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Abstract: Successful eradication of the hepatitis C virus (HCV) cannot eliminate the risk of hepatocellular carcinoma 
(HCC). Next-generation RNA sequencing provides comprehensive genomic insights into the pathogenesis of HCC. 
Artificial intelligence has opened a new era in precision medicine. This study integrated clinical features and genetic 
biomarkers to establish a machine learning-based HCC model following viral eradication. A prospective cohort of 55 
HCV patients with advanced fibrosis, who achieved a sustained virologic response after antiviral therapy, was en-
rolled. The primary outcome was the occurrence of HCC. The genomic signatures of peripheral blood mononuclear 
cells (PBMC) were determined by RNA sequencing at baseline and 24 weeks after end-of-treatment. Machine learn-
ing algorithms were implemented to extract the predictors of HCC. HCC occurred in 8 of the 55 patients, with an 
annual incidence of 2.7%. Pretreatment PBMC DEFA1B, HBG2, ADCY4, and posttreatment TAS1R3, ABCA3, and 
FOSL1 genes were significantly downregulated, while the pretreatment ANGPTL6 gene was significantly upregulated 
in the HCC group compared to that in the non-HCC group. A gene score derived from the result of the decision tree 
algorithm can identify HCC with an accuracy of 95.7%. Gene score = TAS1R3 (≥0.63 FPKM, yes/no = 0/1) + FOSL1 
(≥0.27 FPKM, yes/no = 0/1) + ABCA3 (≥2.40 FPKM, yes/no = 0/1). Multivariate Cox regression analysis showed 
that this gene score was the most important predictor of HCC (hazard ratio = 2.38, 95% confidence interval [CI] 
= 1.06-5.36, P = 0.036). Combining the gene score and fibrosis-4 index, a nomogram was constructed to predict 
the probability of HCC with an area under the receiver operating characteristic curve up to 0.950 (95% CI = 0.888-
1.000, P = 7.0 × 10-5). Decision curve analysis revealed that the nomogram had a net benefit in HCC detection. 
The calibration curve showed that the nomogram had optimal concordance between the predicted and actual HCC 
probabilities. In conclusion, down-regulated posttreatment PBMC TAS1R3, ABCA3, and FOSL1 expression were 
significantly correlated with HCC development after HCV eradication. Decision-tree-based algorithms can refine the 
assessment of HCC risk for personalized HCC surveillance. 
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Introduction

Hepatitis C virus (HCV) infection is a major 
cause of hepatocellular carcinoma (HCC). The 

annual incidence of HCC is 2-4% in HCV patients 
with advanced fibrosis [1]. Compared to con-
ventional interferon (IFN)-based therapy, direct-
acting antiviral agents (DAAs) have improved 
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sustained virologic response (SVR) rates by  
up to 98% [2]. Antiviral therapy substantially 
reduced HCC risk, irrespective of whether IFN- 
or DAA-based regimens were used [3]. However, 
successful HCV eradication does not abrogate 
the occurrence of HCC. As the population of 
patients with SVR grows, the identification of 
individuals who maintain a high risk of HCC 
remains an unmet need.

Risk factors of post-SVR HCC include pre-exist-
ing advanced fibrosis, older age, and diabetes 
mellitus [4]. The risk of HCC could be affected 
by the pre-existing host background and adjust-
ed by genetic signatures following HCV clear-
ance. HCV protein elicits dysregulation of host 
cell cycle checkpoints and oxidative stress, 
which may lead to the accumulation of DNA 
damage in infected cells [5, 6]. In addition, 
HCV-induced oncogenic transcriptome and epi-
genetic alterations may persist in the hepato-
cytes despite successful HCV eradication [7, 8]. 
Advancements in next-generation sequencing 
(NGS) technology provide comprehensive 
genomic insights into the pathogenesis of HCC. 
Deep sequencing analysis has not only verified 
previously known mutations of TP53 and 
CTNNB1 in HCC, but also detected novel epi-
genetic modifiers [9]. Wnt signaling, cell cycle, 
and chromatin remodeling pathways have 
emerged as key oncogenic drivers in HCC [10, 
11]. 

Artificial intelligence (AI) has been widely 
applied in clinical diagnosis and disease clas-
sification. In contrast to traditional hypothesis-
driven statistical methods, machine learning 
may use a hypothesis-free approach to classify 
clinical phenotypes [12]. Conventional regres-
sion models estimate the risk of HCC based  
on routinely available clinical parameters [4]. 
Machine learning algorithms can recognize hid-
den patterns within clinical information that are 
clearer than those derived from traditional sta-
tistical methods [13]. Common supervised 
machine-learning algorithms include decision 
trees, random forests, support vector ma- 
chines, and artificial neural networks [14, 15]. 
Decision trees classify the samples by sorting 
them from the root to leaf nodes until the maxi-
mal homogeneity of the subgroups is achieved. 
Random forest is composed of a collection of 
decision trees, and each tree is drawn from the 
bootstrap samples. Finally, it combines the out-
puts of multiple decision trees to integrate a 

single result. Artificial intelligence has opened 
a new era of precision medicine in the field of 
hepatology. It can assess individual HCC risk by 
unveiling the complex interactions between 
cancer predictors. Machine learning-based 
models can improve the accuracy of HCC pre-
diction compared to that with conventional 
regression models [16].

