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Abstract: Glycogen synthase kinase-3β (GSK-3β) plays an important role in the development of neurodegenerative 
diseases. However, the underlying effect of GSK-3β polymorphism on chemobrain in cancer survivors is unclear. 
This study aimed to evaluate the correlation between GSK-3β polymorphism and chemotherapy-associated retro-
spective memory deficits in breast cancer survivors. The difference in GSK-3β gene expression between breast can-
cer patients and healthy controls was confirmed using bioinformatics technology. All participants (197 with breast 
cancer and 40 healthy controls) underwent prospective and retrospective memory tests, and five single-nucleotide 
polymorphism loci of GSK-3β (rs3107669, rs1154597, rs334543, rs334558 and rs3755557) were genotyped from 
peripheral blood. Breast cancer survivors had memory impairment after chemotherapy (P<0.0001). The expression 
difference of the GSK-3β gene was determined through bioinformation analysis, and a genotype frequency differ-
ence of GSK-3β rs3107669 was found between the breast cancer and healthy control groups. GSK-3β rs3107669 
was a genetic risk in comparison to the healthy controls (OR=0.382; 95% CI=0.186-0.786; P=0.009). Breast can-
cer with the GSK-3β rs3107669 (C/A+A/A) genotype was a protective factor for chemobrain (Beta=-0.306; 95% 
CI=-5.556~-2.145; P<0.0001) from multiple linear regression. The C/A+A/A genotype carrier performed better on 
the retrospective memory test than the C/C genotype (z=-4.302, P<0.0001). Breast cancer patients with chemo-
therapy who also carried the GSK-3β rs3107669 (C/C) genotype more easily presented cognitive deficits. The GSK-
3β rs3107669 polymorphism was a feasible genetic risk factor for chemotherapy-associated retrospective memory 
impairments in breast cancer survivors.
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Introduction

In 2023, there will be approximately 290,000 
new cases of breast cancer in the United 
States, accounting for approximately 31% of 
new cancer cases, surpassing lung cancer as 
the most common major cancer in women [1]. 
Although cancer mortality has continued to 
decline, the global incidence rate of breast can-
cer still has shown an upward trend, which has 
been far higher than that of other cancers in 
developing countries (55.9‰) [2]. With the  
continuous improvement of the diagnosis and 
treatment of breast cancer, the 5-year survival 

rate of breast cancer is as high as 90%, which 
is far higher than that of other cancers [3]. 
Chemotherapy is the most important treatment 
for breast cancer and can prolong the survival 
time of patients while presenting neurocogni-
tive changes [4]. According to reports, 75% of 
patients experience cognitive impairment dur-
ing chemotherapy, and up to 35% of patients 
continue to have this symptom even years after 
the end of chemotherapy [5]. This kind of learn-
ing, memory and attention impairment in can-
cer patients with chemotherapy is collectively 
called “chemobrain” [6]. The exploration and 
mechanistic research of “chemobrain” is a hot 
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issue in the field of oncology and mainly focus-
es on female breast cancer [7]. The main char-
acteristic of “chemobrain” was that it had sig-
nificant heterogeneity. Janelsins et al. [8] found 
that 45.2% of breast cancer patients com-
plained of cognitive decline after chemothera-
py, while 10.4% of healthy controls complained 
of cognitive decline in a large sample of 
research data. Up to 60% of breast cancer 
patients have cognitive problems during che-
motherapy, and negative emotions such as 
anxiety and depression can be seen every-
where, which seriously affect quality of life [9].

Prospective memory (PM) and retrospective 
memory (RM) are the two main aspects of 
human memory. PM was defined as the memo-
ry of future intentions, such as remembering to 
go to school [10]. In contrast, RM refers to 
remembering past events, such as knowledge 
recollected [11]. Memory impairment is one of 
the characteristics of chemobrain in breast 
cancer. Previous findings indicated that approx-
imately 23.3% of breast cancer patients had 
language memory impairment after chemother-
apy [12]. Verbal memory deficits were observed 
in breast cancer patients treated with doxorubi-
cin and cyclophosphamide based on a chemo-
therapy regimen [13]. Changes in brain network 
dynamics are the root cause of the deteriora-
tion of memory and executive function in breast 
cancer patients after chemotherapy [14]. Our 
group found that memory impairment was the 
main feature in breast cancer patients follow-
ing chemotherapy [15]. At the same time, the 
heterogeneity of chemobrain in different molec-
ular types of breast cancer was confirmed [16].

