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Abstract: Colon cancer is one of the most common cancers in digestive system, and its prognosis remains unsat-
isfactory. Therefore, this study aimed to identify gene signatures that could effectively predict the prognosis of 
colon cancer patients by examining the data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) database. LASSO-Cox regression analysis generated a five-gene signature (DCBLD2, RAB11FIP1, CTLA4, 
HOXC6 and KRT6A) that was associated with patient survival in the TCGA cohort. The prognostic value of this gene 
signature was further validated in two independent GEO datasets. GO enrichment revealed that the function of 
this gene signature was mainly associated with extracellular matrix organization, collagen-containing extracellular 
matrix, and extracellular matrix structural constituent. Moreover, a nomogram was established to facilitate the clini-
cal application of this signature. The relationships among the gene signature, mutational landscape and immune 
infiltration cells were also investigated. Importantly, this gene signature also reliably predicted the overall survival 
in IMvigor210 anti-PD-L1 cohort. In addition to the bioinformatics study, we also conducted a series of in vitro ex-
periments to demonstrate the effect of the signature genes on the proliferation, migration, and invasion of colon 
cancer cells. Collectively, our data demonstrated that this five-gene signature might serve as a promising prognostic 
biomarker and shed light on the development of personalized treatment in colon cancer patients.
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Introduction

Colon cancer is the fourth most common can-
cer and the third leading cause of cancer-relat-
ed death worldwide [1]. In the United States, it 
was estimated that approximately 104,270 
new cases and 52,980 deaths were diagnosed 
with and attributed to colon cancer in 2021 [2]. 
The main treatment modalities of colon cancer 
include surgery, chemotherapy, radiotherapy, 

targeted therapy, and immunotherapy [3]. Al- 
though combinational therapies have been 
widely implemented to achieve better therapeu-
tic efficacy [4], the results are still not satisfac-
tory, especially in the long-term survival of 
patients with quality of life [5]. Thus, it is crucial 
to investigate the mechanism of tumorigenesis 
and identify predictive biomarkers for the diag-
nosis and prognosis of patients with colon 
cancer.
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The etiology of colon cancer comprises environ-
mental exposures, genetic factors, intestinal 
flora, and family history of the disease [6]. 
Identifying genetic mutations that affect the 
prognosis of colon cancer has become a 
research hotspot over the last decade. For 
example, TP53, KRAS and BRAF mutations 
have been found to be associated with the 
prognosis or therapeutic response of colon 
cancer [7]. In addition, a consensus molecular 
subtype classification based on microarray or 
RNA sequencing data has been developed to 
predict the different clinical outcomes of colon 
cancer [8]; however, its reliability and clinical 
application need further validation. Hence, 
exploring novel molecular markers to identify 
high-risk subgroups and to improve the treat-
ment response is highly desirable. 

In recent years, immunotherapy is emerging as 
a promising treatment strategy for cancer 
patients [9]. Immune checkpoint inhibitor, such 
as programmed cell death 1 (PD-1) antibody, 
has been approved by the U.S. Food and Drug 
Administration (FDA) for the management of 
colon cancer in 2017 [10]. But the heterogene-
ity and complexity of tumor immune microenvi-
ronment compromise its therapeutic effects in 
patients with advanced colon cancer [11]. As a 
result, increasing attention has been focused 
on identifying patients who would benefit from 
immunotherapy. The advent of high-throughput 
sequencing and large-scale databases has pro-
vided unprecedented opportunities to acceler-
ate such process from genetic perspectives.

In this study, we aimed to identify gene signa-
tures that distinguish high-risk subgroup by 
analyzing the mRNA sequencing data of colon 
cancer patients from The Cancer Genome Atlas 
(TCGA). Moreover, we validated the gene signa-
tures externally using Gene Expression Om- 
nibus (GEO) datasets. Further bioinformatics 
analysis was also conducted to predict the 
molecular function and immunotherapeutic 
response of the gene signature. Finally, we con-
ducted in vitro biochemical experiments to 
investigate the biological activity of each gene 
in the signature.

Materials and methods

Data acquisition and preprocessing

The mRNA expression data and the corre-
sponding clinical characteristics of colon ade-
nocarcinoma (COAD) patients were obtained 

from the publicly accessible datasets at the 
NCBI TCGA database (https://portal.gdc.can-
cer.gov/) and GEO database (https://www.ncbi.
nlm.nih.gov/geo/). In TCGA COAD, we down-
loaded the raw counts of each patient and fil-
tered the datasets by the following inclusion 
criteria: 1) samples are pathologically diag-
nosed as colon cancer; 2) samples with com-
plete interested clinical information; 3) tran-
script is within the protein-coding region; 4) 
transcript is expressed in more than half the 
COAD samples; 5) reads per kilobase of exon 
model per million mapped reads (RPKM) has 
an average value of more than 0.1 across all 
the samples. At the end, a total of 394 patents 
in TCGA were enrolled. In GEO database, we 
selected GSE39582 and GSE17538 datasets 
due to their larger sample size (n = 542 and n = 
238, respectively) among similar cohorts for 
our model validation. The gene expression and 
clinical annotation of patients from an immuno-
therapeutic cohort of advanced urothelial can-
cer (IMvigor210 cohort) treated with atezoli-
zumab (anti-PD-L1 agent) were obtained from 
the official website (http://researchpub.gene.
com/IMvigor210CoreBiologies) [12]. 

Risk model construction and external valida-
tion

The TCGA cohort was used as training cohort  
to construct the risk predicting model. 
Univariate Cox regression analysis, random for-
est selection, and LASSO-Cox regression analy-
sis were conducted to identify the molecular 
signature. Then, the coefficient of genes in 
LASSO-Cox regression (glmnet package  
version 4.1) was utilized to calculate the risk 
score using the following formula [13]: risk 
score = Coefficient i * Expression ii 1

n
=

/ , whereas 
Coefficient i and Expression i denote the coef-
ficient and expression of the ITH gene in LASSO 
model. Using the median risk score as a cutoff 
value, we assigned the patients into low- and 
high-risk groups. Subsequently, Kaplan-Meier 
estimates were used to assess the survival of 
patients between the high- and low-risk groups. 
Furthermore, multivariate Cox regression anal-
ysis (survival package version 3.2-7) was car-
ried out to determine the independence of this 
risk score model from other clinical variables. 
Time-dependent receiver operating character-
istic (ROC) curves (survivalROC package ver-
sion 1.0.3) were plotted to illustrate the sensi-
tivity and specificity of the survival prediction  
of the risk model. To verify the reliability of  
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this risk predictive model, GSE39582 and 
GSE17538 were used as the external valida-
tion cohorts; meanwhile, IMvigor210 cohort 
was used to evaluate its predictive value to 
immune therapeutic response. All statistical 
analyses were conducted using R software 
(version 4.0.3).

