris-
tics of original cancer cells. For instance, xeno-
graft model from two human melanoma cell 
lines, originating from a cerebral metastasis 
(HM19) and a cerebellar metastasis (HM86) 
showed retention of original characteristic with 
propensity to develop metastatic lesion in 
either cerebrum or cerebellum [31].

Allotransplants of BM: Unlike xenotransplants, 
in which immunocompromised animals are 
required, allotransplant is possible in immune 
competent hosts, and is crucial for study where 
robust immune system is expected to present, 
like immune checkpoint studies [21]. This 
model may reach the humane endpoint faster 
than a xenotransplant does, within 2-3 weeks, 
furthermore, multi-organ metastasis is likely to 
form after in vivo selection. Thus, it would be 
tricky for interpretation of survival data, and 
multifocal lesions may bias the inter-group 
comparison and fail to control cancer in ex- 
tracranial tumors, even with satisfying intra- 
cranial cancer control, leading to biased sur-
vival comparison in evaluated intracranial-spe-
cific therapeutics. 

Genetically engineered mouse models (GEMM): 
GEMM can be induced after abruption of PTEN 
and AKT1 genes [32], ret gene [33] or Trp53 
and Rb1 [34]. This strategy is less adopted, 
probably due to the reasons 1) requirement of 
abruption of gene and breeding (ablation of 
some genes may be fatal); 2) time to expect 
detectable BM is longer and variable, ranging 
from weeks to months, requiring extensive sur-
veillance; 3) bioluminescence surveillance is 
disabled if reporter genes are not inserted;  
and 4) multifocal lesions may also impose 
obstacles for interpretation of brain-specific 
therapeutics and BM may unnecessarily pres-
ent in every host.

Patient-derived xenografts (PDX): PDX can ca- 
pitulate the characteristic of original tumours 
genetically and phenotypically and serve as a 
tool to study tumours and associated treat-
ment response [35]. PDX of BM from lung can-
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cer, melanoma and gastro-intestinal cancer 
was established, and showed inheritance of 
transcriptome and cytoarchitectural features 
from the original tumours [36, 37]. The problem 
for PDX is a lack of robust immune system, 
which now can be restored in humanized PDX 
by infusing human immune cells into immuno-
compromised mice [38]. Ideally, humanized 
mice would receive tumor cell and immunity 
derived from the same patient. However, har-
vesting CD34+ cells from cancer patients are 
tricky and thus an allogeneic immune approach 
with immune cells from animal of the same 
species is usually adopted [39].

The number of available disease models for  
BM research and industrial R&D is growing, 
each of these has its own advantages and dis-
advantages. It is suggested to select a model 
based on study purpose, scientific questions to 
be answered, and trade-off among factors, and 
to elucidate the hypothesis in a stepwise man-
ner: in vitro - in vivo - preclinical - clinical set-
ting. Besides the disease model itself, careful 
post-injection/post-surgical surveillance is eq- 
ually important for solid data collected. 
Magnetic resonance imaging (MRI) is a repeat-
able, non-invasive and non-ionizing surveil-
lance method incorporating high resolution 
anatomical information for tumor size mea- 
surement and delineation and versatile func-
tional imaging for tumor characterizations 
including diffusion (a measure of cellularity), 
perfusion (BBB permeability) and spectroscopy 
(metabolites) [40-42]. For instance, perfusion-
weighted imaging (PWI) utilizes a Gd-based 
contrast agent like Dotarem® (molecular 
weight about 500 Da), which may mimic the 
size and affinity of small molecular therapeutic 
agents and possibly serve as, but not always, a 
surrogate of drug penetration of research agent 
of interest [43]. 

Targeted therapy for BM empowered by basic 
research

The major originating cancer types for BM 
include lung cancer, breast cancer and mela-
noma. Targeted therapies have been adopted 
in management of primary lesions with pre-
specified targets for decades. However, intui-
tively expected anticancer efficacy is not always 
possible in BMs due the heterogeneous gen- 
etic profiles between BMs and primary lesions. 
Current druggable targets for BM from lung 

cancer include EGFR by first-line osimertinib 
[19], ALK rearrangement by first-line alectinib 
[44], brigatinib [45] and lorlatinib [46], RET 
fusion by selpercatinib [47] and pralsetinib 
[48], and ROS1 fusion by entrectinib [49]. The 
tricky aspects of targeted therapy for BM are: 
1) to identify actionable target for intracranial 
lesion in general BM population; 2) to detect, 
preferably non-invasively, mutation status in 
individual level; and 3) to develop well BBB pen-
etrating agents with acceptable safety profile.

