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Abstract: Hepatocellular carcinoma (HCC) is characterized by high rates of recurrence and metastasis and poor 
prognosis. A recently discovered concept of T cell tolerance (TCT) has become an entirely new target of cancer im-
munotherapy. Unfortunately, the effect of TCT on the outcomes of HCC has not been explored. In this study, 7 public 
datasets and one external clinical cohort, including 1716 HCC patients were explored. Through WGCNA analysis and 
differential analysis, we explored the key TCT-related modulates. A total of 95 machine learning integrations across 
all validation cohorts were compared and the optimal method with the highest average C-index value was selected 
to construct the TCT derived signature (TCTS). In all independent clinical cohorts, TCTS showed accurate prediction 
of the prognosis, and was significantly correlated with clinical indicators and molecular features. Compared with 
77 published gene signatures, the TCTS exhibited superior predictive performance. In the external clinical cohort, 
a novel nomogram (comprising TNM stage, Hepatitis B, Vascular invasion, Perineural invasion, AFP and TCTS) was 
constructed to test the clinical performance of TCTS. The results showed that the high TCTS scoring group showed 
dismal prognosis, improved sensitivity to oxaliplatin and good response to anti-PD-1/PD-L1 immunotherapy. More-
over, the low TCTS score group had few genomic alterations, low immune activation and low PD-1/PD-L1 expression 
levels. In conclusion, TCTS is an ideal biomarker for predicting the clinical outcomes and improving precision treat-
ment of HCC.
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Introduction

As the most predominant histological liver can-
cer subtype, hepatocellular carcinoma (HCC) is 
the fourth most common cause of cancer-relat-
ed mortality worldwide [1]. The overall survival 
(OS) outcomes for HCC patients exhibit global 
variations, with a median survival time of 2.5 
months in sub Saharan Africa, but is significant-
ly higher in developed countries [2]. It is impor-
tant to effectively identify all adults at risk of 
HCC using multiple tumor biomarkers (a-feto-
protein (AFP), CEA (carcinoembryonic antigen) 

and carbohydrate antigen 19-9 (CA199) among 
others). Advances in artificial intelligence (AI) 
have provided a unique opportunity for improv-
ing the clinical care of HCC patients [3]. As an  
AI subset, machine learning contributes to effi-
cient curation of electronic health record data, 
histopathology, and molecular biomarkers by 
running algorithms that iterate over repeated 
models [4, 5]. However, current machine learn-
ing applications are limited to single algorith- 
ms, and cross-sectional comparisons are lack-
ing for clinical treatments.
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The main therapeutic options for early-stage 
HCC include resection, ablation, or transplan- 
tation [6]. Traditional systemic therapies are 
still widely used for patients with intermediate 
or advanced stage. Assessment of the progno-
sis and pathologic stage of HCC is extremely 
important [7]. Immune checkpoint inhibitors 
(ICIs)-based immunotherapy has also shown 
strong antitumor activities in HCC patients [8]. 
With combination of systemic immunomodula-
tion and anti-PD-1/PD-L1 therapy, the immune 
landscape can effectively be maintained [9]. 
One of the major challenges in HCC immuno-
therapy is the discovery and validation of pre-
dictive biomarkers for advanced therapy at 
early stages [10]. As a new platinum-based 
anticancer agent, oxaliplatin is associated with 
better survival outcomes than sorafenib in 
advanced HCC [11, 12]. The synergistic and 
sustained antitumor effects of combined im- 
mune checkpoints and oxaliplatin are signifi-
cantly superior to either alone [13]. Therefore, 
there is need to inform on precision treatment 
of HCC by designing effective biomarkers for 
simultaneously evaluating responsiveness to 
immunotherapy and oxaliplatin treatment.

Recently, Michelson et al. reported lineage 
defining transcription factors for medullary thy-
mic epithelial cell subtypes [14]. Model anti-
gens expressed with the aid of lineage tran-
scription factors are sufficient to induce T cell 
tolerance (TCT). This finding has informed on 
exploration of immunotherapy and immune 
mechanisms for HCC. Li et al. found that PD-1 
accumulation and Treg upregulation play a key 
role in inducing distant immune tolerance in 
HCC [15]. Determination of relevant indicators 
for TCT contributes to identification of powerful 
biomarkers to screen suitable patients for anti-
PD-1 combination therapy [16]. Therefore, sys-
tematic exploration of transcription factor-relat-
ed genes has a great potential for promoting 
HCC immunotherapy.

To bridge the above gaps, we investigated the 
clinical implications of TCT in HCC based on 
machine learning integrations. With the aid of 8 
independent clinical cohorts and 95 machine 
learning integrations, an efficient TCT derived 
signature was constructed to improve the prog-
nosis, clinical decision making, immunothera-
py, and oxaliplatin treatment of HCC.