Expression analysis of genes in risk model

To further evaluate the mRNA and protein 
expression of the genes used in our risk sig- 
nature, immunohistochemistry staining and 
mRNA expression data from the Human Protein 
Atlas (HPA) database were analyzed.

Gene set enrichment analysis (GSEA)

DESeq2 package (version 1.28.1) was first 
used to compare the differential gene expres-
sion between the high- and low-risk groups. P 
value <0.05 was considered statistically signifi-
cant. The significantly differentially expressed 
genes were then subjected to gene set enrich-
ment analysis using ClusterProfiler package 
(version 3.16.1). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) background was set  
with c2.cp.kegg.v7.2.entrez which was down-
loaded from molecular signatures database 
(MSigDB) (http://www.gsea-msigdb.org/gsea/
downloads.jsp). Gene Ontology (GO) comprising 
biological process (BP), molecular function 
(MF), and cellular component (CC) was conduct-
ed to achieve the functional annotation of the 
differentially expressed genes between the 
high- and low-risk groups.

Identification of hub genes by WGCNA

Weighted gene co-expression network analysis 
(WGCNA) was conducted by WGCNA R package 
(version 1.69). Soft threshold power value was 
calculated automatically, and a soft power of 8 
was selected for subsequent analysis. The min-
imum module size was 30, and the type of topo-
logical overlap measure (TOM) was set as 
“signed”. Each module was labeled with a 
unique color. Hub genes were defined when 
these two criteria were satisfied simultaneous-
ly: 1) gene trait significance (GS) >0.2; 2) gene 
module membership (MM) >0.8.

Development and validation of nomogram for 
survival prediction 

Multivariate Cox regression analysis was first 
conducted for risk score and clinical variables 

including age, gender and TNM stage. Then, a 
nomogram containing the multivariate Cox 
results was visualized by the R package rms 
(version 6.1-0). Using a bootstrap with 1000 
times of resample, we verified the performan- 
ce of the nomogram by drawing calibration 
curve and time-dependent ROC curve. Decision 
curve analysis (DCA) (dca package version 
0.1.0.9000) was used to evaluate the accuracy 
of the nomogram. 

Significantly mutated genes between the high- 
and low-risk groups

TCGA data were analyzed by R package 
(Maftools, version 2.4.12) to extract gene 
mutations, including nonsense mutation, mis-
sense mutation, frame shift insertion, frame 
shift deletion, splice site mutation, in frame 
deletion, and translation start site mutation. 
Transition (C>T, and T>C) and transversion 
(C>G, C>A, T>A, and T>G) were also counted to 
show overall distribution of conversions. The 
significantly different gene mutations between 
the high- and low-risk groups were compared by 
Fisher exact tests.

Immune cell infiltration analysis 

The single sample gene set enrichment analy-
sis (ssGSEA) algorithm was used to quantify the 
infiltration level of 28 types of immune cell in 
TCGA COAD patients according to a recent pub-
lication [14]. The calculation of abundance was 
attained by the package GSVA (version 1.38.0) 
with Gaussian fitting model to generate an 
enrichment score. 

Cell line and cell culture

Human colon cancer HCT116 cells were pur-
chased from ATCC cell bank (USA) and cultured 
in DMED medium (Hyclone, USA) supplemented 
with 10% fetal bovine serum (GIBCO, USA). 
Cells were maintained in a 37°C humidified 
incubator with 5% CO2. 

Cell transfection

Three different small interfering RNAs (siRNAs) 
specifically targeting an indicated gene were 
synthesized by Hippobiotec company (Zhejiang, 
China). The siRNA sequences were shown in 
Table S1. Scramble siRNAs were constructed 
as the negative control. The siRNA with the 
maximal knockdown efficiency was selected for 
further functional assays. Overexpression plas-
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mids for the selected genes were purchased 
from HTHealth company (Beijing, China). App- 
roximately 1*10^5 cells were seeded into each 
well in 6-well plates, transfected with appropri-
ated plasmid for 48 hours, and collected for 
further analysis.

Real time quantitative PCR (RT-qPCR)

Total RNA from cells was extracted using TRIzol 
reagent (Invitrogen, MA, USA) according to  
the manufacturer’s instruction and quantified 
by Thermo Nanodrop lite Spectrophotometry. 
Reverse transcription was performed using 
SuperScript III reverse transcriptase (Invitrogen, 
MA, USA) to obtain cDNA. mRNA expression 
was analyzed by the SYBR green RT-PCR kit 
(Invitrogen, MA, USA). Beta-actin was used as 
normalization, and the comparative Ct method 
(2-ΔΔCt) was used to evaluate relative expres-
sion. The sequences of primers used in this 
study were shown in Table S2.

Western blot

Cell lysates were collected using cell lysis buf-
fer in the presence of protease inhibitors, and 
protein concentration was quantified by Bicin- 
choninic acid (BCA) quantification kit (MDL, 
China). Proteins were separated by 10% SDS-
PAGE and then transferred onto polyvinylidene 
fluoride (PVDF) membranes (Millipore, USA). 
The membranes were blocked in 5% skimmed 
milk at room temperature for 1 h and subse-
quently incubated with specific primary anti-
bodies at 4°C overnight followed by incubation 
in secondary antibodies at room temperature 
for 1 h. The signal was then developed by ECL 
reagent and detected using a chemilumines-
cence imaging system (Bio-rad, USA). The infor-
mation of the primary antibodies used in this 
study were summarized in Table S3.

Cell viability assay

Cell viability was evaluated by CCK-8 kit 
(Fluorescence, China). Briefly, cells were seed-
ed into 96-well plates and incubated for 12 
hours. Then, 10 μL of CCK-8 solution was 
added to each well for 1 hour, and the optical 
density (OD) values at 450 nm was measured 
by a microtiter plate reader.

Transwell assay

Cell motility was measured by transwell assays 
with 8.0 µm transparent PET membrane (for 

cell migration assay). For cell invasion assays, 
the upper surface of the membrane on the 
insert was coated with Matrigel. Briefly, cells 
(1*10^5) in serum free medium were added to 
the upper chamber, while complete medium 
was added to the lower chamber. After 24 hours 
of incubation, cells that invaded into the lower 
side of the insert were fixed with 4% parafor-
maldehyde and stained with 0.1% crystal 
violet. 