Actionable targets of BM

For characterization of BM lesions with atte- 
mpts to identify actionable targets, which are 
unique to cancer cells and hold potential to 
become druggable without safety concerns, 
biopsy of extracranial metastasis or regional 
lymph nodes may not convey reliable informa-
tion for intracranial lesions. In this regard, cir- 
culating tumor DNA (ctDNA) detection in CSF or 
biopsy of BM is a possible surrogate for pre-
treatment characterization and treatment sur-
veillance [50]. Based on the sequencing of 
paired cell free DNA (cfDNA) and genomic  
DNA, cfDNA is more frequently associated with 
positivity for at least one mutation (43.6% vs. 
19.8%) and with 1.6 × more mutations (6.94 
vs. 4.65), and higher mean variant allele frac-
tions (41.1% vs. 13.0%) [51]. Another noninva-
sive, but not high-throughput, method is molec-
ular imaging by nuclear medicine, during which 
a dedicatedly designed probe will accumulate 
in tumor if the pre-specified target exists (dis-
cussed below). Identification of actionable tar-
gets is crucial for effectively eliminating cancer 
cells. BM lesions may harbor potentially drug-
gable targets that are unique to them. Whole-
exome sequencing of 73 lung adenoma-de- 
rived BM cases revealed that compared with  
primary lesions, MYC and YAP1/MMP13 are 
elevated in BM lesions from the same case  
and these findings were further validated by an 
external cohort and functional studies on PDX 
models [29]. FAM129C and ADAMTSs are  
additionally mutate in BM lesions, compared 
with primary lung cancer, however, therapeu-
tics targeting these molecules are scarce [52]. 
Iinterestingly, different BM lesions in the same 
patient shared all potentially druggable muta-
tions, indicating a homogenous entity [53]. 
Genome-wide breast tumor methylation data 
from 11 paired BM and corresponding primary 
tumors showed that GALNT9, CCDC8, and 
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BNC1 were frequently methylated (55%, 73% 
and 71%, respectively) and silenced in BM [54]. 
However, validation of in vivo function of these 
genes has not been reported so far. PI3K/Akt/
mTOR pathway is crucial for early colonization 
of melanoma cells in brain [55]. This pathway 
also involves in the lung cancer BM, via AKT 
and CXCL12 chemokine-CXCR4 axis, which can 
be targeted by BBB penetrable mTOR1/2 in- 
hibitors (Sapanisertinib) [56]. 

In light of the heterogeneity between primary 
lesion and BM, a precisely targeted therapy 
guided by genetic test on biopsy sample in BM 
patients is underway (NCT03994796), with 
special focus on CDK gene mutation, PI3K 
gene mutation and NTRK/ROS1 gene muta-
tion. Clinical trials of inhibiting this pathway by 
PI3K inhibitor alone (NCT03994796) or to- 
gether with Trastuzumab (NCT03765983) are 
ongoing. CDK4/6 involved in carcinogenesis of 
Her2+ breast cancer and its inhibitor has been 
approved in management of Her2+ breast can-
cer. Palbociclib in recurrent brain metastases 
(NCT02896335) and stereotactic radiation to- 
gether with Abemaciclib in HR+/HER2- breast 
cancer derived BM (NCT04923542) are cur-
rently under investigation. 

Aggressive combination may not necessarily 
provide an additive effect on disease control, 
and this should be made based on the under-
standing of mechanism of each component 
drug, interplay while being combined, toxicity 
profile of each component and overall toxicity 
after combination. One example in BM is beva-
cizumab, which may revert the opening of BBB 
in glioma xenograft [57]. In a clinical study of 
41 patients with radionecrosis after radiothe- 
rapy for nasopharyngeal carcinoma, Bevaci- 
zumab reverted the BBB leakage in radione- 
crosis area as measured by dynamic contrast 
enhanced perfusion-weighted imaging (DCE-
PWI) [58]. Trials elaborating on addition of  
bevacizumab to osimertinib (NCT02971501) or 
erlotinib (NCT02655536) in lung cancer deriv- 
ed BM are currently underway. 

Additionally, novel options for BM keep coming 
out: QBS10072S is a bifunctional amino acid 
analogue that targets L-type amino acid trans-
porter 1 for active transport into tumor cells to 
disrupt DNA replication (NCT04430842). Trials 
on buparlisib in melanoma derived BM (NCT- 
02452294) and Her2-CAR T Cells in breast 
cancer BM (NCT03696030) are underway. HBI-

8000, a small molecule inhibitor of class I 
HDACs, has received approval for the treat- 
ment of peripheral T cell lymphoma, adult T cell 
lymphoma/leukemia and breast cancer [59]. A 
clinical trial elaborating on whether addition  
of HBI-8000 to nivolumab will yield survival 
benefit in advanced melanoma is underway 
(NCT04674683). RNA interfering (RNAi) is cur-
rently showing its anti-cancer potential with 
extra potency, versatility, and modularity, com-
pared with small molecule or antibody-based 
therapies. Magnetic nanoparticle targeting 
miR10b (MN-anti-miR10b) showed drug accu-
mulation and inhibition of cancer cells in ani-
mal BM lesions [60]. Understanding of BM 
microenvironment is believed to be theoreti-
cally revolutionizing the identification of novel 
treatment target, however, gaps between 
bench and bedside remain to be filled [61]. 

Re-purposing existing targeted therapy by tack-
ling blood-brain barrier

Another possibility to bypass the obstacles  
during developing novel BM-specific therapeu-
tics is repurposing existing therapeutics that 
holds potential in extracranial disease but  
now for BM, by increasing intracranial delivery 
(BBB opening, mentioned below) or different 
formulation of anti-cancer agents. Repurposing 
TMZ), an oral alkylating agent with proven effi-
cacy in gliomas, in BM seems to be of limited 
clinical effect in NSCLC-derived and melano-
ma-derived BM [62-64]. A small sample phase 
II study, without randomization and control, 
showed TMZ together with cisplatin achieved 
partial response [15]. Classification of BM 
cases by p-glycoprotein, a protein responsible 
for anticancer drug efflux from brain, may iden-
tify candidates that would benefit from the  
conventional chemotherapy [65]. Liposomal 
doxorubicin, compared with free doxorubicin, 
could overcome BBB and successfully accu- 
mulate in brain [66]. Doxorubicin loaded with 
multifunctional polymeric nanotheranostic sys-
tem showed successful penetration into brain 
and induced tumor cell apoptosis, compared 
with the marginal penetration in the original 
form of doxorubicin [67].