The mechanisms underlying de novo HCC fol-
lowing HCV eradication remain unclear. To 
investigate the pathogenesis of post-SVR HCC, 
we analyzed the dynamic genetic signatures of 
patients with HCV after antiviral therapy. Here, 
we attempted to identify potential biomarkers 
associated with HCC after viral clearance. This 
study introduced a machine-learning-based 
model for the assessment of HCC risk for per-
sonalized surveillance.

Materials and methods

Subjects

A prospective cohort of treatment-naïve HCV 
patients with advanced fibrosis who achieved 
SVR after antiviral therapy at Kaohsiung 
Medical University Hospital was followed up 
from 2004 to 2021. Patients received either 
pegylated interferon α-2a (180 μg/week) plus 
weight-based ribavirin (1000 mg/day for 
weights <75 kg or 1200 mg/day for weights 
>75 kg) or interferon-free direct-acting antiviral 
agents (DAAs). The choice of antiviral regimens 
was based on the HCV treatment guidelines  
of the Asian Pacific Association for the Study  
of the Liver (APASL) and the reimbursement  
criteria of the National Health Insurance Ad- 
ministration in Taiwan. Patients with advanced 
fibrosis (F3/4) met any one of the following cri-
teria: Fibrosis-4 (FIB-4) index >3.25, transient 
elastography (Fibroscan) >9.1 kPa, acoustic 
radiation force impulse elastography >1.81 m/
sec, or histology-proven F3/4. The exclusion cri-
teria included co-infection with hepatitis B or 
human immunodeficiency virus, history of the 
prior presence of HCC, decompensated liver 
cirrhosis, liver transplantation, malignancy, 
alcoholism, idiopathic hepatic fibrosis, and 
hepatic fibrosis caused by other secondary 
causes.

Outcome assessment

The primary outcome was de novo HCC occur-
rence after achieving sustained virologic 
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response. Abdominal sonography and α-feto- 
protein (AFP) testing were performed every six 
months for HCC surveillance during follow-up. 
Patients with HCC development within six 
months of the initiation of antiviral therapy 
were excluded. SVR was defined as undetect-
able HCV RNA in the serum 24 weeks after the 
completion of antiviral therapy. This study was 
approved by the Institutional Review Board of 
Kaohsiung Medical University Hospital and fol-
lowed the tenets of the Declaration of Helsinki 
(KMUHIRB-E(I)-20180307). Written informed 
consent was obtained from all participants.

Next-generation RNA sequencing

Blood samples were collected at the baseline 
and SVR24 weeks after treatment. The periph-
eral blood mononuclear cells (PBMC) were  
isolated using the Ficoll-Hypaque Plus density 
gradient (Amersham Biosciences, Uppsala, 
Sweden). RNA was purified using a RiboPureTM 
Kit (Ambion, Applied Biosystems, Foster City, 
CA, USA). RNA quality was assessed using the 
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, 
CA, USA). In total, 70% of the samples passed 
RNA quality control (RNA integrity number >7). 
Eventually, 30 pretreatment samples and 47 
posttreatment samples were suitable for RNA 
sequencing. 

The mRNA library was prepared after removal 
of rRNA using the TruSeq Stranded Total RNA 
Library Preparation Kit (Illumina, San Diego, 
California, USA). The RNA was fragmented into 
small pieces (180-250 nt) by heating. A cDNA 
library was constructed using end repair, adap-
tor ligation, and PCR amplification. Double-
stranded cDNA samples were purified using 
Agencourt AMPure XP beads (Beckman). 
Paired-end RNA sequencing was performed on 
the Illumina HiSeq 2500 System (LC Sciences, 
Houston, TX, USA), according to the manufac-
turer’s recommended protocol. 

TopHat2 (version 2.0.4.) was used to align the 
reads into transcripts based on human genome 
reference sequencing (http://genome.ucsc.
edu/) [17]. The aligned reads were analyzed 
using the Cufflinks software (LC-Bio, Hangzhou, 
China) to calculate the relative genome abun-
dance of each transcript. The expression of 
each transcript was quantified as FPKM (frag-
ments per kilobase of transcript per million 
mapped reads). A total of 58676 gene tran-

scripts were identified using TopHat2 and 
Cufflinks software. Differential gene expression 
between groups was tested using the DESeq2 
package in the R software (http://www.r-project.
org). The significance of gene expression was 
defined as a false discovery rate (FDR) <0.1 
using the Benjamini-Hochberg procedure.

Machine learning model

The classification and regression tree (CART) 
algorithm of the decision tree was used to pre-
dict the primary outcome. The categorization of 
the outcomes depends on binary splitting. The 
CART algorithm develops binary trees based on 
single features until the stopping criteria are 
met. The Gini impurity measures the likelihood 
that randomly selected samples will be incor-
rectly classified by a specific node. The Gini 
index ranged from 0 to 1. Zero denotes that all 
elements belong to a certain class and 1 
denotes that the elements are randomly dis-
tributed across various classes. The Gini index 
was used to identify the corresponding thresh-
old for splitting the input data into sub-branch-
es. This step was repeated to maximize sub-
group homogeneity. The “rpart” package of R 
software was used to build the decision tree 
model.