Genetic susceptibility was found in chemobrain 
for breast cancer [17]. Small et al. [18] found 
that carriers of the COMT Val genotype were 
more likely to have impaired cognitive function 
in breast cancer patients receiving chemother-
apy. The APOE gene is highly involved in neuro-
nal repair and neural plasticity after brain inju-
ry. APOE ε4 allele carriers were associated with 
cognitive decline in aging and Alzheimer’s dis-
ease patients [19]. Koleck et al. [20] found that 
breast cancer patients with the APOEε4 geno-
type had significant deficits in language learn-
ing memory, as well as visual learning memory 
performance. Ahles et al. [21] thought that the 
APOEε4 genotype had a long-term effect on 
cognitive decline in breast cancer survivors. 

Our team found that the COMT rs737865 poly-
morphism could aggravate RM impairment in 
triple-negative breast cancer patients [22]. 
Therefore, we had reason to believe that  
genetic polymorphisms related to cognitive 
function were involved in the composition of 
chemobrain.

Glycogen synthase kinase 3β (GSK3β) is highly 
expressed in the brain, is involved in the forma-
tion of Alzheimer’s disease (AD) and plays an 
important role in synaptic plasticity, memory 
formation and neuronal survival [23, 24]. 
GSK3β gene polymorphism was associated 
with cognitive function. It was found that the 
GSK3β rs3755557 polymorphism in the Han 
population might be associated with suscepti-
bility to schizophrenia and cognitive dysfunc-
tion [25]. Mateo et al. [26] found that the 
GSK3β gene rs334558 polymorphism increas- 
ed the risk of cognitive deficits in late-onset  
AD. Kettunen et al. [27] found that GSK3β 
(rs334558 and rs1154597) polymorphisms 
were associated with high-level T-tau and low 
expression of Aβ42, while the rs3107669 CC 
genotype was accompanied by lower MMSE 
scores in AD patients. Bai et al. [28] convinced 
that the GSK3β gene 334558 polymorphism 
could affect changes in brain network structure 
in patients with mild cognitive decline. Hohman 
et al. [29] even more provided genetic patho-
logical evidence of GSK3β rs334543 involve-
ment through autopsy of brain tissues from  
AD patients. Unfortunately, the correlation 
between GSK3β gene polymorphism and che-
mobrain had not yet been involved in the study.

However, the specific mechanisms of chemo-
brain in breast cancer patients are not fully 
understood. However, increasing research evi-
dence indicates that the etiology of chemo- 
brain is strongly influenced by genetic effects. 
The GSK3β gene was closely associated with 
cognitive dysfunction, and it was clear that a 
possible association between GSK3β polymor-
phism and chemobrain needs to be tested in 
the population. Therefore, this study aimed to 
evaluate the correlation between GSK3β gene 
polymorphisms and chemobrain in breast can-
cer survivors, which were combined with bioin-
formatics analysis technology, taking breast 
cancer patients and healthy controls as 
research objects.
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Materials and methods

Bioinformatics analysis

We analyzed the expression of the GSK3β gene 
in breast cancer tissues and healthy controls 
through the Cancer Genome Atlas (TCGA) data-
base (https://www.cancer.gov/) [30]. Inside, 
1093 cases of breast cancer and 112 healthy 
controls were included in this analysis. The free 
online database TIMER2.0 (http://timer.cis-
trome.org/) was applied for differential analy-
sis of the GSK3β gene across cancers.

Participants

A total of 197 breast cancer survivors and 40 
healthy controls with matched age and educa-
tion were enrolled as research objects from 
August 2017 to March 2022. The controls  
were mainly recruited from relatives of the 
breast cancer patients. All breast cancer 
patients received chemotherapy based on 
paclitaxel and doxorubicin for at least 4-6 

function (MMSE), memory scale (RM, PM), and 
quality of life (QOL) were assessed twice in all 
enrolled breast cancer patients: one week 
before standard chemotherapy (T1) and three 
weeks after the completion of four to six  
courses of chemotherapy (T2). In the healthy 
control group, only one cognitive test was need-
ed. During this time, 5 ml of participants’ 
peripheral blood was taken for GSK3β polymor-
phism testing. The baseline information and 
chemotherapy regimens for all participants 
could be obtained from the electronic medical 
system and interviews. All participants provid-
ed informed consent. Finally, statistical analy-
sis was performed to evaluate the genetic risk 
factors for GSK3β polymorphism in chemo-
brain. The specific process is shown in Figure 
1.