Role of BBB on drug delivery

Physiology of blood brain barrier

Blood-brain barrier (BBB) is a specialized struc-
ture consisting of endothelial cells, pericytes, 
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and astrocytes dedicated for gating material 
exchange in and out of the brain and thus the 
physiological hemostasis of microenvironment 
where neurons along with glial cells reside 
(Figure 1). Inter-endothelial junctions connect 
endothelial cells and form a solid entity, creat-
ing a barrier for hydrophilic molecules. More- 
over, efflux pumps like p-glycoprotein and ATP-
binding cassette mediate the excretion of  
drugs like chemotherapeutics and targeted 
therapy [68]. Inter-endothelial components 
including adherent junctions, tight junctions, 
and gap junctions, are the most modifiable  
factors for permeability [69]. Due to the exis-
tence of the BBB, transportation of materials, 
either transcellular or paracellular ones, is 
strictly controlled except for small (molecular 
weight < 400 Da) or hydrophobic molecules like 
carbon dioxide and ethanol [70]. Large mole-
cules like proteins can be transported trans- 
cellularly via facilitation of receptors, but with 
simple diffusion for small molecules. Para- 
cellular transportation, guarded by tight junc-
tions, may be disrupted under pathologic condi-
tions including stroke, cancer, and Alzheimer’s 
disease [70]. However, the BBB is currently 
regarded as a dynamic interface for transporta-
tion, and its opening mechanism, magnitude 
and duration are largely unknown [71]. MRI 
scanning with contrast enhancement may not 
necessarily correlate well with permeability of 
the studied drug of interest and may underesti-
mate the extent of opening [71]. In BM cases, 
to match the greedy need for nutrient and oxy-
gen, blood-brain tumor barrier (BBTB) is formed, 
distinct from the normal BBB with increased 

leakiness especially in central tumor tissue 
[72].

Current strategies to increase cross BBB de-
livery

Furthermore, this finding was confirmed in nor-
mal animals: Rega increased delivery of high 
molecular weight dextran (MW 70 kD) and  
a hydrophilic chemotherapeutic agent (gem-
citabine, MW 263 D) by decreased expression 
of multidrug resistance and tight junction pro-
teins [73]. Increase of TMZ concentration in 
normal rat brain was also observed after co-
delivery with Rega [74]. However, these findings 
failed to be reproduced in clinical studies. 
Additional brain scan with either SPECT for 
99mTc-sestamibi or CT for visipaque in clinical 
cardiac stress test failed to detect any 
increased BBB permeability [75]. It is suggest-
ed to consider the following factors before 
interpreting the negative results. 1) Are these 
imaging modalities sensitive enough to detect 
the effect of Rega if any? 2) What is the optimal 
dose of Rega for repurposing it as a BBB dis-
rupter? The dose used here is 0.4 mg for a 
patient, a common dose for cardiac stress test. 
Our current ongoing study on rat BM models 
showed that Rega at 0.08 mg/kg, a dose ten 
times higher, may increase the perfusion and 
retention of VDA in BM as well as in contralat-
eral brain tissue detected by 3.0T clinical mag-
net (MAGNETOM Prisma; Siemens, Erlangen, 
Germany) (Figure 2). Specifically, contrast-
enhanced T1 weighted imaging showed perfu-
sion deficiency in central tumor region at one-
hour after consecutive administration of regad-

Figure 1. Schematic illustration of blood-brain barrier (BBB) and action sites of the strategy for increasing drug 
penetration.
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enoson and VDA. This perfusion change can 
also be observed in perfusion-related sequenc-
es, including contrast-enhanced T1 mapping, 
T1 value ratio and area under curve at the first 
30 seconds (AUC30) (Figure 2D-F). However, at 
eight hours after treatment the perfusion defi-
ciency was slightly restored, with higher T2 
value. And restored perfusion in cancer periph-
ery indeed provides access for the second 
agent in the OncoCiDia strategy, hypericin 
labelled with radioactive therapeutic isotopes 
[76]. Another clinical study on recurrent glio-
blastoma (n=5) reported a similarly negative 
result: 0.4 mg Rega failed to increase the in- 
tracranial TMZ level [77]. However, the study 
has the following limitations: 1) all five cases 
are diagnosed with high-grade glioblastoma, a 
pathological subtype with initially high BBB 
leakage, and 2) the intracranial TMZ level is 
measured from sampling via a microdialysis 
catheter implanted by surgery, and the surgery 
itself may introduce BBB disruption [77]. Right 
now, it would be premature to conclude the  
role of Rega in opening BBB, and a phase I clini-
cal trial (NCT03971734) is initiated, but not 
recruiting yet, to determine optimal Rega dose 
for BBB integrity abruption in high grade glioma 
tumor patients. 