The random forest algorithm was used to iden-
tify HCC predictors and rank their importance. 
Random forest builds an ensemble of decision 
trees, which are trained using the bootstrap-
ping method. It merges all trees to obtain a 
more accurate and stable prediction. Each ran-
dom forest analysis consisted of 500 random 
and independently grown decision trees. The 
importance of each variable was assessed by 
the decrease in the Gini impurity. The accuracy 
of the random forest model was estimated 
using out-of-bag error. The RandomForest pack-
age of R software was used for random forest 
analysis.

Statistical analyses

The Student’s t-test was used to compare con-
tinuous variables. The chi-square (χ2) test or 
Fisher’s exact test was used to assess categor-
ical variables. The differences in the primary 
outcome between the groups were analyzed 
using Kaplan-Meier survival analysis with the 
log-rank test. The Cox proportional hazards 
model was used for the multivariate survival 
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analysis. The performance of the predictive 
model was evaluated using the area under  
the receiver operating characteristic curve 
(AUROC) and decision curve analysis (DCA). The 
nomogram was utilized for predicting the prob-
ability of HCC occurrence. Data were analyzed 
using the Statistical Package for the Social 
Sciences software (SPSS, version 17.0, SPSS 
Inc., Chicago, Illinois). The decision curve analy-
sis and nomogram were performed by ggDCA 
and rms packages of R software, respectively. 
A two-tailed P value <0.05 was considered sta-
tistically significant.

of HCC did not differ between the interferon 
and DAA groups (log-rank P = 0.065) (Figure 1).

Differentially expressed genes

Pretreatment angiopoietin-like 6 (ANGPTL6) 
gene expression was significantly higher in the 
HCC group than in the control group. Baseline 
defensin alpha 1B (DEFA1B), hemoglobin sub-
unit gamma 2 (HBG2), and adenylate cyclase 4 
(ADCY4) gene expression was significantly 
downregulated in the HCC group compared to 
that in the control group. Posttreatment taste 1 

Table 1. Baseline demographics of study subjects
Total HCC Non-HCC P value

n 55 8 47
Age (y/o) 64.0±7.8 63.0±3.0 64.1±8.3 0.709
Sex
    Male 25 (45.5%) 6 (75.0%) 19 (40.4%) 0.123
    Female 30 (54.5%) 2 (25.0%) 28 (59.6%)
HCV genotype
    1 34 (61.8%) 6 (75.0%) 28 (59.6%) 0.558
    2 16 (29.1%) 2 (25.0%) 14 (29.8%)
    Mixed 5 (9.1%) 0 (0.0%) 5 (10.6%)
HCV RNA (log IU/ml) 5.45±0.89 5.11±0.82 5.50±0.89 0.246
FIB-4 6.14±3.49 7.61±4.57 5.89±3.27 0.339
Cirrhosis
    Yes 18 (32.7%) 2 (25.0%) 16 (34.0%) 1.000
    No 37 (67.3%) 6 (75.0%) 31 (66.0%)
AFP (ng/ml) 19.3±28.9 45.9±59.4 14.8±17.5 0.217
PLT (k/μl) 120.6±35.7 110.5±32.2 122.2±36.3 0.391
AST (IU/L) 134.6±77.4 181.4±100.7 126.6±71.0 0.064
ALT (IU/L) 178.8±151.6 236.8±127.3 168.9±154.4 0.246
γ-GT (IU/L) 70.7±48.8 89.0±59.6 67.2±46.5 0.250
Cholesterol (mg/dl) 163.6±30.6 167.4±22.7 162.9±32.0 0.723
Triglyceride (mg/dl) 98.9±42.0 99.4±45.4 98.8±42.0 0.971
HDL (mg/dl) 45.9±14.0 39.6±5.2 47.0±14.7 0.032
LDL (mg/dl) 89.4±23.0 97.6±19.6 88.1±23.4 0.352
Cr (mg/dl) 0.83±0.27 0.92±0.25 0.82±0.27 0.320
HbA1c (%) 5.8±1.1 6.6±2.0 5.7±0.83 0.236
BMI (kg/m2) 24.8±4.4 25.9±3.1 24.7±4.5 0.467
Treatment
    IFN 27 (49.1%) 7 (87.5%) 20 (42.6%) 0.025
    DAA 28 (50.9%) 1 (12.5%) 27 (57.4%)
p.s. HCC: Hepatocellular Carcinoma; HCV: Hepatitis C Virus; FIB-4: Fibrosis-4 index; 
AFP: Alpha-Fetoprotein; PLT: Platelet; AST: Aspartate aminotransferase; ALT: Alanine 
aminotransferase; γ-GT: γ-Glutamyl Transferase; HDL: High-Density Lipoprotein; LDL: 
Low-Density Lipoprotein; Cr: Creatinine; HbA1c: Hemoglobin A1c; BMI: Body Mass 
Index; DAA: Direct-acting Antiviral Agent; IFN: Interferon.