Materials and methods

Data preparation

Eight independent clinical cohorts (TCGA, ICGC, 
GSE116174, GSE54236, GSE76427, GSE14- 
520, GSE27150 and FAHWMU) containing 17- 
16 HCC patients were included in this study. 
The criteria for identification of clinical cohorts 
from public database were: I. Cohorts with 
more than 50 samples with survival informa-
tion; II. At least 10,000 clearly annotated genes; 
and III. Cohorts including patients with no other 
treatments before resection. Entire genomic 
profiles and relevant clinical characteristics for 
HCC patients in the TCGA cohort were down-
loaded from the Genomic Data Commons 
(https://portal.gdc.cancer.gov/). Transcriptome 
data were normalized based on Fragments Per 
Kilobase of exon model per Million mapped 
fragments (FPKM). The FAHWMU cohort was 
selected from the First Affiliated Hospital of 
Wenzhou Medical University (FAHWMU) (Wen- 
zhou, China). The human research ethics com-
mittee of the First Affiliated Hospital of Wen- 
zhou Medical University approved this study. All 
patients/participants were required to sign a 
written informed consent and were all treated 
with a standard systemic therapy. The inclusion 
criteria for patients were: I. Those aged 18 
years or older; II. Those with good hematologi-
cal and renal functions; III. Determination of 
HCC was according to response evaluation cri-
teria of solid tumors (RECIST, version 1.1) and 
IV. Those whose oncology group status of 0 and 
1 were explicit. For the FAHWMU cohort, gene 
expression profiles were obtained based on 
quantitative real-time PCR (qRT-PCR). Labora- 
tory variables (e.g., Hepatitis B, a-fetoprotein 
(AFP), carcinoembryonic antigen (CEA) and car-
bohydrate antigen 19-9 (CA199)) were as- 
sessed from results of a test that was closest 
to the surgical date. The TNM stage for each 
HCC patient was assessed based on the 8th 
edition of the AJCC Staging Manual. Histo- 
pathological variables (e.g., tumor size, lymph 
node invasion, vascular invasion, and perineu-
ral invasion) were also included. Descriptive 
statistics for clinical characteristics in the FA- 
HWMU cohort are shown in Table S1. The ICGC 
cohort was obtained from the ICGC data portal 
(https://dcc.icgc.org/projects/LIRI-JP). The oth- 
er clinical cohorts (GSE116174, GSE54236, 
GSE76427, GSE14520, and GSE27150) were 
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downloaded from the Gene Expression Omni- 
bus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). Among them, the GSE116174 cohort 
was retrieved from the Affymetrix HT HG-U133+ 
PM Array Plate platform; the GSE54236 cohort 
was retrieved from the Agilent-014850 Whole 
Human Genome Microarray 4x44K platform 
[17]; the GSE76427 cohort was retrieved from 
the Illumina HumanHT-12 V4.0 expression 
beadchip platform [18]; the GSE14520 cohort 
was retrieved from the Affymetrix Human Ge- 
nome U133A 2.0 Array platform [19] while the 
GSE27150 cohort was retrieved from the State 
Key Lab Homo sapien 2.6 K platform. Signatures 
of lineage-defining transcription factors in dis-
tinct medullary thymic epithelial cell subtypes 
were obtained from a previous study [20]. As 
described in the study, lineage-defining tran-
scription factors can effectively induce T cell 
tolerance by driving mimetic cell accumulation. 
Therefore, these lineage-defining transcription 
factors can be used to assess the T cell toler-
ance landscape, and their downstream genes 
are potential TCT-related genes. The downstre- 
am genes of these transcription factors were 
selected using the Cistrome Data Browser 
(http://cistrome.org/db/#/).

Quantitative real-time PCR

For the FAHWMU cohort, total RNA from HCC 
tissues of each patient was extracted using  
the Trizol reagent. Then, the RNA was reverse 
transcribed into cDNA using the ribo scripttm 
reverse transcription kit. With the aid of gly- 
ceraldehyde 3-phosphate dehydrogenase (GA- 
PDH), RNA expressions were calibrated. Real-
time PCR was performed on a 7500 fast quan-
titative PCR system (Applied Biosystems, USA) 
using the SYBR Green master mix. The CT value 
for each well was recorded, and it was calcu-
lated using the 2-ΔCT method.

Consensus clustering

Consensus clustering was performed using the 
“ConsensusClusterPlus” R package to group 
the HCC patients into main TCT-related sub-
types [21]. The consensus cumulative distri- 
bution function (CDF) curve was established 
based on the consensus index and CDF slopes. 
We hypothesized that the consensus index 
value was transformed from 0.1 to 0.9. Then, 
slopes of CDF curves were compared, and the 
one with the smallest slope determined as the 

optimal value to separate the TCT-related sub-
types [22].

Evaluation of immune infiltration

The CIBERSOFT algorithm was used to deter-
mine the relative contents of 22 tumor immune 
infiltrating cells (TIICs). As an analytical tool de- 
veloped by Newman et al. in the Alizadeh lab, 
the CIBERSOFT algorithm is used to estimate 
the abundance of member cell types in mixed 
cell populations using gene expression profiles 
(https://cibersortx.stanford.edu/) [23]. To veri-
fy the findings from the CIBERSOFT algorithms, 
we calculated the relative scales of fractions of 
17 immune cells and 13 immune related path-
ways using the “GSVA” R package. To precisely 
assess tumor cell proportions as well as the 
infiltrating immune and stromal cells, Estima- 
tion of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data (ESTI- 
MATE) algorithm was used based on the on- 
line website (https://bioinformatics.mdander-
son.org/estimate/index.html). Based on the 
differential transcripts, we applied the GO (ge- 
ne ontology) database for functional annota-
tion enrichment analysis (including biological 
process, cellular component and molecular 
function) (http://pantherdb.org/).

Weighted gene co-expression network analysis 
(WGCNA)

In this study, WGCNA was performed to identify 
potential gene sets with similar TCT-related ex- 
pression patterns and to screen the key regula-
tory genes. The WGCNA steps were: I. The cor-
relation coefficients were calculated based on 
expression patterns between different TCT 
related clusters; II. By delineating genes with 
close correlation in the co-expression network, 
a threshold was established to partition into 
different patterns; and III. By performing com-
parisons between TCT clusters and biological 
pathways, the threshold with the highest coef-
ficient to TCT clusters was selected to deter-
mine the key TCT related patterns.