Another candidate to open BBB is borneol, 
which exerts this effect via inhibition of efflux 
protein, disruption of tight junction protein, 
increased vasodilatory neurotransmitters’ se- 
cretion, and inhibition of active transport by  
ion channels [78]. In normal SD rats, intrave-
nous administration of borneol increased pen-
etration of Evans blue in brain, compared with 
control group and was correlated with higher 
ICAM-1. However, the causality between ICAM-
1 expression and borneol induced permeability 
was not elaborated [79]. An in vivo animal study 
showed that borneol at 50 mg/kg could sig- 
nificantly increase brain penetration of puera-
rin [80]. Additionally, borneol enhanced the 
BBB permeability and increased the kaempfer-
ol level in brain when co-administrated in a 
dose-dependent manner [81]. No clinical trial is 
currently underway regarding borneol in BM. In 

addition, the positive inhibition of ATP-binding 
cassette by Elacridar was observed in animal 
study [82], however, failed to be reproduced in 
clinical trial [83]. Transient opening of BBB by 
high osmotic pressure via interventional deliv-
ery was achieved in an animal study [84]. A  
spatially precise strategy is focused ultrasound 
(FUS) whose advantages over the aforemen-
tioned options include 1) precise control on 
location and duration of the lesion of interest; 
and 2) versatile combination with wide range  
of therapeutics without concerns of drug-drug 
interaction. Besides increased TMZ in glioma 
[85], delivery of trastuzumab (Her2+ targeting 
monoclonal antibody) into mouse brain was 
increased after facilitation of MRI guided FUS, 
yielding survival gain [86, 87]. Increased deliv-
ery of immune cells (NK cells) after FUS was 
also observed in BM animal model [88]. 
However, FUS-induced BBB disruption did not 
improve the brain exposure to 11C-erlotinib, as 
measured by PET imaging, in contrast, ATP-
binding cassette inhibition by Elacridar yielded 
a positive result [82]. The first study on FUS  
in patients (NCT03714243) was reported in 
Her2+ breast cancer, with the successfully 
intracranial accumulation of trastuzumab mea-
sured by SPECT after labelling with 111In [89]. 
Another trial (NCT05317858) for evaluating 
FUS plus pembrolizumab in NSCLC-originating 
BM is currently underway. BBB disruption by 
ExAblate FUS in NSCLC-derived BM is under-
way (NCT05317858).

Despite the encouraging results regarding 
opened BBB and the fact that combination of 
strategies for BBB opening with therapeutics 
that are valid in systematic disease may repur-
pose these therapeutics for BM, it should be 
bear in mind for the heterogeneity between  
primary lesion and BM. BM lesions may be  
biologically and genetically different from the 
primary lesions. Pre-treatment evaluation of 
the expression status of target of interest is 
required ensuring intracranial response, with 
nuclear medicine as a non-invasive method 
compared with biopsy. Pre-treatment charac-
terization of intracranial Her2 status by (64- 

Figure 2. Exemplified rodent case of intracranial tumour treated with Regadenoson and a vascular disrupting agent 
CA4P, studied on a 3.0T clinical magnet. CE-T1WI anatomical scans (A) before treat-ment, one hour and eight hours 
after combinatory treatment. T2 relaxation map (B), T1 relaxation map (C), CE T1 relaxation map (D), T1 ratio map 
(E) and AUC30 (F) display at time points of before treatment, one hour, and eight hours after combinatory treat-
ment. Abbreviations: CE: contrast enhancement, AUC30: area under curve for the first 30 seconds.
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Cu-DOTA-Trastuzumab PET/MRI) in HER2+ 
breast cancer-derived BM is currently under 
investigation (NCT05376878). Another possi-
bility for non-invasive pre-treatment character-
ization is liquid biopsy after FUS abruption of 
BBB which may release the biomarker from  
glioma into systematic circulation [90]. The 
conflicting results reviewed here emphasize 
that further comprehensive studies on the  
optimization and standardization of enhancing 
protocol may help propose a feasible protocol 
for both researchers and clinicians. The devel-
opment of BBB/BBTB transportation enhancer 
can re-purpose drugs in neuro-oncological  
conditions, which were initially excluded due  
to low penetration. One concern, although not 
supported nor excluded by experimental evi-
dence, is the possibility of a risk for extracranial 
metastasis formation due to the BBB opening 
and then outflow of the cancer cells. Moreover, 
optimization of the dose (for drugs like Rega) or 
acoustic pressure (for FUS) and schedules for 
combinatory drug delivery are required to be 
confirmed by clinical trials. 

Imaging methods for development of BBB 
opening strategies

To facilitate development and validation of 
BBB-opening strategies, a real time in vivo 
imaging of BBB opening intensity is of para-
mount importance for observing the dynamic  
of “initially close - opening - opening plateau - 
closing”, with dyes like Evan blue for post-mor-
tem evidence of opening. There are seve- 
ral options for this purpose as follows. The first 
would be dynamic CT or MRI scans with extra-
vascular contrast agents. For a T1 MRI contrast 
agent Gd-DOTA, sequences that can detect  
signal changes include contrast-enhanced T1 
weighted imaging, T1 mapping, and dynamic 
contrast enhanced perfusion weighted imaging 
(DCE-PWI). For a T2 MRI contrast agent, which 
is less frequently used, eligible sequences 
include T2 weighted imaging, T2 mapping and 
dynamic susceptibility contrast perfusion wei- 
ghted imaging (DSC-PWI) [40]. Additionally, 
nuclear medicine with the use of radioactive 
tracers also offers another possibility. PET 
imaging with [18F]2-Fluoro-2-Deoxy-Sorbitol 
can quantitatively measure the BBB opening  
by focused ultrasound (FUS) and this could be 
promising candidate in clinic due to the well-
studied 18F PET imaging [91]. SPECT imaging 

with dual-modal Cu2-xSe nanoparticles (3.0 
nm) can non-invasively monitor the opening 
induced by FUS and recovery of BBB in mice 
[92]. Preclinically, enhancement of intracranial 
delivery of trastuzumab by FUS was monitored 
by SPECT imaging after labelling with 111In 
(111In-BzDTPA-NLS-trastuzumab) [89]. Spec- 
tral imaging with an optical clearing skull win-
dow can detect in vivo BBB opening induced by 
5-aminolevulinic acid (5-ALA)-mediated photo-
dynamic therapy, using Evans blue dye as a 
tracer [93]. However, the invasive nature of  
this method, together with administration of 
Evans blue may compromise its translational 
potential.

