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Abstract: Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in 
multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including 
hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a 
post-translational modification process, plays a precise role in regulating the formation and function of different 
death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) 
in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and 
linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and 
inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins 
in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these 
regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in 
apoptosis and LC can provide insights into potential targets for therapeutic intervention.
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Introduction

Apoptosis, or programmed cell death, is a tight-
ly controlled process essential for maintaining 
tissue homeostasis and preventing the growth 
of abnormal cells [1, 2]. For instance, experi-
ments using mouse models with impaired cell 
death pathways, such as deficient caspase 
activity or disrupted apoptosis regulators, have 
shown severe developmental abnormalities 
and embryonic lethality [3, 4]. Furthermore, 
elimination of unwanted or damaged cells th- 
rough apoptosis helps regulate the balance 
between cell proliferation and cell death [5, 6].

Dysregulation of apoptosis is a hallmark of can-
cer, including liver cancer (LC) [7, 8]. Moreover, 
apoptosis evade is a critical mechanism con-
tributing to the development, drug resistance 
and progression of hepatocellular carcinoma 
(HCC) [9-11]. Cancer cells in HCC acquire the 
ability to evade apoptosis, enabling their sur-
vival and uncontrolled proliferation [9-11]. In 
HCC, alterations in apoptotic pathways contrib-

ute to tumor development, progression, and 
resistance to therapy [12, 13]. Therefore, 
understanding the molecular mechanisms un- 
derlying the dysregulation of apoptosis in LC is 
crucial for developing effective therapeutic 
strategies.

In the context of LC, dysregulation of apoptotic 
proteins can occur through aberrant expression 
or activity of certain E3 ligases and deubiquiti-
nating enzymes (DUBs). E3 ligases mediate the 
addition of ubiquitin molecules to proteins, 
while DUBs remove them, thereby modulating 
protein stability and function [14]. DUBs can 
either promote or inhibit apoptosis by deubiqui-
tinating key apoptotic regulators (e.g., BimEL, 
Mcl-1, and XIAP) [15-19]. Several substrates 
involved in apoptotic pathways have been iden-
tified as targets of ubiquitination in LC. For 
example, proapoptotic factors like Bax, Noxa, 
p53, and several caspase family members  
[20-22], as well as antiapoptotic proteins like 
members of the Bcl-2 family (e.g., Mcl-1) [23, 
24], undergo ubiquitination-mediated regula-

http://www.ajcr.us


Regulation of apoptosis by ubiquitination in liver cancer

4833	 Am J Cancer Res 2023;13(10):4832-4871

tion. This process influences their stability, sub-
cellular localization, and interactions with other 
apoptotic regulators, ultimately impacting the 
apoptotic response in LC cells. 

Ubiquitination modification system

Ubiquitination is a universal and multifunction-
al form of protein modification that covalently 
links the C-terminal glycine on 76-amino acid 
ubiquitin (Ub) protein to lysine residues on tar-
get proteins [25, 26]. The modification requir- 
es a multistep process mediated by three 
enzymes: ubiquitin-activating enzymes (E1), 
ubiquitin-conjugating enzymes (E2), and ubiqui-
tin ligases (E3) [14, 26]. Activate and transfer 
ubiquitin to E2s in the presence of Mg2+ and 
ATP, and then E3s nonspecifically bind E2s and 
recruit substrate proteins for ubiquitin transfer 
from E2s to substrates [14]. There are two ways 
to transfer Ub: the first way is to directly con-
nect the C-terminal of Ub to the lysine residues 
ε-amino of the substrates; the second way is to 
share Ub to E3, and then the C-terminal of Ub  
is connected to the lysine residues ε-amino of 
the substrates [27]. These Ub modifications 
can have different effects on the substrate, 
ranging from proteasome-dependent proteoly-
sis to regulation of protein structure, function, 
assembly, and localization [28]. Hundreds of 
E3s have been identified, while E1 and E2 fam-
ily members are relatively small, with 2 and 42 
members, respectively [28, 29]. Ub contains 
seven lysine (Lys) sites (K6, K11, K27, K33, 
K48, and K63), one methionine (Met) site (M1) 
at the N-terminal, and one glycine (Gly) site 
(G76) at the C-terminal [30]. Single ubiquitin 
molecules can be conjugated to a target pro-
tein to form monoubiquitination, or ubiquitin 
chains can be created by linking individual ub- 
iquitin molecules by seven Lys sites or M1 sit- 
es [31]. Different ubiquitin chains are recog-
nized by specific ubiquitin-binding domains 
involving corresponding cellular processes 
[32]. The classic chains are the K48-linkage 
ubiquitin chains and the mixed K11/K48-
linkage ubiquitin chains, which induce degrada-
tion of the modified protein via the proteaso- 
me [32]. Other ubiquitin chains, like K63 or 
M1-linkage ubiquitin chains, recruit related pro-
teins to form signal complexes that regulate 
signal pathways [33, 34]. Besides, while not 
participating in protein degradation, monoubi- 
quitination is crucial for regulating substrate 

activity, subcellular localization, protein-protein 
interactions, or endocytosis [35]. The ubiquitin 
modification generally regulates cellular physi-
ological activities by degradative and non-deg-
radative means [36]. 