Construction of optimal TCTS

Ten machine learning algorithms (Lasso, Lo- 
gistic, Ridge, Stepwise Cox, Random Forest 
(RF), Cox Boost, Survival Support Vector Ma- 
chine (SVM), generalized boosted regression 
modeling (GBM), elastic network (Enet) and 
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supervised principal components (SuperPC)) 
were transformed into 95 kinds of machine 
learning integrations. The 10 machine learning 
algorithms are described: I. The Ridge, Logistic, 
Lasso and Enet regression analyses were per-
formed using the “glmnet” R package. Based 
on 10-fold cross validation, the leave one out 
cross validation framework was constructed to 
obtain the optimal regularization parameter 
(lambda). With lambda’s segmentation, the sig-
nature was further compressed and correlation 
coefficients determined. For Enet regression 
analysis, the regularization parameter was se- 
lected based on the leave one out cross valida-
tion framework, while the L1-L2 tradeoff was 
set to 0.1-0.9 (interval = 0.2); II. Using the “sur-
vival” R package, the stepwise Cox algorithm 
was constructed using the Akaike information 
criterion (AIC). The “simultaneous”, “backward”, 
and “forward” were all treated as orientation 
modes to perform the stepwise Cox regression 
analysis. The key prognostic genes and rele-
vant correlation coefficients were finally deter-
mined by stepwise compression regression; III. 
The Random Forest (RF) plot was established 
using the “randomforest” R package. The RF 
had two different parameters (nTree and mtry). 
The mtry was the number of variables that had 
been randomly selected at each node for split-
ting, while nTree denoted the number of trees  
in the forest. In the RF regression analysis, all 
pairs of nTree and mtry were obtained. The 
combination of nTree and mtry with the highest 
C-index value was determined as the optimiza-
tion parameter. Therefore, the optimal genes 
and regression coefficients were divided; IV. 
Cox Boost was implemented using the “cox-
boost” R package to fit the Cox proportional 
hazards model through component likelihood 
boosting; V. The Survival SVM regression meth-
od was based on support vector regulation and 
enabled the prediction of survival time and sta-
tus through covariates; VI. The GBM regression 
analysis was achieved using the “superpc” R 
package. According to the leave one out cross 
validation framework and cv.gbm, the index 
with the smallest cross validation error number 
tree was selected to determine the bossted 
regression signature; VII. Through principal 
component analysis, SuperPC regression anal-
ysis was performed using the “superpc” R 
package. It generated a linear capture based 
on maximum direction of the feature or combi-
nation of variables of interest. Then, the cv. 

function used a form of leave one out cross 
validation framework to estimate the super-
vised optimal feature thresholds in principal 
components. The “pre-validation approach” 
was performed to avoid challenges associated 
with small validation cohorts.

Construction of the optimal TCTS was done as: 
I. Univariate Cox regression analysis was per-
formed to identify the significantly expressed 
prognosis-related TCT related modulates; II. 
Ten machine learning algorithms were trans-
formed into 95 kinds of machine learning inte-
grations; III. Machine learning integrations were 
first performed based on prognosis related 
TCT-related modulates in the TCGA cohort; IV. 
In the other clinical validation cohorts, the 
machine learning integrations were used to 
obtain the individual C-index value; IV. The 
machine learning integration with the highest 
average C-index value across all clinical cohorts 
was determined as the optimal one to con-
struct the TCTS.

Immunohistochemistry (IHC) staining images

In this study, immunohistochemistry (IHC) st- 
aining images were obtained. First, paraffin-
embedded tissue sections of HCC were sliced 
into 4 μm-thick sections. Then, the tissue sec-
tions were deparaffinized, rehydrated, micro-
waved for antigen retrieval, and subjected to 
hydrogen peroxide blocking to reduce non-spe-
cific background staining. The sections were 
sealed with 10% serum for 1 h at 37°C. Then, 
the sections were incubated with anti-PD-1 or 
PD-L1 antibodies overnight. The following day, 
samples were incubated with a primary anti-
body enhancer and HRP polymer. Finally, spe-
cific binding sites were established by DAB 
staining.

Immunotherapy and drug sensitivity analysis

The Wolf cohort 2021 (Anti-PD-L1), Ascierto 
cohort 2016 (Anti-PD-1), Homet cohort 2019 
(Anti-PD-1) and Amato cohort 2020 (Anti-PD-1) 
were all included in this study. They were 
obtained from the GSE173839, GSE67501, 
GSE111636 and GSE145996 cohorts, respec-
tively. Drug sensitivity analysis of Oxaliplatin 
was performed using the Genomics of Drug 
Sensitivity in the Cancer-2 (GDSC2) database 
(https://www.cancerrxgene.org/). Cell viabili-
ties under the influence of Oxaliplatin were 
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nificantly high in cluster-2. Macrophages of the 
M2 phenotype were enriched in cluster-3 while 
M0 macrophages were enriched in cluster-4. To 
verify the results in the CIBERSOFT algorithm, 
ssGSEA analysis was performed. Relative ab- 
undances of immune cells (Figure 2C) and 
immune-related pathways (Figure 2D) were 
markedly high in TCT-related cluster-2 (P < 
0.01), and significantly low in cluster-3 (P < 
0.05). Correlations between ESTIMATE scores 
and TCT-related clusters were also validated 
(Figure 2F, P < 0.001). In WGCNA analysis of 
TCT-related clusters, the soft threshold was 
determined as 5 to construct the optimal net-
work (Figure S1). In Figure 2E, MEblue was 
determined as the key TCT-related pattern. 
Then, GO enrichment analysis revealed that 
genes in MEblue were highly enriched in im- 
mune activation (T cell activation, and leuko-
cyte mediated immunity among others) associ-
ated biological functions (Figure S2B). Then, 
differential analysis was performed to screen 
for significantly differentially expressed genes 
(DEGs) among the TCT-related clusters (|LogFC| 
> 2; P < 0.001). The venn diagram revealed that 
252 intersection genes were obtained as key 
TCT-derived modulates by intersecting genes 
within WGCNA analysis and differential analysis 
(Figure 2G). The 252 intersection genes are 
presented in Table S2.

Construction of optimal TCTS

A total of 145 prognosis-related TCT derived 
genes were screened via univariate Cox regres-
sion analysis. Then, 95 machine learning inte-
grations were used to construct the TCTS ac- 
ross 8 independent clinical cohorts individually. 
In Figure 3A, the one with the highest average 
C-index value (Lasso + stepCox) was deter-
mined as the optimal integration to generate 
the TCTS. In Lasso regression analysis, the 
optimal λ and distribution of coefficients are 
shown in Figure 3B, 3C. The optimal 5 TCT-
derived genes and relevant coefficients we- 
re obtained via stepCox regression analysis 
(Figure 3D). The K-M survival curves preliminar-
ily revealed that the OS for HCC patients in the 
high TCTS scoring group was significantly dis-
mal when compared to the low TCTS scoring 
group in all clinical cohorts (Figure 3E).