It is noteworthy that opening observed by any 
imaging modalities with surrogates may not 
necessarily reflect the entry of drug of interest 
and further validation with the drug of interest 
is warranted.

Future aspects about development of BBB 
opening approaches

Numerous strategies are coming out, either 
chemically by regadenoson, high-osmotic man-
nitol, borneol, or mechanically by FUS. Each of 
these approaches have their own pros and 
cons: the chemical agent can induce diffuse 
opening of BBB throughout the brain, however, 
their mechanism behind, optimal dose, proper 
combination with anti-cancer therapeutic are 
largely unknown and remain to be clarified. 
Currently, evidence of supporting further clini-
cal translation for chemical approach is lack-
ing, less convincing or even conflicting. For the 
FUS, its mechanism is better elucidated, and 
optimization of protocol has been extensively 
studied. The halt for its further application 
would be its local nature: only specific visible 
lesions can be targeted. Since the most BMs 
are multifocal and some lesions are subclini- 
cal, FUS may miss the BM in infancy. The future 
of developing BBB opening strategies are de- 
pendent on the better understanding of BBB 
physiology, identification of actionable targets 
on BBB and meticulously designed clinical 
trials.

Role of imaging and AI for BM

Current advances in BM imaging field include 
early diagnosis of BM, upcoming imaging meth-
ods on therapeutic evaluation, differentiation 
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of radionecrosis and disease progression, and 
AI (radiomics) assisted decision-making. Nano- 
particle-loaded contrast agents may not only 
help identify BM in their infancy but also assist 
magnetic hyperthermia and immune system 
activation [94]. Ultra-high field MRI may provide 
a higher image resolution for early diagnosis, 
and a clinical trial based on 7.0 Tesla magnet 
for early detection of melanoma BM is curren- 
tly underway (NCT04941430). Utilization of 
dual energy CT in detecting BM in patients with 
solid tumor is currently under clinical trial 
(NCT03685539). To report the actual incidence 
of BM in metastatic colorectal cancer patient, a 
clinical trial on mandatory screening on such 
population is ongoing (NCT03694938).

Role of imaging in posttreatment surveillance

For the evaluation of therapeutic effect, MRI, 
CT and nuclear medicine are the major feasible 
options. Specifically, MRI provide sharp soft  
tissue contrast, with multiparametric possibili-
ty for functional BM characterization and ex- 
ploration of novel biomarkers for evaluation of 
therapeutic response and patient prognosis 
[95]. Specifically, anatomical scans with high 
soft tissue contrast may help detect early BM 
formation, and functional sequences like mag-
netic resonance spectroscopy, quantitative 
magnetization transfer, chemical exchange 
saturation transfer, and perfusion-weighted 
imaging may help characterize tumors and  
thus provide information for tumor differentia-
tion and treatment evaluation. For handling 
these imaging data, radiomics and artificial 
intelligence represent powerful tools that can 
extract more information than human eyes. CT 
and nuclear medicine are less explored in BM 
setting. Another issued regarding post-treat-
ment imaging would be the differentiation 
between radionecrosis after radiosurgery and 
disease progression, which is an important 
issue in clinical management, and may lead to 
diverging treatment decisions. Based on con-
ventional MRI sequences (T2WI and CE-T1WI), 
a parameter namely lesion quotient, which is 
the ratio of area seen in T2WI to the total 
enhancing area in CE-T1WI, was proposed for 
successful differentiation: lesion quotient of 
0.6 or greater was observed in all recurrent 
lesions [96]. However, this result failed to be 
reproduced in a later study, due to different 
MRI settings, radiotherapy protocols and so on 
[97]. Another measure is T1/T2 mismatch, 

which is calculated by the contrast-enhanced 
volume on T1-weighted images and the low  
signal-defined lesion margin on T2-weighted 
images, was associated with progression [98]. 
Given the limited information extracted from 
conventional MRI sequences, utilization of 
advanced MRI sequences was then explored: 
diffusion weighted imaging (DWI), perfusion 
weighted imaging (PWI), and chemical excha- 
nge saturation transfer (CEST) imaging. Of 
note, the role of DWI in differentiation may be 
conflicting: increased apparent diffusion coef-
ficient (ADC) can be seen in both conditions 
[99, 100]. In PWI, dynamic contrast enhanced 
imaging (DCE) served as a better tool for the 
differentiation than dynamic susceptibility  
contrast imaging (DSC) did, since in DCE, the 
derived pharmacokinetic parameter Ktrans 
was higher in radionecrosis than that in pro-
gression [101]. A study consisting of seven BM 
patients showed that both nuclear overhauser 
effect and amide could successfully separate 
the two conditions [102]. Radiomics, with the 
help from machine learning for feature selec-
tion, may help better interpret the imaging find-
ings in a deeper way, and better separate the 
two conditions by either anatomical MRI only 
(CE-T1WI, T2 FLAIR) [103, 104] or anatomical 
MRI plus functional DWI and DSC [105, 106]. 
Clinical trials on differentiation of radionecro- 
sis and progression in BM are currently under-
way by perfusion MRI and hybrid PET-MRI 
(NCT03680144, NCT03068520).