Neuropsychological tests

The Mini-Mental State Examination (MMSE) 
was used to check total cognitive function. The 
evaluation criteria for cognitive impairment 

Figure 1. Flowchart of the study. Bioinformatics analysis and clinical data 
verification were performed in this study, and a total of 197 breast cancer 
patients and 40 healthy controls were enrolled.

courses. At the same time, 
the following participants 
were excluded: 1) those with  
a history of central nervous 
system radiotherapy, 2) those 
with a history of Alzheimer’s 
disease and dementia, 3) 
those who did not follow the 
doctor’s instructions, 4) tho- 
se with abnormal brain struc-
ture or function, and 5) those 
who were users of antipsy-
chotic drugs. This study was 
approved by the Research 
Ethics Committee of the 
Second Affiliated Hospital of 
Anhui Medical University, 
China (Number of Ethics: 
20180033). The informed 
consent form was obtained 
from each participant.

Procedures

First, the differential expres-
sion of the GSK3β polymor-
phism between breast cancer 
and healthy control tissues 
was determined through bio-
informatics analysis. Second, 
clinical data validation was 
carried out. Overall cognitive 
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were MMSE scores below 26 points. All partici-
pants were tested with a prospective and retro-
spective memory questionnaire (PRMQ) to eval-
uate memory function [31]. The content of this 
scale could be quantified, and the score was 
reliable. The PRMQ included 16 questions, 
each with 4 different situations (never, occa-
sionally, often, always). This questionnaire was 
divided equally into PM and RM subscales. PM 
scores ranged from 0 to 32, and RM scores 
ranged from 0 to 32, with higher scores often 
indicating greater damage to the corresponding 
memory.

The Functional Assessment of Cancer Therapy-
Breast (FACT-B) scale was used to assess qual-
ity of life (QOL) in patients with breast cancer 
[32]. The scale included five components: phys-
ical status, social/family status, emotional sta-
tus, functional status and additional attention. 
Each component had 6-7 questions. Each 
question was divided into five levels: never (0 
points), little (1 point), some (2 points), equal (3 
points), and very (4 points). Forward scoring: 
the social/family and functional areas were 
scored, and the rest were scored in reverse. A 
higher score indicated a better QOL.

Genotyping

Peripheral venous blood (5 ml) was taken from 
all participants during cognitive function test-
ing. This blood was used to extract genomic 
DNA. Five SNP loci (rs3107669, rs1154597, 
rs334543, rs334558 and rs3755557) of the 
GSK3β gene were selected to analyze the 
genetic risk through insulting a large number  
of studies [25, 27, 29]. Genotyping was per-
formed by Shanghai Genesky Biotechnology 
Co., Ltd. to identify SNP alleles with high speci-
ficity using the improved multiple ligase detec-
tion reaction (iMLDR). The online Primer3 soft-
ware (http://bioinfo.ut.ee/primer3-0.4.0/) was 
applied to design primers for each gene locus.

The sequences were as follows: rs310766- 
9F: TTATCTGCATGGGGGAAGCTGT; rs310766- 
9R: TGAATTGCCAAAGTGTGTGCTGT; rs115459- 
7F: GGACCCTGCAATCACCCTCTTA; rs115459- 
7R: atgatTGGTCCTAGGGAAAACTGTCAA; rs33- 
4543F: ACCTCAGTGCAGGGTTTGTTCC; rs33- 
4543R: CCTACCAAATTAGGACTCCCTCTCATAC; 
rs334558F: GGCACAAGCCCGCATTC; rs3345- 
58R: CGCAGACAGCGCTCCTCA; rs3755557F: 
ACCAGCGTCCATTGTTCTACCA; and rs37555- 

57R: CTTCATCAGTGTTTCAAAGCAAGAGC. Some 
samples were randomly selected for PCR am- 
plification. The amplified products were se- 
quenced by ABI3730XL. Finally, GeneMapper 
5.0 software (Applied Biosystems, USA) was 
used to analyze the raw data.

Statistical analysis

The clinical baseline characteristics of all par-
ticipants were analyzed by the independent-
sample t test or the Mann-Whitney U test for 
normally distributed or nonnormally distributed 
data. One-way ANOVA was applied to evaluate 
the cognitive function between the before che-
motherapy (BC), after chemotherapy (AC) and 
healthy control (HC) groups. Bioinformatic anal-
yses (Timer2.0 database (http://timer.comp-
genomics.org/), TCGA database, and R lan-
guage) were used to assess differences in the 
expression levels of the GSK3β gene between 
breast cancer patients and healthy controls. 
Binary logistic regression analysis was used to 
evaluate the genetic risk of GSK3β gene poly-
morphisms in breast cancer patients and 
healthy controls. To further analyze the correla-
tion between the GSK3β rs3107669 polymor-
phism and cognitive impairment in breast can-
cer survivors, multiple linear regression was 
applied. Then, the differences between two 
groups containing genotype carriers (C/C vs.  
C/A+A/A) for cognitive tasks were used to fur-
ther clarify this correlation. All statistical data 
were double-tailed, and P<0.05 was consid-
ered statistically significant. SPSS software 
(version 22.0, Chicago, IL, USA) was used for 
statistical analysis. The forest maps and histo-
grams were drawn with GraphPad Prism 5 
(GraphPad Software Inc., San Diego, CA).