Clinical prognostic performance of TCTS

The time-dependent ROC analysis was per-
formed to verify the prognostic value of TCTS in 

determined using the metabolic assay (resa-
zurin/celltiter glo). Tolerability was determined 
using the half maximal inhibitory concentration 
(IC50).

Statistical analysis

All bioinformatics analyses were performed 
using R 4.2.1 (https://www.r-project.org/). The 
statistical class graphs were plotted using the 
Graphpad Prism (https://www.graphpad-prism.
cn/). For cohorts with small sample sizes (n < 
50), the t-test was used for differential analysis. 
For the other cohorts, the Wilcoxon test was 
used for differential analysis, guaranteeing that 
it does not depend on probability distribution 
belonging to any particular parameter. Time 
dependent ROC curves were constructed using 
the ‘timeROC’ R package. The nomogram and 
calibration curves were generated using the 
“rms” R package. All p values were two tailed 
and P < 0.05 was the threshold for statistical 
significance. 

Results

Identification of key TCT-related modulates

As shown in the flow diagram (Figure 1), the 
overall design can be described as. I. Identi- 
fication of key TCT derived modulates; II. 
Construction of optimal TCTS; III. Clinical impli-
cation value of TCTS was correlated with clini-
cal traits, pathological index and molecular fea-
tures; IV. Prognostic capacity of the TCTS was 
compared with 77 published gene signatures; 
v. The IHC staining images and immune land-
scapes were used to verify the potential im- 
munotherapeutic implications of TCTS; and VI. 
Further clinical implications of TCTS were deter-
mined. In the TCGA cohort, consensus cluster-
ing was implemented based on genomic pro-
files of TCT-related genes to screen for poten- 
tial TCT-derived subtypes. With the consensus 
k value from 2 to 9, we selected k = 4, with the 
smallest CDF slope, to determine the clusters 
(Figure 2A). Figure 2B shows the distributions 
of HCC patients when consensus matrix k = 4. 
In Figure S2A, the complex heatmap plotted  
the distribution of clinical traits, TIICs and 
ESTIMATE scores between different clusters. 
These findings indicate that ESTIMATE scores 
were enriched in clusters 1 & 2. Moreover, the 
abundances of CD8 T cells, activated memory 
CD4 T cells and follicular helper T cells were sig-
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Figure 1. A flow diagram showing the overall design of the study.
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Figure 2. Identification of key TCT-related modulates in the TCGA cohort. (A) Consensus CDF curves with the k value 
from 2 to 9. (B) The distribution of HCC patients in the consensus clustering when k = 4. (C, D) The boxplot showing 
differences in the scale of fraction of 17 immune cells (C) and 13 immune related pathways (D) between different 
TCT related clusters. (E) WGCNA showing the associations among potential TCT-related patterns, TCT-related clus-
ters, clinical characteristics, tumor mutation burden and ESTIMATE scores. (F) The boxplot displaying differences in 
Immune score, Stromal score, and ESTIMATE score between different TCT-related clusters. (G) The Venn diagram 
illustrating the intersection genes between WGCNA and differential analysis.
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Figure 3. Construction of the optimal TCT derived signature. A. The comparison of 95 machine learning integrations 
across all independent clinical cohorts. B. Determination of the optimal λ, when the partial likelihood deviance 
reached the minimum value in the Lasso regression analysis. C. The correlation between Log λ and coefficient 
across all prognostic TCT related modulates. D. A forest plot showing the coefficient and Hazard ratio for each TCTS 
gene in the stepwise Cox regression analysis. E. K-M survival curves illustrating the difference in OS between low 
TCTS scoring group and high TCTS scoring group in all independent clinical cohorts (all P < 0.05).

HCC. The ROC-AUC values for the 1st year were 
0.868, 0.776, 0.872, 0.819, 0.835, 0.784, 

0.752 and 0.768 in each cohort (Figure 4A); 
those of the 2nd-year were 0.842, 0.761, 0.851, 
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Figure 4. The clinical prognostic value of TCTS. (A-C) The AUC value of ROC curves for all independent clinical cohorts 
in the 1st (A), 2nd (B) and 3rd (C) years. (D-G) The distribution of TCTS scores between different TNM stage groups in 
the TCGA cohort (D), ICGC cohort (E), GSE76427 cohort (F) and GSE116174 cohort (G). (H) The distribution of TCTS 
scores between different T stage groups in the TCGA cohort. (I-K) The distribution of TCTS scores between normal 
tissues and tumor tissues in the TCGA cohort (I), GSE54236 cohort (J) and GSE144269 cohort (K). (L) The distribu-
tion of TCTS scores between different sorafenib response groups in the GSE109211cohort. (M) The distribution of 
TCTS scores between different multinodular groups in the GSE144269 cohort. (N) The distribution of TCTS scores 
between different tumor grade groups in the TCGA cohort. (O) The distribution of TCTS scores between different AFP 
status in the GSE144269 cohort.