Results

Baseline demographics

HCC developed in 8 of the 
55 HCV patients after 
achieving SVR over 298.7 
person-years of follow-up. 
The annual incidence of 
HCC is 2.7%. The informa-
tion on baseline character-
istics of HCC patients is 
shown in Table 1. There 
were no statistically signifi-
cant differences in sex, 
age, HCV genotype, viral 
load, FIB-4 index, cirrhosis, 
AFP, HbA1c, or body ma- 
ss index (BMI) between  
the HCC and control gro- 
ups. High-density lipopro-
tein (HDL) levels were sig-
nificantly lower in the HCC 
group than in the control 
group (P = 0.032). In the 
treatment regimen, the 
proportion of patients tr- 
eated with IFN was signifi-
cantly higher in the HCC 
group compared to that in 
the control group (87.5% 
vs. 42.6%, P = 0.025) 
(Table 1). The mean follow-
up time was 8.5 years 
(interquartile range, IQR = 
4.2-12.7 years) in the inter-
feron group, and 2.5 years 
(IQR = 1.6-3.3 years) in the 
DAA group, respectively. 
The cumulative probability 
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Figure 1. Kaplan-Meier survival analysis.

receptor member 3 (TAS1R3) and ATP-binding 
cassette subfamily A member 3 (ABCA3) were 
significantly lower in the HCC group than in the 
control group. Among the paired samples, post-
treatment FOS-like antigen 1 (FOSL1) levels 
were significantly lower in the HCC group than 
in the control group (Table 2).

Decision tree algorithm identified the HCC pre-
dictors

To integrate the clinical features and genomic 
signatures into a single model, we used classi-
fication and regression tree analyses to predict 
the occurrence of HCC after SVR (Figure 2). The 
decision tree model was fitted based on 10 
clinical characteristics (age, sex, HCV genotype, 
HCV RNA, FIB-4, AFP, HbA1c, platelet, BMI, 
treatment regimens) and genomic signatures 
(post-treatment TAS1R3, ABCA3, and FOSL1 
genes). The minimum split size at each node 
was set to two to avoid overfitting. Single tree 
recursive partitioning identified three dominant 
predictors of HCC, namely TAS1R3, FOSL1, and 
ABCA3, yielding four subgroups with varying 
risks at each terminal node. The best predictor 
in the root node was the posttreatment TAS1R3, 
using a ≥0.63 versus <0.63 FPKM threshold for 
the first step. The patients with TAS1R3 <0.63 
(node 3) were split into nodes 4 and 5 by the 
posttreatment FOSL1 with a cutoff value of 
0.27 FPKM. Finally, the patients with FOSL1 
<0.27 (node 5) were split into terminal nodes 6 

and 7 by the posttreatment 
ABCA3 with a cutoff value  
of 2.4 FPKM. The risk catego-
ries were computed from four 
terminal nodes: low-risk (node 
2), intermediate-risk (merging 
nodes 4 and 6), and high-risk 
(node 7). The accuracy of this 
decision tree-based HCC pre-
dictive model was 95.7%.

The importance of HCC pre-
dictors assessed by Random 
Forest

The relative importance of  
the HCC predictors was eva- 
luated using the random for-
est algorithm. Overall, 500 
randomly and independently 
grown decision trees were 

used to determine the importance of variables. 
Posttreatment TAS1R3 expression was identi-
fied as the most important predictor of HCC. 
The top five variables for predicting HCC were 
TAS1R3, FOSL1, AFP, HCV viral load, and ABCA3 
(Figure 3A). The out-of-bag error rate was 
14.6% when estimating the true prediction 
error based on the choices of random forest 
variables (Figure 3B).

Cox regression analysis of the relationship be-
tween the differentially expressed genes and 
HCC

The gene score was derived from the results of 
decision tree analysis. Gene score = posttreat-
ment TAS1R3 (≥0.63 FPKM, yes = 0, no = 1) + 
FOSL1 (≥0.27 FPKM, yes = 0, no = 1) + ABCA3 
(≥2.40 FPKM, yes = 0, no = 1). In univariate  
Cox regression analysis, the gene score was 
significantly associated with the onset of HCC 
(crude HR = 2.48, 95% CI = 1.15-5.33, P = 
0.02) among all cases. The Fibrosis-4 index 
was correlated with HCC with borderline signifi-
cance. In multivariate Cox regression analysis, 
the gene score remained an independent risk 
factor for HCC after adjusting for fibrosis-4 
index (adjusted HR = 2.38, 95% CI = 1.06-5.36, 
P = 0.036) (Table 3). 

Among the HCV patients treated with pegIFN/
ribavirin, univariate Cox regression analysis 
showed that the gene score was a significant 
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predictor of HCC (crude HR = 3.38, 95% CI = 
1.20-9.49, P = 0.021). Multivariate Cox regres-
sion analysis revealed that the gene score 
remained an independent risk factor for HCC in 
the IFN group after adjusting for sex and body 
mass index (adjusted HR = 8.14, 95% CI = 
1.35-49.23, P = 0.022) (Table 4).