Results

Participant characteristics

The baseline information is presented in Table 
1. There was no significant difference in aver-
age age (50.22±9.56 vs. 53.13±11.91) or 
years of education (9.82±3.33 vs. 9.33±2.88) 
between the breast cancer and healthy control 
groups (P>0.05). Most breast cancer patients 
(65.4%) presented only mild symptoms (Kar- 
nofsky performance status scale (KPS) ≥90). 
Approximately half of the patients (47.2%) were 
identified as having luminal B breast cancer, 
and approximately 11.2% had triple-negative 
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breast cancer (TNBC). Approximately 62.1% of 
the breast cancer patients were stage 1-III.

The expression of GSK-3β from bioinformation 
analysis

Compared with that in normal tissue, the 
expression of GSK-3β in breast cancer in- 
creased significantly in the TIMER 2.0 pancan-
cer data (Figure 2A). Statistical differences 
were found in the sequencing results of single 
GSK-3β gene expression in the TCGA database 
and R language analysis method (Figure 2B). 
GSK-3β was correlated with phagocytosis, rec-
ognition, cell recognition, and synaptic mem-
brane from gene ontology functional enrich-
ment analysis (Figure 2C). The KEGG results 
indicated that the neuroactive ligand-receptor 
interaction pathway and synaptic vesicle cycle 
pathway were significantly enriched (Figure 
2D).

Cognitive tasks in breast cancer patients and 
healthy controls

The results for cognitive tasks between breast 
cancer patients and healthy controls are  
shown in Table 2 and Figure 3. Significant dif-
ferences were found in the MMSE (F=49.655, 
P<0.0001), RM (F=17.673, P<0.0001), PM 
(F=23.163, P<0.0001) and FACT-B (F=136.348, 

HC groups. No significant difference was men-
tioned in MMSE, RM, PM and FACT-B scores 
between the BC and HC groups (P>0.05). This 
result indicated that no difference was found 
between breast cancer patients before chemo-
therapy and healthy controls.

Genotyping analysis

Table 3 indicates that the allelic distribution  
of GSK3β rs3107669 was significantly differ-
ent between the breast cancer and healthy 
control groups (P=0.014). Five SNP loci 
(rs3107669, rs1154597, rs334543, rs3345- 
58 and rs3755557) of the GSK3β gene were  
in Hardy-Weinberg equilibrium (HWE) in all par-
ticipants (P>0.05). Table 4 shows that the 
genotypic frequency distribution of rs3107669 
was confirmed to be significantly different 
(codominant model: χ2=7.522, P=0.023; domi-
nant model: χ2=7.147, P=0.008). Furthermore, 
the genetic risk of GSK3β rs3107669 was 
found between breast cancer and healthy con-
trols (adjusted, OR=0.382, 95% CI=0.186-
0.786, P=0.009) (Figure 4A).

Correlation between the GSK3β rs3107669 
polymorphism and cognitive impairment

Breast cancer survivors with the GSK3β 
rs3107669 (C/A+A/A) genotype had higher 

Table 1. The background characteristics of participants

Variable
Groups

Breast cancer 
(n=197)

Healthy control 
(n=40)

Age (Mean ± SD, year) 50.22±9.56 53.13±11.91
Y of Education (Mean ± SD) 9.82±3.33 9.33±2.88
KPS
    90-100 129 (65.4%) -
    70-80 68 (34.6%) -
Molecular typing
    Luminal A 28 (14.2%)
    Luminal A 93 (47.2%)
    HER-2 overexpression 54 (27.4%)
    TNBC 22 (11.2%)
Stages (%)
    I 22 (11.3%) -
    II 63 (32.3%) -
    III 36 (18.5%) -
    IV 74 (37.9%) -
Note: KPS, karnofsky performance status scale; TNBC, triple negative 
breast cancer.