Ubiquitination is reversible, and deubiquitina-
tion is also significant. Cellular ubiquitination 
events are counteracted by DUBs, which re- 
lease conjugated ubiquitin from proteins to 
fine-control aspects of ubiquitin biology [37, 
38]. DUBs are divided into seven subfamilies, 
either cysteine protease or metalloproteases. 
The only metalloproteinase subfamily is the 
Jad1/Pad/Mpn domain-containing metalloen-
zymes (JAMMs). The cysteine protease sub- 
families include the ovarian tumor proteases 
(OTUs), ubiquitin specific proteases (USPs), Ub 
C-terminal hydrolases (UCHs), Machado-Joseph 
disease domain proteases (MJDs), Josephins 
motif interacting with Ub-containing novel DUB 
family (MINDYs), and the zinc-finger and UFSP 
domain protein (ZUFSP) [39, 40].

Ubiquitination is essential for apoptosis regu-
lation

Apoptosis is a form of programmed cell death 
and involves the activation of catabolic en- 
zymes (especially proteases) in signaling cas-
cades, leading to the rapid destruction of cell 
structures and organelles [41]. In addition, 
apoptosis is tightly regulated and is essential 
for normal development and tissue homeosta-
sis in all multicellular organisms [36]. Moreover, 
cell apoptosis has an effect against persistent 
viral infections, autoimmunity, and tumorigen-
esis [36, 42-44]. The apoptotic cell death pro-
gram is triggered by the activation of caspases, 
a highly specific family of cysteine proteases 
essential for cell destruction [45]. Typically, 
caspase family member proteins are expressed 
as inactive enzymes activated in cascades of 
auto- and trans-stimulation [36, 46]. They are 
involved in the induction of apoptosis fall into 
two major classes: initiator and effector cas-
pases, which function upstream and down-
stream of death signaling transduction, respec-
tively [47, 48]. The amino terminal region of 
initiator caspases contains a caspase recruit-
ment domain (caspase 1, 2, 4, 5, 9, and 11)  
or death effect domains (caspase 8 and 10), 
which facilitate their recruitment and activa- 
tion in multiprotein complexes [46, 49, 50]. The 
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process of the initiator caspases zymogen into 
the active protease is driven by conformational 
changes induced by its dimerization [49, 51]. In 
contrast, effector caspases (caspase-3, -6, and 
-7) require cleavage by initiator caspases for 
their activation, thus breaking down cell pro-
teins and acting as apoptotic effectors [49, 50].

Given the different initiation stages of apopto-
sis, it can be divided into three main branches, 
intrinsic pathways (mitochondrial pathway), 
extrinsic pathways (death receptor pathway), 
and apoptotic pathways induced by endoplas-
mic reticulum (ER) stress [52, 53]. Upon induc-
tion of mitochondrial apoptosis, mitochondrial 
outer membrane permeabilization (MOMP) is 
caused by the Bax/Bak activation, finely regu-
lated by Bcl-2 family members [54, 55]. The 
MOMP process changes the permeability of the 
mitochondrial membrane and then releases 
cytochrome c and other proteins committing a 
cell to death [54]. Cytochrome c is released 
into the cytosol binding to apoptotic protease-
activating factor 1 (Apaf-1) in the presence of 
ATP, forming a multimer named apoptosome 
[56, 57]. Then, the initiator caspase-9 in the 
cytoplasm was recruited and activated by the 
multimer through a caspase recruitment do- 
main (CARD) at the N-terminal Apaf-1 [56, 57]. 
Activated caspase-9 cleaves downstream ef- 
fector caspases such as caspase-3, -6, and -7 
initiating the caspase cascade and inducing 
cell apoptosis [50, 58]. In ER stress-mediated 
apoptosis, extra-cellular environmental chal-
lenges such as reactive oxygen species (ROS), 
hypoxia, and nutrient deprivation could disturb 
cellular redox regulation of ER, leading to abnor-
mal accumulation of unfolded or misfolded pro-
teins and cell apoptosis [59-61]. ER’s main 
function is to store Ca2+, synthesize proteins, 
and perform post-translational modifications  
to achieve fidelity for synthesis and correct fold-
ing [62, 63]. Unfolded protein response (UPR), 
adaptive response of the cell and surveillance 
of ER proteostasis, is a crucial step for ER 
stress to mediate apoptosis [59, 64]. The UPR 
transmits information on protein folding status 
to the nucleus and cytoplasm to regulate the 
protein folding capacity of the cell or, in the 
case of chronic injury, to induce apoptotic death 
[62, 65]. In contrast, the extrinsic pathway is 
triggered by linking to specific cell-surface 
death receptors that initiate the assembly of 
the caspase-8 activation complex at the cell 