Wound healing assay

Cells were cultured in 6-well plates, and artifi-
cial wounds were created by scraping with a 
sterile 200 μl pipette tip. Then, the cells were 
washed with PBS for three times and incubated 
in medium containing 10% fetal bovine serum. 
Wound closure was determined via photograph-
ing at 24 hours after injury.

Statistical analysis

Statistical analysis was conducted by R soft-
ware (version 4.0.3). For categorical variables, 
Fisher exact test was performed to compare 
the difference. For continuous data, student T 
test or Wilcox test was applied depending on 
the data distribution (skewed or normal) and 
the variances (unequal or homogeneous). 
Survival curves in Kaplan-Meier analysis were 
compared by two-sided log-rank test. A two-
tailed P value of 0.05 was set for statistical 
significance.

Results

Patients’ demographic and clinical character-
istics

The workflow pertaining to the present study 
was shown in Figure 1. In the TCGA-COAD 
cohort, 394 patients were selected according 
to our inclusion criteria, while 542 and 238 
patients from GSE39582 and GSE17538 data-
sets, respectively, were included. The patients’ 
demographic and clinical characteristics were 
summarized in Table 1.

Identification of gene signature with prognostic 
values in the TCGA cohort

The TCGA cohort was subjected to univariate 
Cox regression analysis as well as the random 
forest selection and LASSO-Cox regression 
analysis. The LASSO-Cox model with a lambda 
of 0.001135068 was selected to develop the 
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risk score model, and subsequently, five genes 
were identified. Based on the coefficient, the 
model was constructed as follows: risk score  
= (0.1443*DCBLD2) + (-0.0585*RAB11FIP1)  
+ (-0.3256*CTLA4) + (0.1447*HOXC6) + 
(0.0745*KRT6A). Among the five genes, the 
coefficients of three genes were positive, sug-
gesting the association of higher gene expres-
sions with poor survival, while those of the 
other two genes were negative, suggesting 
their favorable effects on prognosis. We further 

calculated the five-gene signature risk score for 
each patient in the TCGA cohort, and by using 
the median risk score as the cutoff threshold, 
we divided the TCGA cohort into high-risk (n = 
197) and low-risk (n = 197) groups. The distri-
bution of risk score was shown in Figure 2A-C. 
In the TCGA cohort, patients with high-risk 
scores showed poorer prognosis in the survival 
analysis than those with low-risk scores (log-
rank test, P = 0.037) (Figure 2D). Specifically, 
the survival rates of 50, 100, and 150 months 

Figure 1. Workflow of the training and validation process in the present investigation.
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Table 1. Demographic and clinical characteristics of the TCGA and GEO cohorts
TCGA (n = 394) GSE39582 (n = 542) GSE17538 (n = 238)

Age in yrs (mean ± SD) 67.26±13.01 66.74±13.34 64.56±13.49
Gender = Male (%) 206 (52.3%) 295 (54.4%) 124 (52.1%)
Status = Dead (%) 46 (11.7%) 170 (31.4%) 93 (40.1%)
Survival time in months (median [IQR]) 61.00 [2.00, 301.75] 54.50 [28.00, 82.00] 46.72 [23.32, 63.96]
TNM stage (%)
    Stage 0 0 (0.0%) 1 (0.2%) 0 (0.0%)
    Stage 1 71 (18.0%) 36 (6.6%) 28 (12.1%)
    Stage 2 152 (38.6%) 255 (47.0%) 72 (31.0%)
    Stage 3 117 (29.7%) 191 (35.2%) 76 (32.8%)
    Stage 4 54 (13.7%) 59 (10.9%) 56 (24.1%)

Figure 2. The five-gene signature predicting overall survival in patients of the TCGA cohort. A. The five-gene risk 
score distribution. B. The survival time and status arranged by increasing risk score. C. Heatmap of the five genes’ 
expression profiles. D. Kaplan-Meier estimate of survival probability between high- and low-risk group. E. Receiver 
operating characteristic (ROC) curve at one-, three-, and five-year time point.
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were 5.58%, 2.03%, and 0.00%, respectively, 
in the low-risk group, compared with those of 
8.63%, 2.54%, and 0.00% in the high-risk 
group. Time dependent ROC analysis revealed 
that the prognosis model had achieved area 
under the curve (AUC) score of 0.695, 0.635, 
and 0.589 for one-, three-, and five-year sur-
vival, respectively (Figure 2E).

Validation of the five-gene signature in 
GSE39582 and GSE17538 datasets

To confirm our findings from TCGA cohort, we 
used GSE39582 and GSE17538 datasets to 
verify the reliability of our risk model. By apply-
ing the same formula, we calculated the risk 
score and classified patients into high- and low-
risk groups based on the median score as the 
cutoff value (Figure 3A, 3E). Consistent with 
the results from the TCGA cohort, Kaplan-Meier 
analysis also suggested that patients in the 
GSE39582 cohort with high-risk scores had 
significantly shorter overall survival time than 
that of patients with low-risk scores (log-rank 
test, P = 7E-4) (Figure 3B). Recurrent free sur-
vival curve also demonstrated similar pattern, 
as the disease in the high-risk patients of 
GSE39582 cohort progressed much faster 
(Figure 3C). ROC curve suggested that the five-
year AUC was 0.64 (Figure 3D). Similarly, in the 
GSE17538 dataset, patients with high-risk 
scores demonstrated a remarkably unfavor-
able prognosis than those with low-risk scores 
(log-rank P<0.05 for overall survival, disease 
free or disease specific survival) (Figure 3F-H). 
The five-year AUC in ROC curve was 0.683 
(Figure 3I).

Independence of the five-gene signature from 
other clinical variables

Furthermore, to evaluate the independence of 
the five-gene signature, we carried out univari-
ate and multivariate Cox regression analyses 
on this risk signature as well as on other clinical 
variables, including age, gender, and TNM 
stage. Univariate Cox analysis indicated that 
the five-gene risk score was significantly asso-
ciated with overall survival in the TCGA cohort 
(P<0.05) (Table 2). The significance also 
emerged in multivariate Cox analysis of TCGA 
when age, gender and TNM stage were taken 
into account simultaneously (Figure S1A). In 
GEO datasets, results demonstrated the inde-
pendence of the risk score after adjusting the 

clinical variables as well (Figure S1B, S1C). 
Furthermore, we found that TNM stage IV was 
significantly associated with overall survival in 
either multivariate or univariate analysis.