P<0.0001) scores between the be- 
fore chemotherapy (BC), after chemo-
therapy (AC) and healthy control (HC) 
groups. Among them, cognitive de- 
cline and memory impairment were 
present in breast cancer patients 
after chemotherapy. MMSE (27.39± 
1.53 vs. 25.37±2.85, P<0.0001),  
RM (14.69±4.25 vs. 16.94±5.08, P< 
0.0001), PM (14.39±4.53 vs. 16.91± 
4.58, P<0.0001) and FACT-B (78.52± 
18.67 vs. 51.79±14.38, P<0.0001) 
scores were performed between the 
BC and AC groups. Similarly, the co- 
gnitive function of breast cancer 
patients after chemotherapy was sig-
nificantly lower than that of healthy 
controls. MMSE (25.37±2.85 vs. 
28.00±1.60, P<0.0001), RM (16.94± 
5.08 vs. 13.33±2.60, P<0.0001), PM 
(16.91±4.58 vs. 12.83±3.27, P< 
0.0001) and FACT-B (51.79±14.38  
vs. 78.88±18.37, P<0.0001) scores 
were performed between the AC and 
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MMSE (Beta=0.412; 95% CI=2.001~3.818; 
P<0.0001) and lower RM test scores (Beta= 
-0.306; 95% CI=-5.556~-2.145; P<0.0001) 
than the survivors with GSK3β (C/C) from mul-
tiple linear regression (Table 5 and Figure 4B). 
Higher RM scores were related to poorer mem-

ory. We found that a lower risk of retrospective 
memory impairment was found in GSK3β 
rs3107669 (C/A+A/A) survivors. This indicated 
that the GSK3β polymorphism was a risk factor 
for chemotherapy-associated memory impair-
ments in breast cancer survivors.

Figure 2. The results of bioinformatics analysis. A, B. Significant difference in GSK-3β gene expression between 
breast cancer patients and healthy controls from TIMER 2.0 pancancer and TCGA data. C, D. Gene ontology func-
tional enrichment and KEGG pathway enrichment analysis of the GSK-3β gene in breast cancer. The number of 
enriched genes and p values are represented by the length and color of the bars, respectively. TCGA, The Cancer 
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Cognitive tasks before and after chemothera-
py: C/C group vs. C/A+A/A group

No significant difference was found in MMSE, 
RM, PM and FACT-B scores between the C/C 
and C/A+A/A groups before chemotherapy in 
breast cancer survivors (P>0.05). Further- 
more, the MMSE (23.03±2.85 vs. 25.97±2.53, 

3107669 C/C/genotype was found to exacer-
bate chemotherapy-induced RM defects. Our 
study was the first to provide genetic evidence 
of GSK 3β gene polymorphisms involved in che-
motherapy-associated RM impairment.

The same was true of chemobrain, and an 
increasing number of observational studies 

Table 2. Cognitive task in breast cancer and healthy controls group
BC group AC group HC group F P

MMSE 27.39±1.53 25.37±2.85 28.00±1.60 49.655 0.000****
RM 14.69±4.25 16.94±5.08 13.33±2.60 17.673 0.000****
PM 14.39±4.53 16.91±4.58 12.83±3.27 23.163 0.000****
FACT-B 78.52±18.67 51.79±14.38 78.88±18.37 136.348 0.000****
Note: ****P<0.0001; MMSE, the mini-mental state examination; RM, retrospective memory; PM, prospective memory; FACT-B, 
Functional Assessment of Cancer Therapy-Breast; BC, before chemotherapy; AC, after chemotherapy; HC, heathy control.

Figure 3. Cognitive test in all enrolled participants. A-D. The scores of 
the MMSE, RM, PM and FACT-B in the BC, AC and HC groups. Note: 
****P<0.0001. MMSE, the mini-mental state examination; RM, retrospec-
tive memory; PM, prospective memory; FACT-B, Functional Assessment of 
Cancer Therapy-Breast; BC, before chemotherapy; AC, after chemotherapy; 
HC, healthy control.

P<0.0001) score was signifi-
cantly decreased in the C/C 
genotype carriers of GSK3β 
rs3107669 compared with C/
A+A/A carriers after chemo-
therapy. The RM (20.00±5.81 
vs. 16.17±4.58, P<0.0001) 
scores were significantly in- 
creased in the C/C group af- 
ter chemotherapy. This indi-
cated that GSK3β rs3107669 
C/C genotype carriers more 
easily developed chemothe- 
rapy-associated retrospective 
memory deficits (Table 6 and 
Figure 5).