0.789, 0.812, 0.776, 0.739 and 0.743 in each 
cohort (Figure 4B) while those of the 3rd-year 
were 0.813, 0.708, 0.81, 0.731, 0.763, 0.681, 
0.715 and 0.726 in each cohort (Figure 4C). In 
clinical cohorts with pathological stage (includ-
ing TCGA, ICGC, GSE76427 and GSE116174 
cohorts), the TCTS score was positively corre-
lated with pathological stage (Figure 4D-G, P < 
0.05). In other pathological indicators, includ-
ing T stage, multinodular and tumor grade, the 
TCTS score exhibited comparable findings (Fi- 
gure 4H, 4M and 4N, P < 0.05). In tissue dif-
ferentiation, TCTS showed a great ability to dis-
tinguish between tumor and normal tissues 
(Figure 4I-K, P < 0.05). Correlations between 
Sorafenib response, AFP status and TCTS were 
also plotted (Figure 4L and 4O, P < 0.05). In 
Figure 5, we compared the C-index value bet- 
ween TCTS and 77 published gene signatures. 
Details of the 77 published signatures are pro-
vided in Table S3. In most independent clinical 
cohorts (including TCGA, GSE54236, GSE76- 
427, GSE14520 and FAHWMU cohorts), the 
C-index values for our TCTS (0.759, 0.835, 
0.84, 0.813 and 0.829, respectively) were sig-
nificantly superior than those of the other pub-
lished gene signatures. In the ICGC cohort, the 
signature of Tao et al. (C-index = 0.751) was 
more effective in predicting prognosis than 
TCTS (C-index = 0.742). In the GSE27150 
cohort, the C-index value of TCTS (0.761) was 
relatively lower compared to those obtained by 
Deng M (0.765), Zhang Z (0.766), and Zhang Q 
(0.766). In the GSE116174 cohort, the prog- 
nostic value of TCTS was relatively suboptimal 
(C-index = 0.684). In summary, in most inde-
pendent clinical cohorts, the C-index value of 
our TCTS was higher when compared with those 
of 77 published gene signatures, suggesting 
the superior prognostic prediction capacity of 
TCTS.

Construction of a novel nomogram in the exter-
nal clinical cohort

To elucidate on the clinical implications of TCTS, 
we used a combination of TCTS, physical exam-

ination data (age, gender), pathological indica-
tors (TNM stage, tumor size, Hepatitis B, lymph 
node invasion, vascular invasion, perineural 
invasion, albumin) and molecular features (AFP, 
CEA, CA199). In the FAHWMU cohort, the com-
plex ROC curves revealed the ROC-AUC values 
of clinical traits. Albumin had the highest AUC 
value (0.735) while lymph node invasion had 
the lowest value (0.502) (Figure 6A). Univaria- 
te Cox analysis revealed the individual impact 
of each clinical trait on prognostic prediction 
(Figure 6B). Multivariate Cox analysis showed 
the combined value of all clinical traits and 
TCTS in prognostic prediction (Figure 6C). It 
was established that TNM stage, Hepatitis B, 
vascular invasion, perineural invasion AFP and 
TCTS were relatively more robust in terms of 
prediction (P < 0.05). Clinical applicabilities of 
these indicators were assessed using the 
nomogram (Figure 6D). As proven by the cali-
bration curves, the nomogram can predict the 
1st, 2nd and 3rd year prognostic outcomes 
(Figure 6E).

Potential molecular mechanisms of TCTS

In Figure 7A, the boxplot shows the distribu-
tions of TIICs between low- and high-TCTS score 
groups. It is shown that CD8 T cells, resting 
memory CD4 T cells, Tregs, M1 macrophages 
and ESTIMATE scores were highly enriched in 
the high-TCTS score group (P < 0.05) while M0 
macrophages, M2 macrophages, and resting 
mast cells were significantly enriched in the 
low-TCTS scoring group. The GSEA-GO enrich-
ment analysis revealed that high-TCTS score 
groups were enriched in biological pathways 
such as replication, apoptosis and immunity 
(Figure S3A). The distributions of genomic al- 
terations between low- and high-TCTS score 
groups are shown in Figure S3B. These findings 
show that relative levels of TP53 and several 
loss predominant point mutations were signifi-
cantly high in the high-TCTS score group. The 
IHC staining images showed that PD-1/PD-L1 
expressions were markedly elevated in the 
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Figure 5. Comparison of C-index between TCTS and 77 published gene signatures in all independent clinical co-
horts. Comparison of the C-index between TCTS and 77 published gene signatures based on the following steps: 
(1) A total of 77 published gene signatures of HCC were obtained from published articles; (2) The risk score of an 
individual gene signature was calculated using a formula provided in previous articles; (3) The C-index value of TCTS 
and published gene signatures in all independent clinical cohorts were calculated using the R package “compareC”; 
(4) In each independent clinical cohort, the C-index value between TCTS and 77 published gene signatures were 
compared. One with the highest C-index value was considered to have superior predictive capacity.

high-TCTS score group (Figure 7B-E). Figure 
8A-D shows that the TCTS scores can effective-
ly predict the responses of immune checkpoint 
inhibition (ICIs) in four independent immuno-
therapeutic cohorts (Wolf cohort 2021, Ascierto 
cohort 2016, Homet cohort 2019, and Amato 
cohort 2020). The subsequent ROC curves veri-
fied the predictive capacity of TCTS (AUC = 
0.686 in the Wolf cohort 2021, AUC = 0.929 in 
the Ascierto cohort 2016, AUC = 0.733 in the 
Homet cohort 2019 and AUC = 0.688 in the 
Amato cohort 2020) (Figure 8E-H). Agent sensi-
tivity analysis revealed that TCTS was signifi-
cantly correlated with the IC50 of oxalipla- 
tin in the TCGA, ICGC, GSE76427, GSE54236, 
GSE27150 and GSE14520 cohorts, respecti- 
vely (Figure 8I-N).

Discussion

As a result of delayed diagnosis and limited effi-
cacies of existing therapies, the 5-year survival 
rate for HCC patients is low [24]. Liver trans-
plantation for the vast majority of patients is 
limited by insufficient medical resources [25]. 
Meanwhile, traditional staging systems (e.g., 
TNM stage, and BCLC stage) have not met the 
needs of precision medicine in assessing prog-
nosis and liver dysfunctions in advanced HCC 
[26]. Therefore, it is essential to identify novel 
biomarkers in patients with established HCC to 
improve the early diagnosis, treatment respons-
es and OS outcomes. Electronic health records 
data, imaging modalities and histopathology 
have been widely used as biomarkers for iden-
tification of HCC [27, 28]. At the molecular level, 
various genetic signatures have also been used 
as novel HCC biomarkers [29]. However, due to 
wide heterogeneous factors and pathogenesis 
of HCC, the capacity of these biomarkers for 
precise prognostic assessment is extremely 
limited. Advances in AI provide unique opportu-
nities for precision medicine in HCC [30]. As a 
key AI component, machine learning progres-
sively improves biomarker performance by iter-
ating over the model and optimizing the param-

eters via incorporating additional validation 
cohorts [31]. Therefore, machine learning can 
effectively ensure the superiority and robust-
ness of prognostic markers. We compared the 
performance of 95 machine learning approa- 
ches using 8 independent clinical cohorts and 
determined the optimal one to construct the 
TCTS. The constructed TCTS exhibited the abil-
ity to precisely evaluate the prognostic out-
comes. Moreover, exchange of TCTS score were 
positively associated with pathological stage, 
tumor grade, sorafenib response and AFP sta- 
tus.