Nomogram development

The nomogram is a graphical tool to represent 
the effect of each predictor on the outcome. A 
nomogram was developed based on the results 
of the Cox proportional hazards regression 
analysis. The parameters of this nomogram 
were composed of the gene score and FIB-4 

in the gene score, respectively. The ROC curve 
analysis showed the nomogram had excellent 
discrimination of HCC occurrence among the 
HCV-cured patients (Figure 5A). The decision 
curve analysis revealed both models had net 
benefits compared to the clinical default strate-
gies of “treat all” or “treat none” over the entire 
range of threshold probabilities. The area under 
the decision curve was greater in nomogram 
(AUDC = 0.08) than in the gene score (AUDC = 
0.068). It suggested the nomogram was supe-
rior to the gene score in the clinical application 
(Figure 5B). The calibration curve confirmed 
the nomogram had optimal goodness of fit 
between the predicted and actual HCC proba-
bilities (Figure 5C).

Table 2. The differentially expressed genes between hepatocellular carcinoma and non-hepatocellu-
lar carcinoma samples

RNAseq samples (n)
Gene log2FC P value FDR

HCC Non-HCC
Pretreatment 2 28 ANGPTL6 Up 2.37 8.19 × 10-6 0.052 

DEFA1B Down -21.45 7.64 × 10-7 0.015 
HBG2 Down -9.98 1.08 × 10-5 0.052 
ADCY4 Down -1.88 3.97 × 10-6 0.038 

Posttreatment 8 39 TAS1R3 Down -1.21 1.40 × 10-6 0.027 
ABCA3 Down -0.60 8.08 × 10-6 0.079 

Paired samples
Pretreatment 2 20 N/A N/A N/A N/A N/A
Posttreatment 2 20 FOSL1 Down -3.46 1.55 × 10-3 0.068 
p.s. The differentially expressed genes were analyzed by DESeq2. RNAseq: next-generation RNA sequencing; HCC: Hepatocel-
lular Carcinoma; log2FC: log2 Fold Change; FDR: False Discovery Rate.

Figure 2. The decision tree algorithm predicts hepatocellular carcinoma 
among the posttreatment samples of all cases. p.s. The root node and leaf 
nodes are represented by squares, which contain the number of patients in 
each group. Each branch represents the decision rules, and each leaf node 
represents the classification outcome. 

index. The value of each 
parameter has a correspond-
ing risk point. The sum of each 
parameter’s points is convert-
ed to 5-year and 10-year sur-
vival probability. A high total 
point indicates a high survival 
probability and a low risk of 
HCC occurrence (Figure 4).

The performance of the hepa-
tocellular carcinoma predic-
tive models 

The area under the receiver 
operating characteristic curve 
was 0.950 (95% CI = 0.888-
1.000, P = 7.0 × 10-5) in the 
nomogram and 0.913 (95% CI 
= 0.794-1.000, P = 2.6 × 10-4) 
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Figure 3. The importance of risk factors of hepatocellular carcinoma determined by the random forest model. p.s. 
TAS1R3: Taste 1 Receptor member 3; FOSL1: FOS-like antigen 1; AFP: Alpha-Fetoprotein; logRNA: log HCV viral load; 
ABCA3: ATP-Binding Cassette subfamily A member 3; FIB-4: Fibrosis-4 index; BMI: Body Mass Index; HbA1c: Hemo-
globin A1c; PLT: Platelet; Tx: Treatment regimen. 

Table 3. Factors associated with the onset of hepatocellular carcinoma in overall cases: univariate 
and multivariate Cox regression models

Variables
Univariate Cox regression Multivariate Cox regression

Crude HR (95% CI) P value Adjusted HR (95% CI) Adjusted P value
Age (>60 vs. ≤60 y/o) 0.63 (0.13-3.18) 0.580 - -
Sex (male vs. female) 2.99 (0.59-15.08) 0.186 - -
HCV genotype 0.35 (0.09-1.41) 0.140 - -
HCV RNA (>106 vs. ≤106 IU/ml) 0.34 (0.04-2.79) 0.314 - -
FIB-4 1.17 (0.98-1.40) 0.089 1.03 (0.85-1.24) 0.780
Platelet (>105 vs. ≤105/μl) 0.66 (0.16-2.79) 0.575 - -
AFP (>20 vs. ≤20 ng/ml) 2.41 (0.54-10.82) 0.252 - -
HbA1c (>7 vs. ≤7%) 2.41 (0.46-12.50) 0.296 - -
HDL (>40 vs. ≤40 mg/dl) 1.26 (0.24-6.52) 0.786 - -
BMI (>25 vs. 25 kg/m2) 0.38 (0.09-1.63) 0.193 - -
Treatment (DAA vs. IFN) 8.78 (0.54-141.9) 0.126 - -
Pretreatment gene (FPKM)
    ANGPTL6 1.24 (0.84-1.83) 0.281 - -
    DEFA1B 0.90 (0.54-1.49) 0.674 - -
    HBG2 0.01 (0.00-287.8) 0.388 - -
    ADCY4 0.48 (0.04-6.17) 0.569 - -
Posttreatment gene (FPKM)
    TAS1R3 0.08 (0.00-1.77) 0.110 - -
    ABCA3 0.68 (0.23-1.99) 0.478 - -
    FOSIL1 0.56 (0.03-10.73) 0.701 - -
    Gene score 2.48 (1.15-5.33) 0.020 2.38 (1.06-5.36) 0.036
p.s. HCC: Hepatocellular Carcinoma; y/o: years old; HCV: Hepatitis C Virus; FIB-4: Fibrosis-4 index; AFP: α-Fetoprotein; HbA1c: 
Hemoglobin A1c; HDL: High Density Lipoprotein; BMI: Body Mass Index; DAA: Direct-acting Antiviral Agent; IFN: Interferon; 
FPKM: Fragments per Kilobase per Million; 95% CI: 95% Confidence Interval; HR: Hazard Ratio. The stepwise multivariate Cox 
regression was adjusted for fibrosis-4 index, and gene score. 