Role of AI and radiomics in BM

AI and radiomics energize extraction of more 
information than that human unaided eye cap-
ture: radiomics can extract hundreds of fea-
tures from images by given ROI mask on BM, 
including shape, site, morphology, texture, gra-
dient, whereas AI can recognize different pat-
terns during convolution and max pooling, and 
attempt to build an algebra between these  
features and outcome of interest. Without 
assistance of AI, images of BM were qualita-
tively interpreted to differentiate BM from oth- 
er intracranial lesions mostly dependent on 
functional sequences (neurite orientation dis-
persion, density imaging, diffusion tensor and 
DSC) [107, 108]. Apparent diffusion coefficient 
(ADC) ratios derived from DWI may differentiate 
SCLC and NSCLC-derived BM [109]. This may 
limit the generalization of this classification 
technique across institutions due to depen-
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dence of radiologists’ expertise, variance in 
scanning parameters, impossibility of perform-
ing dedicated sequences which requires spe- 
cified software packages for acquisition and 
processing. 

Radiomic features derived from multimodal 
imaging (MRI and 18F-FDG-PET) yielded better 
AUC than a single modality did [110]. Deep 
learning-based algorithms could successfully 
segment small brain metastasis with a 2.5D 
network based on GoogLeNet architecture and 
yielded satisfying results, simply based on reg-
ularly performed anatomical scans (AUC: 0.98 
± 0.04) [111]. A step further to classify primary 
central nervous system lymphoma and BM  
subtypes (lung and non-lung origins) has been 
achieved by radiomics on top of anatomical 
scans [112]. Besides focusing on conventional 
tumor classification and segmentation, AI now 
is believed to be capable of informing radio-
therapy delivery planning and follow-up of BM 
patients [113]. Unlike the numerous results 
from clinical imaging studies, an AI model dedi-
cated in BM animal models with MR images is 
scarce and currently, our group is developing  
AI algorithms in segmentation of lesions in 
rodent (rats and mice) BM models (data to be 
published). 

Despite numerous studies claiming equivalent 
or even superior accuracy by AI than by clinical 
professionals, it should be also bear in mind 
about the disadvantage of AI studies publish- 
ed so far: 1) most of the studies, despite the 
claimed robust performance, demonstrated 
their models by only one institutional dataset 
and did not involve external validation, thus  
the generalizability is not ensured and overesti-
mation of performance (overfitting) may arise; 
2) codes and models are seldom publicly avail-
able to readers, limiting application in practical 
scenarios and further modifications; 3) there 
has been no standardized and uniform report-
ing format for such studies, like PRISMA in 
meta-analyses, leading to heterogeneity among 
studies and complicating the interpretation of 
results; 4) regarding the classification or seg-
mentation task by AI, quality of the ground truth 
is of paramount importance for performance 
and reproducibility of the models proposed. 
Originating cancer type evidenced by pathologi-
cal report issued by well-trained and experi-
enced pathologists and diagnosis made by 
multidisciplinary team (MDT) discussion are 

crucial for ensuring quality of classification 
task. Since the BMs, especially in larger vol-
ume, usually cause disturbance in tight junc-
tion of BBB/BBTB and lead to peritumoral 
edema, an area with blurred the tumor/brain 
border, as well as inter-observer disparity, seg-
mentation ground truth by more than one ex- 
perienced radiologists may help eliminate bias; 
5) technically, current AI model training is high- 
ly dependent on large amount of high quality 
dataset and the mechanism regarding how the 
algorithm works remains in a black box; and 6) 
study setting may not necessarily reflect the 
practical scenario: how much change can be 
introduced by a study illustrating the classifi- 
cation of originating site within an “already 
known” BM category? If extracranial lesions 
presented, the originating site is highly, but not 
always, suspicious of that origin; otherwise, 
exclusion of primary brain tumor before classifi-
cation of primary origin for BM is a safe and 
logically sound strategy. Hopefully, the inter- 
play between AI and BM imaging study will be 
more fruitful by a multi-center study after pool-
ing data under approvals regarding ethics and 
privacy, unified reporting and sharing of mod-
els, development of novel AI architecture, and 
so on. Besides the upcoming new AI architec-
tures, one of the recent developments was 
achieved by the incorporation of AI and ra- 
diomics that produced nice results [114]. One 
publicly available dataset for BM study, along 
with high quality mask is called BrainMetShare 
dataset from Stanford university. It consists of 
156 pre- and post-contrast whole brain MRI 
studies along with high quality tumor mask in 
patients with at least 1 cerebral metastasis, 
including 4 different 3D sequences (T1 spin-
echo pre-contrast, T1 spin-echo post-contrast, 
T1 gradient-echo post using an IR-prepped 
FSPGR sequence, and T2 FLAIR post) in the 
axial plane, co-registered to each other, resa-
mpled to 256 × 256 pixels, which has been 
used to guide a preclinical BM study [40].