To identify biomarkers for efficient prediction  
of HCC prognosis and guide target treatment 
from genomics aspects, various gene signa-
tures were constructed. Xu et al. reported a 
novel Jab1/CSN5 derived LncRNA signature to 
improve the clinical outcomes of HCC [32]. Fu 
et al. constructed a DNA methylation derived 
signature for prognostic prediction of hepatitis 
positive HCC [33]. These genetic signatures 
provide guidance for clinical care of HCC via 
partial biological function pathways. However, 
most signatures typically only use one single 
regression algorithm (e.g., Lasso, stepwise Cox, 
etc.), therefore, it is difficult to guarantee their 
efficiency [34, 35]. Various studies focused on 
machine learning algorithms to construct the 
signature, but it confined solely to some sepa-
rate machine learning algorithm (e.g., survival 
SVM, RandomForest, etc.) [36, 37]. Due to the 
lack of cross-sectional comparisons of ma- 
chine learning models, or insufficiency of vali-
dation cohorts, most of the current models do 
not fully satisfy the requirements for precise 
prediction of HCC. In this study, 95 machine 
learning integrations were performed using 8 
independent clinical cohorts to ensure the 
superiority and robustness of the signature to 
the greatest extent.

It has been reported that TCT plays a key in- 
flammation-associated role in fibrosis and HCC 
development, therefore, targeting TCT interac-
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Figure 6. The clinical implication of TCTS in the FAHWMU cohort. A. The ROC curves showing the AUC value of clini-
cal characteristics and molecular features in the FAHWMU cohort. B. The univariate Cox regression analysis results 
showing the impact of the clinical characteristics, molecular features and TCTS in predicting the prognosis. C. The 
multi-Cox displaying the prognosis prediction performance of clinical characteristics, molecular features and TCTS. 
D. A nomogram comprising TNM stage, Hepatitis B, Vascular invasion, Perineural invasion, AFP and TCTS for predict-
ing the prognosis. E. The calibration curves of the nomogram in predicting outcomes at 1st, 2nd and 3rd years.
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Figure 7. The correlation between TCTS and potential molecular mechanisms. A. The distribution of 22 TIICs and 
ESTIMATE scores between different TCTS scoring groups (ns: no significant; *: P < 0.05; **: P < 0.01; ***: P < 0.001). 
B-E. The IHC staining images demonstrated the relative expression levels of PD-1/PD-L1 between High- and Low- 
TCTS scoring groups.

tions holds great potential in therapy [38, 39]. 
In this study, a TCT derived signature was con-
structed and its clinical implications deter-
mined. It was found that TCTS could markedly 
inform on prognosis, immune activation, immu-
notherapy, and agent treatment of HCC. The 
CD4 T cells mainly function to remove senes-
cent hepatocytes and alleviate inflammatory 
responses [40] while the CD8 T cells mainly 
exert anti-tumor effects in association with IFN 
[41]. The anti-PD-L1 therapy effectively pro-
motes CD8 T cell infiltrations in tumor environ-
ments [42]. Expressions of PD-L1 on infiltrating 
tumor-associated macrophages can exacer-
bate the suppression of CD8 T cells in HCC 
[43]. Our signature exhibited a significant ca- 
pacity for assessment of T cells and PD-1/
PD-L1, which may improve the applications of 
precision immunotherapy in HCC. The inclusion 
of 4 immunotherapeutic cohorts validated the 

high efficacy and applicability of TCTS. Ding et 
al. reported that the combination of oxaliplatin 
with autophagic inhibitors enhances chemo-
therapeutic efficacies and improves the prog-
nostic outcomes of HCC patients [44]. Wu et al. 
found that TP53 mutations can significantly 
enhance tumor invasion and are associated 
with poor prognostic outcomes of HCC patients 
[45]. Therefore, TCTS is a powerful tool for 
assessment of genomic alterations and oxali-
platin responses.

This study has some limitations. First, the bio-
logical functions of 5 genes in TCTS were not 
experimentally validated. Second, clinical trials 
should be included at follow-up to validate the 
guiding role of TCTS for immunotherapy and 
oxaliplatin treatment. Additionally, clinical appli-
cabilities of TCTS should be further validated in 
larger clinical cohorts.
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Figure 8. The association between immunotherapy, oxaliplatin treatment 
and TCTS. A-D. Differential analyses showing the correlation between ICIs 
response and TCTS score in the Wolf cohort 2021, Ascierto cohort 2016, 
Homet cohort 2019, and Amato cohort 2020, respectively. E-H. The ROC 
curves illustrating the prediction performance of TCTS in the Wolf cohort 
2021, Ascierto cohort 2016, Homet cohort 2019, and Amato cohort 2020. 
I-N. The correlation between TCTS and IC50 of oxaliplatin in the TCGA cohort, 
ICGC cohort, GSE76427 cohort, GSE54236 cohort, GSE27150 cohort and 
GSE14520 cohort.
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Conclusion