Kaplan-Meier survival analysis for HCV pa-
tients stratified by nomogram

The HCV patients were further stratified into 
low- (150-200 points), intermediate- (90-149 

points), and high-risk groups (0-90 points) 
according to the monogram. In the high-risk 
group, the 3-year, 5-year, and 10-year cumula-
tive probabilities of HCC were 0%, 14.3%, and 
42.9%, respectively. In the intermediate-risk 
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Table 4. Factors associated with the onset of hepatocellular carcinoma in the interferon group: uni-
variate and multivariate Cox regression models

Variables
Univariate Cox regression Multivariate Cox regression 

Crude HR (95% CI) P value Adjusted HR (95% CI) Adjusted P value
Age (>60 vs. ≤60 y/o) 1.20 (0.14-10.09) 0.865 - -
Sex (male vs. female) 6.07 (0.71-51.56) 0.099 1.29 (0.08-20.31) 0.857
HCV genotype 0.38 (0.09-1.56) 0.179 - -
HCV RNA (>106 vs. ≤106 IU/ml) 0.40 (0.05-3.38) 0.400 - -
FIB-4 1.10 (0.89-1.37) 0.370 - -
Platelet (>105 vs. ≤105/μl) 0.98 (0.19-5.06) 0.978 - -
AFP (>20 vs. ≤20 ng/ml) 1.68 (0.31-9.24) 0.551 - -
HbA1c (>7 vs. ≤7%) 2.92 (0.53-16.07) 0.218 - -
HDL (>40 vs. ≤40 mg/dl) 0.95 (0.15-5.97) 0.959 - -
BMI (>25 vs. ≤25 kg/m2) 0.25 (0.05-1.18) 0.080 0.14 (0.02-1.08) 0.060
Pretreatment gene (FPKM)
    ANGPTL6 1.24 (0.84-1.83) 0.281 - -
    DEFA1B 0.90 (0.54-1.49) 0.674 - -
    HBG2 0.01 (0.0-287.8) 0.388 - -
    ADCY4 0.48 (0.04-6.17) 0.569 - -
Posttreatment gene (FPKM)
    TAS1R3 0.32 (0.03-4.19) 0.388 - -
    ABCA3 1.16 (0.46-2.94) 0.752 - -
    FOSIL1 0.24 (0.0-13.08) 0.481 - -
    Gene score 3.38 (1.20-9.49) 0.021 8.14 (1.35-49.23) 0.022
p.s. HCC: Hepatocellular Carcinoma; y/o: years old; HCV: Hepatitis C Virus; FIB-4: Fibrosis-4 index; AFP: α-Fetoprotein; HbA1c: 
Hemoglobin A1c; HDL: High-Density Lipoprotein; BMI: Body Mass Index; FPKM: Fragments per Kilobase per Million; 95% CI: 
95% Confidence Interval; HR: Hazard Ratio. The multivariate Cox regression analysis was adjusted for sex, BMI, and gene 
score. 

Figure 4. Nomogram of Cox regression model. p.s. The points for each predictor were calculated by drawing a 
straight line from the individual’s variable value to the axis labeled “Points”. The total point for all predictors is con-
verted to the survival probability. The 5-year and 10-year survival probability can be obtained by drawing a vertical 
line from the axis labeled “Total Points”.

group, the 3-year, 5-year, and 10-year accumu-
lative probabilities for HCC were 0%, 11.1%, 
and 25.9%, respectively. In contrast, none of 
the low-risk patients had HCC within 14 years 
of follow-up (log-rank P = 0.014) (Figure 6). 

Discussion

This study revealed that HCC risk could be 
modified by genomic signatures after HCV 
eradication. Down-regulated posttreatment 
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TAS1R3, ABCA3, and FOSL1 expression in 
PBMC was significantly correlated with HCC 
development following HCV clearance. Decision 
tree-based algorithms integrate clinical fea-
tures and genomic signatures to extract impor-
tant predictors of HCC. A gene score compris-
ing TAS1R3, ABCA3, and FOSL1 can accurately 
classify which HCV patients is at high risk of 
HCC. Combining the gene score and FIB-4 
index, we further constructed a nomogram to 
predict the individual risk of HCC with a high 
diagnostic accuracy. Decision-tree based algo-
rithms can refine the assessment of HCC risk 
for personalized HCC surveillance. 

TAS1R3 is encoded by the TAS1R3 gene. Sweet 
taste receptors are expressed in tissues other 
than taste buds, including the gastrointestinal 
tract [18], pancreatic β-cells [19], hypothala-

mus [20], and others. TSA1R3 is G-protein-
coupled sweet taste receptor protein [21], 
which is involved in regulating glucose homeo-
stasis [22]. TAS1R3s act as luminal sugar sen-
sors that control sodium-dependent glucose 
transporter isoform 1 (SGLT1) expression in 
response to dietary sugar [18]. Mice lacking 
TAS1R3 are deficient in incretin production and 
glucose tolerance [23]. Glucagon-like peptide-1 
(GLP-1) release can be blocked by a sweet 
receptor antagonist [24]. Altered GLP-1 secre-
tion in gut “taste cells” may implicate crucial 
pathogenesis for diabetes and obesity, which 
are risk factors of HCC.