External radiotherapy for BM

Radiation therapy (RT), including radiosurgery 
and whole brain radiotherapy, represents a cor-
nerstone of local management of BM, either 
alone or combined with surgery and systemic 
therapies. The decision of local radiotherapy is 
recommended based on 1) control of systemic 
disease; 2) number and size of BM lesions; 3) 
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expected survival benefit; and 4) involvement 
of hippocampus.

Combinatory strategies of radiotherapy with 
other systematic agents (targeted therapy, 
immune therapy, etc.) are believed to provide 
additional effects, and numerous trials are 
ongoing [115, 116]. Among these, combination 
of radiotherapy and immune checkpoint inhibi-
tors may produce a magic like abscopal effect, 
radiotherapy on brain may cause regression of 
extracranial disease and vice versa [117, 118]. 
Patients with metastatic breast cancer with at 
least two BM lesions are under recruitment to 
test survival benefit and abscopal effect using 
pembrolizumab with stereotactic radiosurgery 
(NCT03449238). Clinical trials of atezolizumab 
and radiosurgery for triple-negative breast  
cancer derived BM (NCT03483012) and pem-
brolizumab and radiosurgery for melanoma or 
NSCLC-derived BM (NCT02858869) are also 
underway.

Other burgeoning fields for radiotherapy in BM 
are radiosensitization and advanced radiother-
apy delivery (hippocampus avoidance) or dos-
ing protocol. Radiosensitization in primary bra- 
in tumor, mainly glioma, has been extensively 
studied, with numerous possible candidate 
agents being proposed [119]. A meta-analysis 
of eight randomized controlled trials (RCTs) in 
2009 showed that addition of possible radio-
sentizers (ionidamine, metronidazole, misono- 
dazole, motexafin gadolinium, BUdr, efaproxiral 
and thalidomide), instead of motexafin-gadolin-
ium and efaproxiral, to whole brain radiothera-
py (WBRT) did not yield improved cancer con-
trol and survival benefit in BM [120]. However, 
such data should be critically interpreted, and 
the development of radiotherapy technique, 
and radiosurgery may be an additional option 
for teaming up with radiosensitizers [121]. 
Additional augmentation of radiotherapy can 
be observed in combination with targeted ther-
apy and immune checkpoint inhibitors [122]. 
The safety and practicability of AGuIX with 
WBRT for BM patients have been elaborated in 
phase I clinical trial where all but one patient 
experienced tumor stabilization or shrinkage 
[123]. Combination of silencing c-Met with 
shRNA with radiation provided a synergistic 
effect and resulted in significant prolongation 
of overall survival in tumor-bearing mice [124]. 
However, no confirmation of this animal result 
has been available from clinical trial yet. 

Nuclear medicine and ongoing OncoCiDia de-
velopment

Role of nuclear medicine in BM

Nuclear medicine takes advantages of energy-
emitting characteristic of radioactive isotopes, 
which can serve as a diagnosis and/or treat-
ment strategy. Nuclear medicine used to func-
tion mainly as a diagnostic tool, with limited 
therapeutic applications, of which iodine-131 
for thyroid cancer is an example. As mentioned 
above, molecular imaging powered by nuclear 
medicine may help determine the expression 
level of a specific target characteristic of the 
tumor at pre-treatment stage. Based on the 
development of cancer biology, by which identi-
fication of tumor-specific target is possible, tar-
geted therapy by radioactive isotopes is then 
enabled. Lu-177 dotatate, targeting somato- 
statin receptors, has showed prolonged pro-
gression-free survival (PFS) in treated arm of 
midgut neuroendocrine tumours, instead of 
prolonged overall survival (OS), which was par-
tially due to the cross-over in the control arm 
[125, 126]. Recently Pluvicto®, targeting pros-
tate-specific membrane antigen (PSMA), has 
been approved for the treatment of adult 
patients with PSMA-positive metastatic castra-
tion-resistant prostate cancer previously treat-
ed with androgen receptor pathway inhibition 
and taxane-based chemotherapy, based on the 
prolonged OS [127]. Successful retention of 
Lu-177 has been reported in BM, together with 
the external radiotherapy, and regression of 
BM lesions was observed [128].

Currently adopted internal radiotherapies (bra- 
chytherapy excluded) are dependent on the 
pre-specified either receptor-ligand binding or 
antibody-antigen interaction or active uptake of 
radionuclide, which may be attenuated due to 
cancer evolution, such as cancer cell dediffer-
entiation, antigen loss, etc. Thus, there are 
strategies purposing on the restoration of 
active uptakes of iodine-131 in thyroid cancer 
by retinoic acid, selumetinib or BRAF inhibitors, 
and possible therapeutic augmentation in 
Lu-177 dotatate by PARP inhibitors (NCT050- 
53854) [129-132]. 

However, there are several impediments for 
development of nuclear medicine therapy for 
BM: 1) shortage of radionuclides: unlike PET 
tracers which can be produced in small cyclo-
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tron, a dedicated accelerator of high energy is 
needed for the isotopes used for individualized 
dosimetry like iodine-124 and zirconium-89, or 
for treatment like copper-67 and bromine-77; 
2) strict regulatory requirements: complex in 
regulatory approval regarding toxicology, lack of 
a pathway that considers the unique character-
istics of both diagnostic and therapeutic iso-
topes; lack of a consensus regarding imaging 
processing and dosimetry for multicentre trials; 
and tedious approval for preclinical researches 
and clinical trials. 