We constructed a robust and powerful TCTS 
based on 95 machine learning integrations 
using 8 independent clinical cohorts. The TCTS 
enabled precise assessment of prognosis, and 
was significantly correlated with clinical indica-
tors and molecular features. Compared with 77 
previously published gene signatures, the supe-
rior predictive capacity and robust performan- 
ce of TCTS was established. In the FAHWMU 
cohort, a novel nomogram (embracing TNM 
stage, Hepatitis B, vascular invasion, perineu-
ral invasion, AFP and TCTS) was constructed to 
emphasize the clinical applications of TCTS. 
The high TCTS score group exhibited dismal 
prognostic outcomes, significant sensitivity to 
oxaliplatin and immunotherapy. The low TCTS 
score group was associated with low tumor 
mutation levels, low immune activations and 
low PD-1/PD-L1 expressions. In summary, 
TCTS is an ideal biomarker for informing on the 
clinical outcomes and precision treatment of 
HCC.
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Table S1. The clinical characteristics for HCC patients in the FAHWMU cohort
FAHWMU cohort (n=158)

Age, years 50.66±11.48
Gender
    male 86 (54.4%)
    female 72 (45.6%)
TMN stage
    I 52 (32.9%)
    II 32 (20.3%)
    III 62 (39.2%)
    IV 12 (7.6%)
Tumor size, cm
    ≤ 5 90 (57.0%)
    > 5 68 (43.0%)
Hepatitis B
    negative 84 (53.2%)
    positive 74 (46.8%)
Lymph node invasion
    no 114 (72.2%)
    yes 44 (27.8%)
Vascular invasion
    no 102 (64.6%)
    yes 56 (35.4%)
Perineural invasion
    no 96 (60.8%)
    yes 62 (39.2%)
albumin, g/L 40.14±3.52
AFP, ng/ml 2.62±0.32
CEA, ug/L 1.93±0.86
CA199, U/ml 47.57±12.93

Figure S1. The determination of the optiaml soft threshold in the WGCNA analysis. A. The left panel shows the 
impact of soft-threshold power on the scale-free topology fit index; B. the right panel displays the impact of soft-
threshold power on the mean connectivity.
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Figure S2. A. The complex heat-
map of 22 main TIICs, ESTIMATE 
scores and clinical characteris-
tics between different TCT relat-
ed clusters. B. GO enrichment 
analysis demonstrated the sig-
nificant biological functions in 
the optimal TCT related pattern.
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Table S2. The list of 252 intersection genes
Number Gene Number Gene Number Gene Number Gene
1 MTARC2 71 CCDC137 141 EIF3M 211 C12orf75
2 SERPINA6 72 CSTB 142 TTLL12 212 HKDC1
3 BDH1 73 WSB2 143 SMARCD1 213 RTN3
4 CYP2C9 74 ACTG1 144 ENAH 214 G6PD
5 PDE8A 75 MBOAT7 145 PGD 215 B4GALNT4
6 IL1RN 76 CFL1 146 SRC 216 NAE1
7 C3 77 TPGS2 147 TTC39A 217 LYPLA2
8 TMEM220 78 IER3IP1 148 AC245060.4 218 EMC8
9 ALDH8A1 79 PGAM5 149 ERO1A 219 HILPDA
10 HRG 80 YBX1 150 MSANTD3 220 PIP4P2
11 AGXT 81 MTHFD1L 151 UTP4 221 GAL3ST1
12 F2 82 TSPO 152 CD151 222 YTHDF2
13 SEC62 83 CD63 153 DNAJC10 223 PHB
14 PRRG4 84 TM4SF1 154 TMEM184B 224 ZMYND8
15 SHF 85 MACIR 155 DPCD 225 TARS1
16 DCXR 86 TONSL 156 CCNB1 226 TEAD4
17 HMGA1 87 SOX4 157 UCK2 227 RHPN1
18 ENO1 88 BCAR1 158 ARPC1A 228 SKA1
19 ALDOA 89 PRAME 159 CS 229 EWSR1
20 SLC16A3 90 MFSD10 160 CXXC1 230 PLEKHB2
21 CCT6A 91 GARS1 161 SSR3 231 SQSTM1
22 ATIC 92 CCT8 162 SMIM22 232 HSPA4
23 MIR210HG 93 LDHA 163 FKBP9 233 MPZL1
24 KDELR1 94 PPIAP22 164 SMS 234 SLC39A6
25 DBN1 95 SGSM3 165 EPRS1 235 HARS2
26 VDAC1 96 SNRPD1 166 KIAA1522 236 CCDC6
27 MACROH2A1 97 CTNNA1 167 CNOT11 237 ATP6V1E1
28 SAMD10 98 RNF145 168 S100A11 238 MYBL2
29 STIP1 99 RBM38 169 RUVBL1 239 C2CD4A
30 EEF1E1 100 YBX3 170 SOX12 240 PERP
31 GAPDH 101 JPT1 171 ANKRD13D 241 VDAC2
32 NME2 102 CD58 172 CCDC9 242 ANXA2
33 TRIM65 103 MTMR2 173 POPDC3 243 CORO1C
34 ARPC1B 104 RARS1 174 ELOVL1 244 ITGB4
35 GLRX3 105 TPI1 175 VASP 245 AP2A2
36 SYNGR2 106 WDR4 176 DLAT 246 UBE2S
37 RALA 107 DHX37 177 CSNK1E 247 RRP12
38 THOC5 108 LARS1 178 NOL3 248 SEPTIN5
39 DCUN1D5 109 UBE2L3 179 YARS2 249 DENR
40 HMGXB3 110 VPS37C 180 UAP1L1 250 UTP11
41 SLC38A1 111 FBXL19 181 DDA1 251 PABPC4
42 CBX3 112 C12orf49 182 RCC1 252 ZMIZ2
43 NPM1 113 BAK1 183 DNAAF5 253
44 ATAD3B 114 AKAP8L 184 DDOST 254
45 TAGLN2 115 TEAD2 185 LPCAT1 255
46 CYTH2 116 FARSB 186 ANO9 256
47 SMOX 117 CCT5 187 RIT1 257
48 SPAG4 118 NAP1L1 188 PTTG1IP 258
49 RAN 119 TBC1D22A 189 TNFRSF12A 259
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50 TRIP10 120 BMS1 190 KPNA2 260
51 CCT2 121 PHF5A 191 MICALL2 261
52 STX3 122 PAFAH1B2 192 MARS1 262
53 PLPP2 123 LAPTM4B 193 ARHGEF2 263
54 OLA1 124 DLGAP4 194 PDSS1 264
55 SPATS2 125 SPHK1 195 TMED3 265
56 PITX1 126 TCOF1 196 SAE1 266
57 PRR7 127 RCC2 197 ITGA2 267
58 B4GALT2 128 MRTO4 198 TCF3 268
59 PLXNA3 129 MAST2 199 GPN2 269
60 PRXL2B 130 CEBPZOS 200 PTGFRN 270
61 NLE1 131 RANGAP1 201 NOP58 271
62 AP4M1 132 FAM241B 202 KDM1A 272
63 BTF3L4 133 HOMER3 203 NCBP2 273
64 NARS1 134 PHLDA2 204 RANBP1 274
65 ZDHHC7 135 IFNGR2 205 WDR45B 275
66 MEX3A 136 CD24 206 MMP9 276
67 EIF3D 137 NCDN 207 MCRS1 277
68 GNPDA1 138 ETF1 208 RPN2 278
69 NPAS2 139 NRSN2 209 PRPF19 279
70 BZW2 140 FHL3 210 TXNDC12 280