Comparison of the current signature with pre-
viously published signatures

To demonstrate the significance of our risk 
model, we compared our prognostic signature 
with five published signatures: a two-gene sig-
nature (Liu) [15], a three-gene signature (Xu) 
[16], two seven-gene signatures (Sun; Zou) [17, 
18], and a nine-gene signature (Yang) [19]. The 
GSE39582 and GSE17538 cohorts were also 
divided into high- and low-risk groups by using 
the median score as the cutoff value. ROC and 
survival curves were plotted (Figure S2). When 
comparing the AUC values for five-year survival, 
the five published signatures showed the val-
ues of 0.503, 0.496, 0.578, 0.611 and 0.506, 
respectively, in GSE39582 cohort and 0.461, 
0.568, 0.606, 0.537, and 0.541, respectively, 
in GSE17538 cohort. However, the values of 
our signature were 0.640 in GSE39582 and 
0.683 in GSE17538, higher than that of the 
previous models suggesting the higher accura-
cy of our signature. In addition, we calculated 
the concordance indexes (C-indexes) to evalu-
ate the predictive performance of these signa-
tures. Results unveiled that our signature had 
the highest C-index (0.6148 in GSE39582 and 
0.6497 in GSE17538, Figure S2).

The mRNA and protein expression of risk pre-
dicting genes

As shown in Figure 4, we examined the mRNA 
and protein expressions of the five genes in our 
risk predicting signature by using information 
from HPA database. Known available mRNA 
expression and tissue staining were extracted, 
and we found a substantial dysregulation of 
both mRNA and protein expressions in colon 
cancer samples, suggesting their potential 
effects on the carcinogenesis of colon cancer. 

Functional annotation with GSEA enrichment 
of high-risk and low-risk groups

To access the potential biological functions of 
the risk score signature, GSEA were performed 
using TCGA database. In KEGG analysis, the 
main pathways enriched in the high-risk group 
were PPAR signaling pathway, maturity onset 
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Figure 3. Validation of the gene signature in GSE39582 and GSE17538 datasets. A. Risk score distribution, overall survival status, and heatmap of five-gene sig-
nature in GSE39582. B. Overall survival in GSE39582 cohort. C. Recurrence free survival in GSE39582 cohort. D. Receiver operating characteristic (ROC) curve of 
GSE39582. E. Risk score distribution, overall survival status, and heatmap of five-gene signature in GSE17538. F. Overall survival in GSE17538 cohort. G. Disease 
free survival in GSE17538 cohort. H. Disease specific survival in GSE17538 cohort. I. ROC curve of GSE17538. 



Prognostic gene signature in colon cancer

53 Am J Cancer Res 2023;13(1):45-65

Table 2. Univariate Cox regression analysis in the TCGA cohort, GSE39582 cohort, and GSE17538 
cohort

Variable Hazard ratio Lower 95% CI Upper 95% CI P value
TCGA cohort (n = 394) Age 1 1 1 0.01794

Gender 1.342 0.7485 2.406 0.3234
TNM stage
    I 1 (ref)
    II 1.287 0.3667 4.519 0.6934
    III 1.354 0.3825 4.792 0.6385
    IV 4.883 1.408 16.93 0.01243
Risk score 2.909 1.539 5.498 0.00101

GSE39582 (n = 542) Age 1.026 1.013 1.039 7.399E-05
Gender 1.299 0.9561 1.765 0.0944
TNM stage
    I 1 (ref)
    II 1.939 0.7818 4.808 0.153
    III 2.321 0.9294 5.796 0.07136
    IV 11.16 4.378 28.46 4.38E-07
Risk score 2.697 1.807 4.028 1.224E-06

GSE17538 (n = 238) Age 1.009 0.9923 1.025 0.304
Gender 1.006 0.6685 1.515 0.9753
TNM stage
    I 1 (ref)
    II 1.891 0.6293 5.68 0.2565
    III 3.186 1.101 9.22 0.03253
    IV 13.55 4.779 38.42 9.51E-07
Risk score 5.987 3.086 11.61 1.2E-07

Age, gender and risk score were treated as continuous variables. TNM stage was evaluated as ordered categorical variable 
(stage I = reference).

Figure 4. The mRNA and protein expression of the risk predicting genes in colon tissues. Data and images were 
obtained from the HPA database for risk genes including (A) DCBLD2, (B) RAB11FIP1, (C) KRT6A, (D) CTLA4, and (E) 
HOXC6. Three genes, except for CTLA4 and HOXC6, have available pathology images.
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diabetes of the young, cardiac muscle contrac-
tion, adipocytokine signaling pathway, and 
vasopressin regulated water reabsorption, 
while the main pathways enriched in the low-
risk group were intestinal immune network for 
IgA production, allograft rejection, primary 
immunodeficiency, asthma, and graft versus 
host disease (Figure S3A). In GO enrichment 
analysis, the most enriched terms were related 
to extracellular matrix organization (biologi- 
cal process) (Figure S3B), collagen-containing 
extracellular matrix (cellular component) (Figure 
S3C), and extracellular matrix structural con-
stituent (molecular function) (Figure S3D).

WGCNA analysis of high-risk and low-risk 
groups

To establish the key module associated with 
the high- and low-risk groups, WGCNA was per-
formed using the TCGA expression profile, and 
29 modules were identified (Figure S4A). 
Notably, compared with other modules, the 
black module was remarkably correlated with 
risk signature (correlation coefficient = 0.19, P 
value = 2E-04) (Figure S4B, S4C). Therefore, 
five genes in this black module were selected 
as hub genes (PLAGL2, POFUT1, FITM2, 
TP53RK, and MOCS3) using the cutoff value of 
GS >0.2 and MM >0.8. These hub genes were 
significantly correlated with our risk score 
genes (Figure S4D).

Construction of a prognosis predictive nomo-
gram 

We constructed a nomogram for predicting the 
prognosis of patients with colon cancer by inte-
grating the risk scores with clinical factors 
including age, gender, and TNM stage by using 
TCGA database. A model with C-index of 0.718 
(95% CI: 0.662-0.774) was established (Figure 
5A), and the calibrations of nomogram were 
shown in Figure 5B-D. Furthermore, a predict-
ed score was calculated for each patient 
according to the nomogram equation. Time-
dependent ROC curve showed that the AUCs  
of nomogram prediction signature were 0.80, 
0.75, and 0.70 for one-, three- and five-year sur-
vival, respectively (Figure 5E). Importantly, the 
decision curve analysis implicated a higher net 
benefit of our model compared to either the 
treat-all-patients schemes or the treat-none 
scheme in predicting the one-, three- or five-
year survival (Figure 5F).