ABCA3 encodes ATP-binding cassette subfami-
ly A member 3, one of the ATP-binding cassette 
(ABC) transporter superfamily. ABC transport-
ers utilize the energy of ATP hydrolysis to trans-

Figure 5. The performance of the hepatocellular 
carcinoma predictive model. A. Receiver operat-
ing characteristic curve; B. Decision curve analy-
sis; C. Calibration curve plot. 
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locate substrates across the cell membranes 
[25]. ABCA is highly expressed in the liver, 
lungs, kidneys, and pancreas [26]. ABC trans-
porters play a crucial role in mediating choles-
terol efflux to HDL and in preventing cellular 
lipid accumulation [27, 28]. Mice lacking ABC 
transporters accumulate inflammatory macro-
phages in the liver [29]. ABC transporter defi-
ciency in macrophages induces inflammatory 
signaling via various toll-like receptors [30]. 
Downregulation of ABCA1/ABCG1 results in im- 
paired cholesterol efflux to HDL and increased 
secretion of inflammatory cytokines and che-
mokines [31]. Persistent inflammation is a hall-
mark of chronic hepatic injury that predisposes 
patients to HCC.

FOS-related antigen 1 (Fra-1), encoded by the 
FOSL1 gene, is a nuclear transcription factor 
that regulates cell proliferation, invasion, 
metastasis, and epithelial-mesenchymal tran-
sition [32]. Fra-1 is overexpressed in colorectal 
cancer, breast cancer, lung cancer, prostate 
cancer, and others [33]. In contrast, Fra-1 over-
expression in cervical cancer cells inhibits 
tumor cell growth via STAT1 regulation of p53 
signaling [34]. Previous studies showed that 
increased intrahepatic FOSL1 is an unfavor-
able prognostic factor of HCC [35, 36]. Our 
study revealed that downregulation of FOSL1 in 

identified a gene profile comprising TAS1R3, 
ABCA3, and FOSL-1 that was significantly asso-
ciated with HCC after SVR. Both TAS1R3 and 
ABCA3 participate in the glucose and lipid 
metabolism. This implies that genetic varia-
tions in energy metabolism may serve as key 
drivers of hepatocarcinogenesis after HCV 
clearance. Traditional HCC surveillance guide-
lines recommend performing serum α-feto- 
protein and ultrasonography every six months 
[38]. The “one-size-fits-all” HCC surveillance 
strategy is ineffective in the post-DAA era. This 
risk-based surveillance strategy provides cost-
effective principles for numerous HCV patients 
with SVR. The concurrent downregulation of 
TAS1R3, ABCA3, and FOSL-1 significantly in- 
creased the risk of HCC, with a 5-year and 
10-year cumulative probability of HCC up to 
14.3% and 48.6%, respectively. Nevertheless, 
none of the HCC developed in patients with 
simultaneous upregulation of TAS1R3, ABCA3, 
and FOSL-1. Individuals with high-risk genomic 
signatures should be monitored closely.

Since the sensitivity of AFP is suboptimal [39] 
and the ultrasound technique is highly opera-
tor-dependent, the development of novel bio-
markers is valuable for HCC screening. A large 
cohort (Ioannou et al.) revealed that pretreat-
ment FIB-4 and ΔFIB-4 scores can be used as 

Figure 6. Kaplan-Meier survival analysis. p.s. The HCV patients were strati-
fied into low- (150-200 points), intermediate- (score = 90-149 points), and 
high-risk groups (score = 0-89 points) based on the total points of nomo-
gram. 

PBMC after HCV eradication 
increases the risk of HCC. This 
discrepancy may arise from 
the fact that FOSL1 has dis-
tinct effects on cancer and 
immune cells. Further, the role 
of FOSL-1 in HCC should be 
verified.

The mechanism underlying 
HCC occurrence after HCV 
eradication remains largely 
unknown. Advanced fibrosis 
may require a long time to 
resolve after viral clearance. 
Concomitant hepatotoxic inju-
ries, such as alcohol and met-
abolic-associated fatty liver 
disease, lead to the progres-
sion of fibrosis [37]. HCV-
related preneoplastic genetic 
and epigenetic modifications 
that occurred before antiviral 
therapy may persist indefinite-
ly after SVR [7, 8]. Our study 
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a convenient method for stratifying post-SVR 
HCC risk. Patients with FIB-4 scores ≥3.25 
have a high enough risk to merit HCC surveil-
lance, especially if FIB-4 remains >3.25 after 
SVR [40]. In the high-risk group with pretreat-
ment FIB-4 ≥3.25, the application of the nomo-
gram may further improve post-SVR HCC risk 
stratification. Our nomogram has excellent dis-
crimination in HCC occurrence and optimal con-
cordance between the predicted and actual 
HCC probabilities. The decision curve analysis 
supported this nomogram provides net benefit 
in the diagnosis of HCC. Furthermore, the 
nomogram gives clinicians a more tangible 
interpretation of each predictor’s impact on the 
outcome. 