Table S3. The details of 77 published gene risk signatures used in this study
Signatures Authors
Recurrence associated immune gene signature Chen Y [1]
pyroptosis-related lncRNAs signature Liu Z [2]
Pyroptosis-related gene signature Zhang S [3]
Amino acid metabolism-related signature Zhao Y [4]
Microvascular invasion related signature Du B [5]
Four-gene signature Liu J [6]
Hypoxia gene signature Zhang Q [7]
FR-lncRNAs signature Zhang Z [8]
Costimulatory molecule gene signature Hu Y [9]
Hypoxia-associated lncRNAs signature Chang M [10]
Epithelial-mesenchymal transition-related 5-gene signature Zhu G [11]
Prognostic and therapeutic immune signature Peng Y [12]
Instability-associated lncRNAs signature Yan Y [13]
EMT-related lncRNAs signature Tao H [14]
Metabolism-related gene signature Yuan C [15]
N6-methyladenosine-associated prognostic signature Zhu P [16]
Metabolism-related signature Wang Z [17]
Seven-gene signature Xie H [18]
Cell cycle progression-derived gene signature Hui Y [19]
Immune-related risk signature Liu Z [20]
PPAR-related multigene signature Xu W [21]
Metabolism-related lncRNAs signature Wang W [22]
TME-related lncRNAs signature Huang S [23]
Ubiquitin-specific proteases related signature Ni W [24]
Toll-like receptor-based gene signature Liu L [25]
Glycolysis-related gene signature Yang J [26]
Ahypoxia-related signature Jiang H [27]
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Five-gene signature Su L [28]
4-gene prognostic signature Chen P [29]
m6A regulator-related LncRNAs signature Jin C [30]
Mutational burden-associated LncRNA signature Xu M [31]
Six-gene signature Liu G [32]
Tumor microenvironment-related gene signature Huang C [33]
Immune checkpoint-related gene signature Zhao E [34]
Glycolysis-related gene signature Zhou W [35]
Pyroptosis-related gene signature He J [36]
Three-gene signature derived from AATF coexpressed genes Liu J [37]
IAR-lncRNA signature Wang Y [38]
Immune-related lncRNA signature Deng M [39]
HCC-specific gene transcriptional signature Petrizzo A [40]
mTORC1 pathway derived signature Mo Z [41]
SVM based signature Yerukala S [42]
Necroptosis-related gene signature Chen J [43]
Hypoxia-related lncRNAs signature Tang P [44]
Immune- and Ferroptosis-related LncRNA signature Huang A [45]
Mutation-related lncRNAs signature Wu J [46]
Stemness-based eleven-gene signature Hong L [47]
14-gene signature Zhang B [48]
Tumor doubling time-related immune gene signature Zhang G [49]
Hypoxia-driven gene signature Zeng Z [50]
Liver progenitor cell-related genes signature Li X [51]
Inflammatory response-related gene signature Lin Z [52]
HBV-related lncRNAs signature Nong S [53]
Hypoxia-related lncRNA signature Zhou C [54]
Somatic mutation-derived LncRNA signature Guo C [55]
m6A-related signature Jiang H [56]
Cell cycle-related 13-mRNA signature Zhou Y [57]
Metabolic ten-gene signature Zhu Z [58]
Six-gene-based prognostic signature Wang Z [59]
Seven-senescence-associated gene signature Xiang X [59]
Jab1/CSN5 derived LncRNAs signature Ma W [60]
m6A methyltransferase-related lncRNA signature Li L [61]
Autophagy-related lncRNAs signature Wu H [62]
Immune-related lncRNA signature Kong W [63]
Five-CpG-based prognostic signature Fang F [64]
DNA methylation-driver gene signature Fu J [65]
Glycosyltransferase prognostic signature Zhou Z [66]
Ferroptosis-related gene signature Wang H [67]
Four-methylated lncRNAs-based prognostic signature Liao L [68]
9-long non-coding RNA signature Deng B [69]
Four-long noncoding RNA signature Jiang H [70]
Hypoxia-related signature Zhang B [71]
Non-apoptotic programmed cell death-related gene signature Zhang G [72]
Pseudogene pair-based prognostic signature Du Y [73]
Lipid metabolism-related and immune-associated prognostic signature Hu B [74]
Metabolic gene-based prognostic signature Weng J [75]
Eight-lncRNA prognostic signature Zhao X [76]
Autophagy-related lncRNA signature Yang S [77]
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Figure S3. A. The GSEA-GO analysis displayed the remarkable biological pathways enriched according to the differ-
ence of TCTS. B. The heatmap showed the distribution of genomic alteration between Low- and High-TCTS groups 
(*: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001).
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