Discussion

In this study, we investigated 
the possible association be- 
tween GSK3β gene polymor-
phism and chemobrain in 
breast cancer survivors. Our 
analysis showed that 1)  
significant differences were 
found in GSK3β gene expres-
sion between breast cancer 
patients and healthy controls, 
and the GSK3β gene was a 
genetic risk factor; 2) remark-
able PM and RM impairment 
were observed in breast can-
cer survivors after chemother-
apy, and their quality of life 
decreased significantly; and 
3) notably, the GSK 3β rs- 
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have confirmed its significant heterogeneity. 
Koppelmans et al. [33] found that the effects  
of chemotherapy on cognition were long-term, 
and verbal memory, processing speed and 
executive function were significantly decreased 
in breast cancer patients after chemotherapy. 
Ng et al. [34] found that approximately 30% of 

breast cancer patients showed significant cog-
nitive deficits after chemotherapy, of whom 
16% had acute cognitive changes and 11%  
had persistent cognitive impairment. Bilenduke 
et al. [35] determined that breast cancer 
patients showed more pronounced cognitive 
dysfunction and negative depressive emotions 

Table 3. Informaition about five SNPs locis of GSK3β gene in breast cancer and healthy controls

SNP
GSK3β

rs3107669 rs1154597 rs334543 rs334558 rs3755557
Chr. Position 119567101 119736833 119832621 119813282 119814957
Alleles C/A A/G C/A A/G T/A
MAF 0.475 0.063 0.378 0.465 0.122
P for HWE 0.438 0.607 0.491 0.240 0.241
P* 0.014* 0.703 0.957 0.291 0.321
Note: *P<0.05; SNP, Single nucleotide polymorphism; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium; *p-value 
for alleles frequency differences between breast cancer and healthy controls.

Table 4. Genetic risk of GSK3β (rs3107669, rs1154597, rs334543, rs334558, rs3755557) in breast 
cancer and healthy controls

SNP Model Genotype Breast 
cancer

Healthy 
control χ2 Pa

Binary Logistic regression
OR (95% CI) Pb

rs3107669 Co-dominant C/C 40 16 7.522 0.023*
C/A 107 18 3.333 (1.194-9.302) 0.021*
A/A 50 6 1.402 (0.525-3.747) 0.501

Dominant C/A+A/A 157 24 7.147 0.008** 0.382 (0.186-0.786) 0.009**
C/C 40 16

rs1154597 Co-dominant G/G 0 0 0.156 0.693
G/A 25 6 0.824 (0.314-2.160) 0.693
A/A 172 34

Dominant - - - - - - -
rs334543 Co-dominant C/C 25 6 0.398 0.819

C/A 99 18 1.095 (0.386-3.105) 0.865
A/A 73 16 0.830 (0.397-1.736) 0.620

Dominant C/A+A/A 172 34 0.156 0.693 1.214 (0.463-3.183) 0.693
C/C 25 6

rs334558 Co-dominant A/A 37 7 2.301 0.316
A/G 109 18 0.643 (0.239-1.735) 0.383
G/G 51 15 0.561 (0.262-1.203) 0.137

Dominant A/G+G/G 160 33 0.037 0.848 0.917 (0.376-2.235) 0.849
A/A 37 7

rs3755557 Co-dominant T/T 154 28 1.373 0.503
T/A 38 11 0.909 (0.102-80.78) 0.932
A/A 5 1 1.447 (0.153-13.725) 0.747

Dominant T/A+A/A 43 12 1.246 0.264 1.535 (0.721-3.269) 0.267
T/T 154 28

Note: *P<0.05; **P<0.01; a, The χ2 test of P values for SNP polymorphisms genotype frequencies between breast cancer and 
healthy control group; b, P value for logistic regression analysis; odds ratio (the OR); 95% confidence interval (95% CI).
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after chemotherapy than healthy controls. 
Surprisingly, the results of this study once again 
confirmed that memory impairment was pres-
ent in breast cancer patients after chemothera-
py, which seriously hampered their quality of 
life.

What was the mechanism of chemobrain? The 
current evidence indicates that chemobrain is 
complex and influenced by multiple factors, 
including oxidative stress and inflammation, 
cytokine dysregulation, DNA damage and telo-
mere shortening, genetic polymorphisms, and 
more [5, 36]. To this end, our group has con-
ducted much exploratory research. We found 
that cytokines (IL-1β, TNF-α and IL-4) were 
involved in the development of breast cancer 
chemobrain [37]. Similarly, a genetic polymor-
phism (COMT) was closely associated with che-
motherapy-related cognitive deficits in breast 

cancer patients, and for the first time, molecu-
lar typing (ER/PR, HER2, Ki-67) and COMT poly-
morphisms were identified as risk factors for 
chemobrain in breast cancer patients [38-40]. 
Therefore, to further improve the study of 
genetic risk factors and supplement the results 
of gene polymorphism (GSK 3β) was the break-
through point of chemobrain in breast cancer.