Mutation landscape between the high- and 
low-risk groups

The significantly mutated genes between the 
high- and low-risk groups were plotted in Figure 
S5A. Via the threshold P value of 0.01 and 95% 
CI not intersecting 1, 36 significantly mutated 
genes were identified between the high- and 
low-risk groups, of which four genes, MAP2K7, 
AMPD2, KMT2B and KRAS, were significantly 
enriched in the high-risk group (P<0.01) (Figure 
S5B), while the other 32 genes were significant-
ly enriched in the low-risk group (Figure S5B). 
The stratified plots of the 36 genes by risk 
groups were shown in Figure S5C.

Immune signature associated with the risk 
score model

Since immune cell infiltration in the tumor mic- 
roenvironment significantly affects the progno-
sis, we analyzed the 28 immune infiltrating sub-
populations in the high- and low-risk groups 
with ssGSEA in TCGA database. As illustrated 
by heatmap in Figure 6A, several anti-tumor 
immune cells (activated CD4+ T cell, activated 
CD8+ T cell, activated dendritic cell, CD56 bright 
natural killer cell, natural killer T cell, and type 
17 T helper cell) and pro-tumor immune cells 
(macrophage, plasmacytoid dendritic cell, regu-
latory T cell, and type 2 T helper cell) were sta-
tistically differentially enriched between the 
high- and low-risk groups (P<0.05) (Figure 6B).

Prediction of immunotherapeutic response

In recent years, the development of immune 
checkpoint inhibitors, such as anti-PD-1 or anti-
PD-L1, has significantly improved the therapeu-
tic effect and prolonged the survival time of 
cancer patients. However, the different patient 
response to immunotherapy limits its applica-
tion. Therefore, in this study, we investigated 
the predictive value of our risk signature to 
immunotherapy. We reviewed the expression 
matrix and clinical characteristics of an anti-
PD-L1 dataset for urothelial cancer (IMvigor210) 
published in Nature in 2018. By using the same 
risk formula and then the median score as cut-
off value, we divided the patients in IMvigor210 
cohort into high- and low-risk groups. Kaplan-
Meier analysis suggested that patients with 
high-risk score had significantly shorter survival 
time than those with low-risk score (P<0.05) 
(Figure 7A). The violin plot further illustrated 
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that the patients in the high-risk group had 
much lower mutation burden than those in the 
low-risk group (P value = 0.021) (Figure 7B). 
The neoantigen in the high-risk group was  
also significantly lowered than that in the low-
risk group (Figure 7C). We further determined 
the immune response to anti-PD-L1 therapy. 
According to the response to neoadjuvant che-
motherapy, the patients were categorized into 
four groups: progressive disease (PD), stable 
disease (SD), partial response (PR) and com-
plete response (CR). The group of SD/PD  
exhibited higher risk scores compared with CR/
PR group, though not statistically significant 

(Figure 7E). There was an increasing trend of 
risk score across the PR, SD, and PD group 
(P<0.05 for PD vs. PR) (Figure 7F). The high-risk 
group had higher percentage of SD/PD than 
the low-risk group, though not statistically sig-
nificant (Figure 7G). After adjusting for gender, 
platinum treatment, tobacco history, baseline 
ECOG score and immune phenotype, the risk 
score remained statistically significant with 
respect to overall survival (HR = 1.73, 95% CI = 
1.19-2.52, P = 0.004) (Figure 7D). The distribu-
tion of immune response across risk scores 
was shown in the waterfall plots (Figure 7H). 
The time-dependent AUC of ROC curve for the 

Figure 5. Nomogram predicting the prognosis of patients in the TCGA cohort. A. Constructed nomogram contain-
ing risk scores. B. Calibration of nomogram at one-year. C. Calibration of nomogram at three-year. D. Calibration of 
nomogram at five-year. E. Time-dependent ROC of the nomogram for one-, three-, and five-year survival. F. Decision 
curve analysis of the nomogram for one-, three-, and five-year risk. Black line indicates assumption that no patients 
die.
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risk signature in the cohort was presented in 
Figure 7I.

Construction of immune feature-related 
risk signature by extreme gradient boosting 
(XGBoost) algorithm

Extreme gradient boosting (XGBoost) is one of 
the cutting-edge machine learning algorithms 
under the gradient boosting framework that 

can solve big data issues in a highly efficient 
and accurate way. In principle, XGBoost im- 
proves the classification accuracy through iter-
atively optimizing the customized objective 
function step-by-step. To stratify the immune 
features that can predict the high- and low- risk 
status for colon cancer, we took advantage of 
the XGBoost algorithm to build a model with 
enriched score of 28 immune infiltrating sub-
populations in the TCGA cohort. The cohort was 

Figure 6. Immune cell infiltration analysis of the high- and low-risk signature. A. Heatmap representation of 28 im-
mune infiltrating cell enrichment analysis. B. Comparison of 28 immune infiltrating cells between high- (red) and 
low-risk group (green). *P<0.05, **P<0.01, ***P<0.001.
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Figure 7. Immunotherapeutic response of the risk signature in IMvigor210 cohort. A. Kaplan-Meier analysis of risk signature. B. Violin plot of mutation burden. C. 
Violin plot of neoantigen burden. D. Forest plot of multivariate Cox analysis. E. Distribution of risk scores for patients with CR/PR vs. SD/PD. F. Risk score across CR, 
PR, SD, and PD response. G. The number of immunotherapy response in the high- and low-risk group. H. Waterfall plot of risk score and different immunotherapy 
responses. I. Time-dependent area under the curve (AUC) of receiver operating characteristic (ROC) analysis. Abbreviations: PD: Progressive Disease; SD: Stable 
Disease; PR: Partial Response; CR: Complete Response.
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randomly equally divided into training and test-
ing subgroups. In the final output, we selected 
a ten-feature model to predict the risk status. 
The Shapley additive explanation (SHAP) contri-
bution dependency plots of the ten features 
were illustrated in Figure 8A, while the impor-
tant features were ranked in Figure 8B. The 
overall accuracy and AUC in the training cohort 
were 81.73% and 0.909, respectively (Figure 
8C). Then, the testing cohort was utilized to vali-
date the performance of the XGBoost model. 
The AUC for the testing cohort was 0.717 
(Figure 8D) with an accuracy of 63.45%. For the 
entire TCGA cohort, the accuracy and AUC were 
72.59% and 0.814 (Figure 8E).