Many promising biomarkers of HCC have been 
developed. α-fatoprotein-L3 and des-γ-carboxy 
prothrombin (DCP) are novel HCC biomarkers 
approved by the US Food and Drug Ad- 
ministration (FDA). The AUC for AFP, AFP-L3, 
and DCP were 0.77, 0.73, and 0.71, respective-
ly. Combination of AFP and AFP-L3 or DCP 
enhanced the discrimination for early-stage 
HCC (AUC = 0.83~0.86) [41]. The GALAD score, 
derived from gender, age, AFP-L3, AFP, and 
DCP, is used to identify post-SVR HCC with high 
accuracy (AUC = 0.91) [42]. In a global prospec-
tive cohort, the aMAP score, which is composed 
of age, male, albumin-bilirubin and platelets, 
predicted the risk of HCC after SVR with an AUC 
ranged from 0.68 to 0.85 [43]. Previous stud-
ies have confirmed that alterations in PBMC 
transcriptome profiles can be linked to HCC 
occurrence and prognosis. Shi et al. identified 
that the three-gene signature (CXCR2, CCR2, 
and EP400) is promising for the early detection 
of HCC, with an area under the curve of 0.96 
[44]. Han et al. found that six genes (SELENBP1, 
SLC4A1, SLC26A8, HSPA8P4, CALM1, and 
RPL7p24) had high sensitivity and specificity 
for HCC diagnosis [45]. Nevertheless, most 
studies enrolled a small cohort, and the analyti-
cal methods varied, even on the same testing 
platform. These factors have limited the clinical 
application of these biomarkers. Recent stud-
ies further combined the liver stiffness mea-
surement (LSM), hepatic fibrosis, metabolic 
disorders and biomarkers to assess the risk of 
post-SVR HCC [46, 47] A model comprising 
LSM, age, albumin, and AFP with and without 
alcohol consumption accurately stratified de 
novo HCC risk (Harrel’s C-index: 0.893 and 

0.874) [48]. LSM is expensive and not widely 
used in primary clinics, which may restrain the 
clinical application of this model. 

Machine learning algorithms have certain 
advantages that are superior to those of tradi-
tional statistical methods. First, machine-learn-
ing algorithms can process linear and nonlinear 
big data at a high speed. Second, the machine-
learning algorithm can learn from the input 
data to detect the underlying relevance bet- 
ween the variables and outcomes. Artificial 
intelligence has a promising potential for 
improving diagnosis and treatment in medicine. 
Although the application of machine learning is 
increasing, the disadvantages of machine 
learning algorithms merit attention. The design 
of a machine-learning-based predictive model 
lacks standards. Tracing the process of the 
machine learning model is difficult because of 
the existence of a “black box”. Artificial intelli-
gence brings new hope but also new challenges 
in translating data to clinical application. 

This pilot study has several limitations. The 
sample size was limited, and a validation data-
set was lacking. A small sample size may make 
any predicting models with uncertainty. The 
10-fold EPV (Events Per Variable) is a simple 
and easy-to-operate principle to determine  
the sample size of Cox regression analysis. 
Nevertheless, some factors may affect the cal-
culation of sample size, such as the correlation 
between independent variables, the strength 
of the association between independent vari-
ables and dependent variables, and so on. 
Vittinghoff et al. found a range of circumstanc-
es in which coverage and bias were within 
acceptable levels despite less than 10-fold EPV 
[49]. We followed the 10 EPV principles as pos-
sible. We reduced the variables in the multivari-
ate Cox regression analysis. Only the factors 
with a P value <0.1 in the univariate analysis 
were put into the multivariate cox regression 
analysis. As splitting the dataset is not possible 
given the limited sample size, the bootstrap-
ping method can be used for internal validation 
[50]. Random forest provides an alternative 
bootstrapping approach called “in-bag” and 
“out-of-bag” sampling. The “out-of-bag” cohort 
can serve as an internal validation cohort for 
the model derived using the “in-bag” samples 
[51]. Random forest analysis showed that 
TAS1R3 and FOSL-1 were the most important 
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predictors of HCC, with out-of-bag errors of 
14.6%. Nevertheless, external validation is 
required to further verify this HCC predictive 
model. In addition, gene expression in PBMC 
may not be consistent within the hepatocytes. 
The roles of differentially expressed genes in 
hepatocarcinogenesis should be further inves-
tigated in functional studies. However, the 
application of PBMC signatures could serve as 
a potential noninvasive biomarker for HCC.

In conclusion, downregulation of posttreatment 
TAS1R3, ABCA3, and FOSL1 significantly corre-
lated with an increased risk of HCC develop-
ment following HCV clearance. Combining the 
gene score and FIB-4 index, we established a 
nomogram to predict the risk of HCC with a high 
diagnostic accuracy. The identification of key 
driver genes helps understand the mecha-
nisms underlying hepatocarcinogenesis. Arti- 
ficial intelligence can efficiently integrate clini-
cal information and genomic databases for bet-
ter accessibility of precision medicine. The 
decision-tree-based algorithm could improve 
the HCC surveillance program for post-SVR HCV 
patients based on individual HCC risk.
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