GSK 3β plays an important role in nerve growth 
and synaptic plasticity and is a key regulator of 
various intracellular signaling pathways [41]. 
GSK3β could affect learning and memory by 
participating in neuroplasticity in the dentate 
gyrus of the hippocampus [42]. GSK3β could 
regulate memory by participating in hippocam-
pal cell proliferation [43]. GSK3β overexpres-
sion in a mouse model reproduced abnormali-
ties in the nervous system of Alzheimer’s dis-
ease patients and was accompanied by mor-

Figure 4. The forest plot for all enrolled participants. A. The genetic risk of GSK3β rs3107669 between breast cancer 
and healthy controls; B. The correlation between GSK3β rs3107669 polymorphism and MMSE, RM, PM and FACT-B 
tasks. Note: **P<0.01. ****P<0.0001. MMSE, the mini-mental state examination; RM, retrospective memory; PM, 
prospective memory; FACT-B, Functional Assessment of Cancer Therapy-Breast.
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phological changes in granulosa neurons [44]. 
GSK3β was considered to be a risk gene for 
schizophrenia, and cognitive deficits were  
stable in those patients [45, 46]. GSK3β dys-
function has been linked to bipolar disorder, 
depression, and Alzheimer’s disease [47, 48]. 
The clinical manifestation of chemobrain was 

the same as that of mental diseases such as 
Alzheimer’s disease, which could show reduced 
memory and executive ability [49]. Therefore, 
we hypothesized that the GSK3β gene poly- 
morphism was closely related to chemobrain. 
At present, few groups have deepened our 
understanding of the relationship between 

Table 5. Multiple linear regression between GSK3β rs3107669 polymorphism and cognitive impair-
ment in breast cancer patients with chemotherapy
Cognitive test Influencing Factor Beta 95% CI t P value
MMSE Genotype

C/C Ref. - - -
C/A+A/A 0.412 2.001~3.818 6.316 0.000****

Years of Age
≥50 Ref.
<50 0.095 -0.237~1.324 1.373 0.171

Years of education
HSDIP or above Ref.
JHSDIP or below 0.049 -0.507~1.063 0.700 0.485

RM Genotype
C/C Ref. - - -

C/A+A/A -0.306 -5.556~-2.145 -4.453 0.000****
Years of Age

≥50 Ref.
<50 0.035 -1.108~1.823 0.481 0.631

Years of education
HSDIP or above Ref.
JHSDIP or below 0.008 -1.393~1.554 0.108 0.914

PM Genotype
C/C Ref. - - -

C/A+A/A 0.004 -1.575~1.655 0.049 0.961
Years of Age

≥50 Ref.
<50 0.036 -1.060~1.715 0.465 0.643

Years of education
HSDIP or above Ref.
JHSDIP or below -0.004 -1.436~1.354 -0.058 0.954

FACT-B Genotype
C/C Ref. - - -

C/A+A/A -0.057 -6.978~2.916 -0.810 0.419
Years of Age

≥50 Ref.
<50 -0.097 -7.049~1.452 -1.299 0.196

Years of education
HSDIP or above Ref.
JHSDIP or below 0.163 0.444~8.991 2.177 0.031*

Note: *P<0.05; ****P<0.0001; HSDIP, High School Diploma; JHSDIP, Junior high school Diploma; MMSE, the mini-mental 
state examination; RM, retrospective memory; PM, prospective memory; FACT-B, Functional Assessment of Cancer Therapy-
Breast. P value for multiple linear regression; Standardized Coefficient (the Beta); 95% confidence interval (95% CI).
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Table 6. Comparison of cognitive function in breast cancer patients with different GSK3β rs3107669 
genotypes

N MMSE RM PM FACT-B
rs3107669
    Before Chemotherapy
        C/C group 40 27.28±1.57 15.03±4.69 14.55±4.76 80.75±17.56
        C/A+A/A group 157 27.41±1.53 14.61±4.14 14.34±4.49 77.95±18.96
        t/z -0.480 -0.437 -0.031 -0.712
        p 0.631 0.662 0.975 0.476
    After Chemotherapy
        C/C group 40 23.03±2.85 20.00±5.81 16.88±4.95 53.28±16.72
        C/A+A/A group 157 25.97±2.53 16.17±4.58 16.92±4.49 51.41±13.76
        t/z -5.598 -4.302 -0.115 -0.177
        p 0.000**** 0.000**** 0.908 0.859
Note: ****P<0.0001; MMSE, the mini-mental state examination; RM, retrospective memory; PM, prospective memory; FACT-B, 
Functional Assessment of Cancer Therapy-Breast; BC, before chemotherapy; AC, after chemotherapy; HC, heathy control.