Ongoing development of OncoCiDia in BM

An alternative to bypass the specified depen-
dency of cancer-specific antigen or active up- 
take is to develop a generalized and systematic 
pan-anticancer strategy. In this regard, Onco- 
CiDia strategy, which combines the necrosis 
inducing capacity of a vascular disrupting ag- 
ent (VDA) such as combretastatin 4 phosphate 
(CA4P) and the necrosis avidity of a small mol-
ecule such as hypericin, was proposed and vali-
dated with preliminary anticancer efficacy in 
animal studies [76, 133]. After intravenous 
injection of VDA, up to 80% necrosis was 
observed in central tumor, leaving tumor 
periphery still alive and causing tumor recur-
rence. On the next day (~24 h) after the VDA 
administration, hypericin labelled with a the- 
ragnostic isotope iodine-131 was delivered, 
which retained in the necrotic tumor centre, 
continuously irradiating and killing the tumor 
cells in periphery [76, 133].

In terms of BM, several issues must be add- 
ressed before any translational applications: 1) 
sufficient penetration/retention of both VDA 
and labelled hypericin in BM; 2) sufficient 
necrosis induction induced by the VDA; and 3) 
limited radiation to vital subareas of brain like 
hippocampus or brain stem. For the penetra-
tion of VDA in BM, our previous study showed 
that blood perfusion of BM was poorer than 
that of extracranial counterparts by intra-indi-
vidual comparison of PWI, and the intracranial 
efficacy of VDAs was intuitively lower (data to 
be published). To test the hypothesis whether 
the lower level of VDA or intrinsic sensitivity of 
BM to VDA is responsible for the lower intracra-
nial VDA efficacy, Rega was used immediately 
prior to VDA. The efficacy of the secondary 
131I-hypericin after VDA/Rega administration 
is currently under investigation. Other research 
advances on OncoCiDia are as follows. Hype- 
ricin showed its necrosis avidity by accumula-
tion in lysosome of dead cells as observed  
by confocal microscopy [134]. Identification of 
lipid biomarker in necrotic tumours, compared 
with viable tumours is currently ongoing. A 
novel formulation based on hydroxypropyl- 
β-cyclodextrin, an FDA approved solvent, for 
intravenous injection of iodine-131 labelled 
hypericin (131I-Hyp), was proposed and con-
firmed with uncompromised accumulation of 
131I-Hyp in necrotic liver model [135].

Another clue that might explain the discrepant 
VDA efficacies among individual BM models 
can be illustrated by Figure 3 collected in an 

Figure 3. Two example cases treated with a vascular disrupting agent (CA4P) monitored by ultra-high field MRI for 
therapeutic effect at 24 hours after treatment. Intraindividual comparison of intracranial (red arrow) and extracra-
nial (yellow arrow) efficacy of CA4P showed much stronger vascular shutdown effect in extracranial lesion (A). How-
ever, CA4P did not work well in the BM of lower row case (B). Postmortem nanoCT angiography was performed on 
day 5 after treatment. Robust angiogenesis after VDA treatment is also observed in both BM cases of a single-artery 
supplied tumor (asterisk) (A) in contrast with a BM of multiple arterial blood supply (asterisks) (B).
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ongoing experiment based on an ultra-high 
field magnet (7.0T, Bruker Bio-spin, Ettlingen, 
Germany). In the intraindividual comparison on 
efficacy of VDA between intracranial and ex- 
tracranial tumors, extracranial tumor shows 
stronger and persistent perfusion deficiency, 
compared with intracranial tumor, indicating 
the possible limited drug penetration into in- 
tracranial tumor due to blood-brain barrier 
(Figure 3A). Interestingly, despite the same 
dose of CA4P injected, the resultant extent of 
necrosis differed between individual intracra-
nial tumors (Figure 3A, 3B). The µCT angiogra-
phy exposed that the BM with better VDA effi-
cacy had a single arterial blood supply, whereas 
the BM with poorer response to the VDA was 
nourished by multiple arterial supplies (Figure 
3B), which is mirrored by the experimental find-
ings comparing liver and pancreatic tumours 
[136].

General aspects of leptomeningeal metasta-
sis (LM)

LM is a distinct type of metastasis with involve-
ment of central nervous system, with cancer 
cells homing and proliferating in the leptomen-
inges and CSF space. Metastasis spreading to 
leptomeninges, either focally or diffusely, and 
with or without BM, is seen in 8% of cancer 
patients in autopsy studies and also seems to 
be increasing as patients with cancer patients 
living longer [137]. Currently the understanding 
of LM is limited, with few studies available. 
Complement component 3 (C3) is upregulated 
in LM and facilitates cancer cells survival in 
CSF space. C3 in primary tumor is predictive of 
LM relapse, which can be reverted by pharma-
cologic targeting of C3 [138]. Metastatic me- 
dulloblastoma cells are dependent on GABA 
transaminase to survive in the metabolite-
scarce CSF by using GABA as an alternative 
energy source, thereby facilitating LM forma-
tion [139].

For the detection of LM, besides conventional 
imaging modalities mentioned above, ctDNA 
from CSF liquid biopsy, measured by ultra-low-
pass whole genome sequencing, may provide 
more direct information regarding the diagno-
sis, biological characterization, and therapeutic 
monitoring [140, 141]. Regarding treatment of 
LM, hypofractionated proton craniospinal irra-
diation using proton therapy is a safe and well-

tolerated treatment for patients with LM from 
solid tumors [142]. A clinical trial combining 
radiotherapy with Avelumab, a PD-L1 targeting 
monoclonal antibody, is underway (NCT0371- 
9768).
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