Overexpression and knockdown of risk genes 
in HCT116 cells 

To study the function of each gene in the risk 
signature on colon cancer, we manipulated  
the gene expression level in HCT116 cells by 
transfection with siRNA or overexpression plas-
mid of each gene. qPCR and western blot analy-
ses were first carried out to confirm the suc-
cessful knockdown or overexpression of the 
target gene. The results showed that mRNA or 
protein level of the risk genes was significantly 
reduced after transfection with siRNAs (Figure 
S6A-J), while increased after transfection with 
overexpression plasmids (Figure S6K-T).

Effects of risk genes on the proliferation, mi-
gration, and invasion of colon cancer cells

After successful gene knockdown or overex-
pression as shown above, we investigated the 
effects of risk genes on the proliferation and 
viability of HCT116 cells by using CCK-8 assays. 
The results showed that, compared with siRNA 
vector controls, knockdown of DCBLD2, HOXC6 
or KRT6A by siRNAs significantly decreased 
(Figure 9A, 9J, 9M), while knockdown of 
RAB11FIP1 or CTLA4 significantly increased 
the cell proliferation (Figure 9D, 9G). In the 
reciprocal experiment, overexpression of DCB- 
LD2, HOXC6 or KRT6A significantly enhanced 
(Figure 9A, 9J, 9M), while overexpression of 
RAB11FIP1 or CTLA4 clearly suppressed the 
cell viability (Figure 9D, 9G). Wound healing 
assays showed that the wound closure was 
delayed after DCBLD2, HOXC6 or KRT6A knock-
down (Figure 9B, 9K, 9N), but was accelerated 
after RAB11FIP1 or CTLA4 knockdown (Figure 
9E, 9H). Consistently, overexpression of these 

genes exhibited the reversed effects. These 
results were further supported by transwell 
assays where the cell invasion and migration 
ability was dampened by DCBLD2, HOXC6 or 
KRT6A siRNA transfection (Figure 9C, 9L, 9O) 
and increased by RAB11FIP1 or CTLA4 siRNA 
transfection (Figure 9F, 9I). Conversely, overex-
pression of DCBLD2, HOXC6 or KRT6A promot-
ed while overexpression of RAB11FIP1 or 
CTLA4 decreased the invasion and migration of 
HCT116 cells. 

Discussion

The etiology and pathophysiologic process 
underlying colon cancer development remain 
elusive, although current understandings indi-
cate that it is a multifactorial disease encom-
passing genetic factors, environmental expo-
sures, epigenetic alternations, and immune 
dysregulation [20]. Traditional predictive tools 
for prognosis involve age, gender, or TNM stag-
ing, which has tremendous limitations because 
of the molecular heterogeneity of cancer [21, 
22]. As a result, molecular prognostic markers 
are being widely investigated. A prominent 
example of such markers, published in Lancet, 
derives from the consensus of immunoscore® 
as a reliable prediction system for colon cancer 
recurrence complementary to the TNM classifi-
cation system [23]. The immune response is 
found to be a key determinator for the pro- 
gnosis.

Here, we identified a five-gene signature, con-
sisting of DCBLD2, RAB11FIP1, CTLA4, HOXC6 
and KRT6A, that could predict the prognosis of 
colon cancer patients. This signature was suc-
cessfully validated in two independent GEO 
datasets, demonstrating its reliability and 
accuracy. In univariate Cox or multivariate Cox 
regression analysis, the gene signature still 
exhibited statistical significance after adjusting 
for age, gender or TNM stage, suggesting its 
independence from other clinical variables. The 
mRNA or protein expression level of each gene 
was also consistent with the prediction trend  
in the signature. We then functionally annotat-
ed the signature and found that they were 
mainly enriched in extracellular matrix organi-
zation, collagen-containing extracellular matrix, 
and extracellular matrix structural constituent 
terms. WGCNA generated five hub genes (PL- 
AGL2, POFUT1, FITM2, TP53RK, and MOCS3) 
associated with the signature genes. To facili-
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Figure 8. XGBoost prediction model for risk status. A. The Shapley additive explanation (SHAP) visualization plots for XGBoost. B. Ranking of ten features by impor-
tance. C. Receiver operating characteristic (ROC) curve of the TCGA training cohort. D. ROC curve of the TCGA testing cohort. E. ROC curve of the entire TCGA cohort.



Prognostic gene signature in colon cancer

60 Am J Cancer Res 2023;13(1):45-65



Prognostic gene signature in colon cancer

61 Am J Cancer Res 2023;13(1):45-65

tate the use of this signature in clinical prac-
tice, we constructed a nomogram incorporating 
common clinical information and the gene risk 
score for prognosis prediction. Furthermore, 
mutation landscape profiling revealed that 
KRAS was the most frequently mutated genes 
(44%) significantly affected by the risk signa-
ture, followed by KMT2B (13%) and PCDHGA2 
(6%). Immune infiltration analysis indicated 
that myriad types of immune cells were involved 
in the functional modality in the high- and low-
risk groups, including activated CD4+ T cell, 
activated CD8+ T cell, activated dendritic cell, 
CD56 bright natural killer cell, natural killer T 
cell, type 17 T helper cell, macrophage, plasma-
cytoid dendritic cell, regulatory T cell, and type 
2 T helper cell. Importantly, the risk signature 
might be related to the immunotherapeutic 
benefits and prognosis, as evidenced by the 
results from anti-PD-L1 cohort analysis (PR vs 
PD P<0.05; Kaplan-Meier P<0.05). Moreover, 
in this study, XGBoost algorithm was applied to 
construct a predictive model using the immune 
infiltrating subpopulation features, which dem-
onstrated desirable accuracy (72.59%) and 
AUC (0.814). Lastly, we conducted in vitro 
experiments to verify the function of the risk 
genes and found that DCBLD2, HOXC6 and 
KRT6A promoted, while RAB11FIP1 and CTLA4 
suppressed, the proliferation, migration, and 
invasion of colon cancer cells. 