Figure 5. Cognitive tests before and after chemotherapy in the C/C and C/A+A/A groups. A-D. The scores of the 
MMSE, RM, PM and FACT-B between the C/C and C/A+A/A groups before chemotherapy. E-H. The MMSE, RM, PM 
and FACT-B scores between the C/C and C/A+A/A groups after chemotherapy. Note: ****P<0.0001. MMSE, the 
mini-mental state examination; RM, retrospective memory; PM, prospective memory; FACT-B, Functional Assess-
ment of Cancer Therapy-Breast.



Gene polymorphism and chemobrain

4972 Am J Cancer Res 2023;13(10):4961-4975

GSK3β gene polymorphisms and chemobrain, 
both at home and abroad. The results of this 
study were the first to confirm the effect of this 
gene on chemotherapy-associated cognitive 
deficits in breast cancer, further complement-
ing the genetic risk factors for chemobrain.

GSK3β gene polymorphism was closely associ-
ated with cognitive function. Inkster et al. [50] 
found that the GSK3β A/A genotype was relat-
ed to reduced gray matter volume in the right 
hippocampus and bilateral temporal gyrus in 
patients with depression. Individuals who carry 
the GSK-3β rs334558 A allele have a signifi-
cantly increased risk of depression [51]. The 
risk allele A on the GSK-3β promoter has been 
reported to be associated with schizophrenia 
susceptibility in Han Chinese individuals [52]. 
GSK-3β gene polymorphism was involved in 
cognitive decline in Alzheimer’s disease, and 
amyloid Aβ42 was its biomarker [27, 53].

The association between GSK-3β gene poly-
morphism and cognitive dysfunction reinforced 
the hypothesis that heterogeneity was present 
in chemobrain for breast cancer. Our findings 
indicated that the GSK-3β rs3107669 polymor-
phism was strongly associated with RM im- 
pairment in breast cancer patients after che-
motherapy, while the C/C genotype increased 
the risk of memory deficits. We speculated 
that, first, the activity of the GSK-3β enzyme  
in patients with the C/C genotype was more 
inhibited than before, which led to a decline in 
the function of hippocampal neurons. Ochs et 
al. [54] showed that the loss of GSK-3β in hip-
pocampal neurons in adult mice might lead to 
decreased dendrite spine density. Banach et  
al. [55] found that GSK-3β could cause synap-
tic dysfunction, which was accompanied by 
changes in the morphology of dendritic spines 
of granulosa cells in the dentate gyrus. The- 
refore, we hypothesized that the rs3107669 
polymorphism may affect hippocampal synap-
tic plasticity to cause cognitive dysfunction in 
breast cancer patients. Of course, further ani-
mal experiments are needed to confirm this 
hypothesis. Second, the GSK-3β rs3107669 
polymorphism could directly affect the prolifer-
ation of brain neurons. Dobson-Stone et al. 
[56] found that GSK-3β polymorphism could 
contribute to decreased proliferation of neuro-
nal precursors and decreased brain volume by 
affecting the expression of enzyme activity in 

the brain. Similarly, Sunada et al. [57] found 
that the GSK-3β polymorphism could affect the 
hippocampal volume of patients with major 
depression. Third, GSK-3β polymorphism 
directly affected the transmission of multiple 
signaling pathways. GSK-3β is involved in the 
Wnt/β-catenin, PI3K/PTEN/AKT and Notch  
signaling pathways, and these pathways play a 
key role in neurodegenerative diseases [58, 
59]. GSK-3β was the key node factor of the 
above signaling pathways. This indicated that 
GSK-3β may act as a vital link in chemobrain 
genesis and treatment.

Some limitations should be noted in this study. 
First, this study was a single-center cross-sec-
tional study from a teaching hospital, and the 
longitudinal follow-up records were vague. 
Second, only five SNPs of the GSK3β gene  
were explored, which included many other 
types of polymorphisms. The role of these sites 
in chemobrain was unclear. Third, it was neces-
sary to supplement the animal model of chemo-
brain for breast cancer. This needs to be con-
firmed in future exploration.

Conclusion

In conclusion, our group was the first to pre- 
sent the genetic effect between the GSK-3β 
rs3107669 polymorphism and chemotherapy-
associated retrospective memory impairments 
in breast cancer survivors. The preliminary 
understanding of the role of this gene was per-
formed in chemobrain.

Our findings not only complement the heteroge-
neity of chemobrain for breast cancer but also 
be able to identify those populations at great-
est risk of cognitive impairment.
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