Our in vitro validation results were consistent 
with previous reports. For example, Xie et al. 
[24] investigated the function of DCBLD2 by 
knocking down its expression via siRNA and 
found that downregulation of DCBLD2 could 
inhibit the proliferation, migration, and invasion 
of colorectal cancer cells. Similarly, He et al. 
[25] also found that DCBLD2 downregulation 
reduced colorectal cancer cell proliferation and 
invasion in vitro. HOXC6, another gene in the 
risk signature, has been reported to play an 
oncogenic role in colon cancer as HOXC6 over-
expression promoted the migration and inva-
sion of HCT116 and RKO cells by activating 
Wnt/β-catenin pathway [26], while its downreg-
ulation inhibited cell viability and colony forma-
tion through mTOR pathway [27]. As for KRT6A 

gene, although there has been no in vitro study 
reported in colon cells, its oncogenic effect was 
observed in nasopharyngeal carcinoma [28] 
and non-small cell lung cancer [29]. In contrast, 
the other three genes in the risk signature 
exhibited opposite effects on malignancy. For 
example, RAB11FIP1 gene has been reported 
to attenuate tumor progression in an ErbB2 
dependent manner, indicating its tumor sup-
pressing role [30]. Similarly, CTLA4 has been 
found to be constitutively expressed in various 
tumor cells, and treatment of CTLA4-expressing 
cells with soluble recombinant ligands, r-CD80 
and rCD86, induced apoptosis signals [31]. 
Consistent with these findings, higher expres-
sion of CTLA4 was associated with less ad- 
vanced TNM stage and well/moderately differ-
entiated gastric adenocarcinoma [32]. In our 
study, we also found higher expression of 
CTLA4 might be associated with favorable over-
all survival, evidenced by the negative coeffi-
cient in our risk model. Nevertheless, our find-
ing conflicts with the widely accepted notion 
that CTLA4 overexpression in T cells would con-
tribute to a worse prognosis due to CTLA4-
mediated downregulation of T cell activation. 
The possible explanation for this discrepancy is 
CTLA4 expression in different target cells, i.e., 
tumor cells vs T cells, causes distinct pheno-
types. The effect of CTLA4 on the proliferation 
and apoptosis of tumor cells is dramatically dif-
ferent to those of T cells. CTLA4 positive tumor 
cells may transduce negative extracellular sig-
nals into cells by interacting with ligands in the 
microenvironment, thus leading to the inhibi-
tion of cell proliferation or induction of apopto-
sis [31]. In contrast, CTLA4 upregulation in con-
ventional T cells after activation suppresses 
immune response, thereby leading to tumor 
growth and poor overall survival [33]. Our find-
ings and hypothesis are in accordance with pre-
vious reports that CTLA4-overexpressing non-
small cell lung cancer patients had a better 
prognosis compared to patients with low CTLA4 
expression [34]. In this regard, our current find-
ings support the notion that CTLA4 may serve 
as a potential anti-tumor intervention target in 
tumor cells, in addition to its classical immune 
roles in T cells.

Figure 9. CCK-8, wound healing, and transwell invasion and migration assays. Cell viability, invasion and migration 
experiments in HCT116 cells were conducted to evaluate the biological function of five risk genes. (A-C) CCK-8, 
wound healing, and transwell analysis of DCBLD2, and the corresponding analysis on (D-F) RAB11FIP1, (G-I) CTLA4, 
(J-L) HOXC6, and (M-O) KRT6A. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Efforts have been undertaken to predict the 
prognosis of colon cancer through screening 
and establishing molecular signatures. For 
example, Liu et al. [15] established a two-gene 
model using TCGA data. Similarly using TCGA 
data, Xu et al. [16] generated a hypoxia-related 
three-gene signature for prognostic prediction. 
In addition, Sun et al. [17] established an 
immune-related gene model, and Zou et al. [18] 
built a seven-gene model to predict immuno-
therapy response. Furthermore, Yang et al. [19] 
constructed a nine-gene model to improve the 
prediction of prognosis and drug sensitivity. To 
demonstrate the superiority of our signature 
over the published signatures, we evaluated 
the performance of these models in both 
GSE39582 and GSE17538 datasets. The re- 
sults showed that our five-gene signature had 
better predicative ability and higher AUC val-
ues. One of the possible reasons that the previ-
ously published signatures failed to perform 
well during external validation in GSE is because 
of the existence of high heterogeneity among 
different cancer cohorts [35]. Since our signa-
ture was successfully validated in external 
datasets, we speculated that the gene combi-
nation we used had overcome the heterogene-
ity in different cohorts, especially in anti-PD L1 
cohort. Another possible explanation for the 
unsatisfactory performance of the reported sig-
nature might be common statistical cognition: 
the use of dichotomous threshold of P value of 
0.05 as either insignificance or significance 
[36]. Although it has been widely accepted that 
P values less than 0.05 are statistically signifi-
cant, many scholars have argued that “scien-
tists rise up against statistical significance” 
and have raised the concern that the common 
threshold of statistical significance may be mis-
leading due to human or cognitive restriction 
[36]. 

To our knowledge, this study was the first to 
combine the five genes as a signature to pre-
dict the prognosis of colon cancer. Although 
many studies have focused on oncogenes or 
tumor suppressor genes in colon cancer, most 
of them mainly adopted single gene strategy to 
study the gene function individually. Integrating 
different genes is expected to increase prog-
nostic value since the combined signature is 
more likely in line with the multifactorial nature 
of cancer. Additionally, it is well known that the 
prognosis of colon cancer is highly related to 
TNM stage [37]; nevertheless, our risk signa-

ture was independent of TNM stage I, II or III, 
but not TNM IV. Therefore, we constructed a 
nomogram including TNM stage to facilitate the 
clinical use of our model. Our study has several 
advantages. First, the AUCs of the nomogram 
were 0.8, 0.75, and 0.7 for one-, three-, and 
five-year survival, respectively, demonstrating 
a better performance compared to the model 
reported by Han et al. [38], in which 17 clinical 
variables were extracted from SEER database 
to construct a survival-related nomogram for 
colorectal cancer, and the one-, three-, and 
five-year AUCs were 0.705, 0.675, and 0.648, 
respectively. Clearly, our nomogram has the 
advantage of remarkably larger AUC and fewer 
variables, indicating a higher predictive power. 
Second, statistical significance was observed 
in predicting several different survivals, includ-
ing overall survival, recurrence free survival, 
disease free survival, and disease specific sur-
vival, across the three independent datasets 
we examined, which was scarcely reported pre-
viously. The statistical significance in overall 
survival was difficult to repeat in disease free 
survival or recurrence free survival within one 
cohort. It was even more difficult to repeat 
them in different cohorts, suggesting that our 
risk model was strongly correlated with tumor 
progression. The strong correlation would ex- 
ceed the effects caused by inherent biases, 
e.g., tumor cell heterogeneity, distinctive se- 
quencing platforms or normalization methods, 
that can influence the statistical significance. 
Nevertheless, the mechanisms underlying the 
function of our gene signature and patient sur-
vival require further investigation. 

Although our study generated a reliable prog-
nostic signature in colon cancer, there are 
some limitations in this study. First, the sample 
size of TCGA and GEO we used to generate the 
signature may not be sufficient to represent 
colon cancer. Thus, cohorts with larger sample 
sizes are warranted to further demonstrate its 
reliability and specificity. Second, the gene sig-
nature was selected mainly on the basis of 
mRNA expression data, thus, integrating bio-
logical information, such as protein or miRNA 
expression data, will enhance the accuracy of 
the model. Lastly, the mechanisms of the  
signature in immunotherapy are still unclear. 
Further studies are needed to elucidate the 
molecular mechanism underlying the role of 
the signature in immunotherapeutic effect. 
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Conclusion

In summary, we demonstrated the effective 
prediction of the clinical outcomes of colon 
cancer patients by using a five-gene panel. This 
five-gene signature could serve as a potential 
biomarker for the prognosis of colon cancer. 
Extensive clinical testing and basic research 
are required to validate our findings. 
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Table S1. siRNA sequences for the selected genes

siRNA
Sequences (5’-3’)
Sense Anti-sense

DCBLD2 si-1 GCAAGAGAACAGUUGGAAACCTT GGUUUCCAACUGUUCUCUUGCTT
si-2 CGGCCAAAUCAGUGUUGUAAUTT AUUACAACACUGAUUUGGCCGTT
si-3 GUGUGGAGCAAGAUAAGAUAUTT AUAUCUUAUCUUGCUCCACACTT

RAB11FIP1 si-1 CGAUAAGCAAGAAGGAGUUTT AACUCCUUCUUGCUUAUCGTT
si-2 GGUUAAUGAUUACAAUUAATT UUAAUUGUAAUCAUUAACCTT
si-3 CGCACUCGCUAAUACAGUUTT AACUGUAUUAGCGAGUGCGTT

CTLA4 si-1 CCCAAAUUACGUGUACUACTT GUAGUACACGUAAUUUGGGTT
si-2 GGUGGAGCUCAUGUACCCATT UGGGUACAUGAGCUCCACCTT
si-3 UGAGUUGACCUUCCUAGAUGATT UCAUCUAGGAAGGUCAACUCATT

HOXC6 si-1 CUCGUUCUCGGCUUGUCUATT UAGACAAGCCGAGAACGAGTT
si-2 CCGUAUGACUAUGGAUCUATT UAGAUCCAUAGUCAUACGGTT
si-3 GCCAGAUCUACUCGCGGUATT UACCGCGAGUAGAUCUGGCTT

KRT6A si-1 CCAGCAGGAAGAGCUAUATT UAUAGCUCUUCCUGCUGGTT
si-2 GCAAGCUGCUGGAGGGUGATT UCACCCUCCAGCAGCUUGCTT
si-3 ACAAGGUUCUGGAAACAAATT UUUGUUUCCAGAACCUUGUTT

Three siRNAs targeting different sites of each gene were designed and synthesized respectively. 

Table S2. Specific primers for each gene used in this study
Gene Forward primers (5’-3’) Reverse primers (5’-3’)
DCBLD2 GGCCCAGTATGATACCCCGAA ACATCACATTCCCCATCCCT
RAB11FIP1 AGAAAACCAAGAAGCGTGTGTCA GCGTTTCCAGCAACAGACCATG
CTLA4 TGGAGCTCATGTACCCACC ATTTTCACATAGACCCCTGTTGT
HOXC6 TTACCCCTGGATGCAGCGAAT CCGCGTTAGGTAGCGATTGAAGT
KRT6A GATCGCCACCTACCGCAAG CTGCACCACAGAGATGTTGACT
beta-actin TCCTCCTGAGCGCAAGTACTCC  CATACTCCTGCTTGCTGATCCAC 

Table S3. Information of primary antibodies in western blot
Antibody Company Catalogue number
DCBLD2 proteintech 13168-1-AP
RAB11FIP1 proteintech 16778-1-AP
CTLA4 Santa Cruz Biotechnoligy SC-376016
HOXC6 Abcam ab151575
KRT6A proteintech 10590-1-AP
anti-actin MDL MD6553
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Figure S1. Independence of the five-gene risk model from other clinical variables. Multivariate Cox regression analysis was conducted in (A) the TCGA cohort, (B) the 
GSE39582 cohort and (C) the GSE17538 cohort.
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Figure S2. Comparison with previously published signatures using GSE39582 and GSE17538. A-D. Survival curve 
and ROC of Liu’s signature; E-H. Survival curve and ROC of Yang’s signature; I-L. Survival curve and ROC of Zou’s 
signature; M-P. Survival curve and ROC of Xu’s signature; Q-T. Survival curve and ROC of Sun’s signature; U-V. C-
indexes of each signature in the GSE39582 and the GSE17538.
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Figure S3. GSEA analysis of high- and low-risk groups. A. The five most upregulated and the five most downregulated KEGG pathways between high- and low-risk 
groups by GESA. B. Biological process in Gene Ontology (GO) analysis. C. Cellular component in GO analysis. D. Molecular function in GO enrichment.
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Figure S4. Weighted gene co-expression network analysis of high- and low-risk group. A. The identified module 
assigned with unique colors. B. The correlation map between module membership and gene significance in black 
module. C. Module-trait correlation heatmap with red and blue corresponding to positive and negative correlation 
respectively. D. The correlation between risk genes and hub genes. *P<0.05, **P<0.01, ***P<0.001.
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Figure S5. Significantly mutated genes in the TCGA cohort grouped by risk signatures. A. Significantly mutated genes 
between risk groups (upper) and risk panel genes (lower). B. Forest plot of the 36 significantly mutated genes be-
tween risk groups (**P<0.01). C. Stratified landscape of the 36 significantly mutated genes.



Prognostic gene signature in colon cancer

7 

Figure S6. Transfection efficiency evaluation by qPCR and Western blot. The transfection efficiency of siRNAs and pcDNA-3.1-overexpression plasmids for five risk 
genes were evaluated by qPCR and western blot after 48 hours of transfection in HCT116 cells. A-E. qPCR analysis of transfection efficiency of siRNAs or vectors. 
F-J. qPCR analysis of transfection efficiency of pcDNA3.1-overexpression plasmids or pcDNA 3.1-vectors. K-O. Western blot analysis of transfection efficiency of siR-
NAs or vectors. P-T. Western blot analysis of transfection efficiency of pcDNA3.1-overexpression plasmids or pcDNA 3.1-vectors. *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001.