membrane [36]. Death receptor is a transmem-
brane protein belonging to the tumor necrosis 
factor receptor (TNFR) superfamily [66]. The 
extracellular portion contains a cysteine-rich 
region, and the cytoplasmic region has a death 
domain consisting of homologous amino acid 
residues that hydrolyze proteins [67-69]. There 
are five main death receptors, TFR-1 (also 
called CD120a or p55), Fas (CD95 or Apo1), 
DR3 (death receptor 3, also called Apo3, WSL-
1, TRAMP, LARD), DR4 and DR5 (Apo2, 
TRAIL-R2, TRICK2, KILLER) [67]. The ligands 
corresponding to the first three receptors are 
tumor necrosis factor (TNF), Fas ligand (FasL), 
Apo-3L (DR3L), and the latter two are Apo-2L 
(TRAIL) [67, 70, 71].

Due to the potentially destructive effects of 
activated caspase, caspase activation and 
activity must be strictly regulated. The fine reg-
ulation of caspase is mainly determined by key 
antiapoptotic and proapoptotic molecules, whi- 
ch are accomplished by alteration of subcellu-
lar localization, change of protein synthesis,  
or Ub-dependent modification [36, 72]. Protein 
levels of many proapoptotic and antiapoptotic 
molecules are controlled by Ub-dependent deg-
radation [36, 73]. In turn, during cell apoptosis, 
caspases destroy subunits of the 26S protea-
some leading to the accumulation of ubiquity-
lated proteins, which might amplify or reduce 
the apoptosis signal [46, 74]. Besides, non-
degradative ubiquitination events also play an 
essential role in regulating apoptosis levels in 
combination with DUBs.

The role of ubiquitination in apoptosis in LC

Increasing experimental evidence suggests cell 
death is the fundamental driving factor of HCC. 
Apoptosis is rare in normal liver tissues (only 
2-4 apoptotic cells per 10,000 hepatocytes or 
biliary tract cells), but the rate is higher in HCC 
tissues [75, 76]. Still, their specific functions 
may differ or even reverse between the initia-
tion of HCC and the later stages of tumor de- 
velopment [77]. In most malignant tumors, 
defective apoptosis is a critical step in the 
malignant transformation of cells, as apoptosis 
contributes to maintaining genome integrity 
[77-79]. Although evasion from cell death is an 
essential step in the malignant transformation 
process, the induction of cell death is also an 
important initiating factor in the early stages of 
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crucial regulator for activating MAPKs and 
NF-κB pathways. Then these pathways involve 
the production of proinflammatory cytokines 
and antiapoptotic proteins [81, 97, 98].

Complex II forms when a portion of Complex I 
(containing TRADD and RIPK1) separates from 
the receptor and recruits the adaptor protein 
Fas-associated death domain (FADD) from the 
cytoplasm [99]. FADD acts as a recruitment 
platform for caspase-8, leading to apoptosis, 
which is negatively regulated by the caspase-
8-like molecule FLIP [81]. Because FLIP has a 
domain structure like caspase-8 and lacks 
enzyme activity, FLIP is similarly recruited for 
Complex II and inhibition of the caspase-8 
mediated apoptosis [81, 99]. Furthermore, the 
ubiquitination or deubiquitination of Complex I 
affects its transformation into Complex II, regu-
lating caspase-8 mediated apoptosis or/and 
RIPK1/3-mediated necroptosis [67]. For exam-
ple, one of the DUBs, CYLD, removes K63 and 
M1-linkage ubiquitin chains from RIPK1, desta-
bilizing the Complex I [100, 101]. In contrast, 
histidine-rich glycoprotein (HRG) overexpres-
sion promotes the formation of Complex II by 
upregulating K63 ubiquitination on TNFR1 [87]. 
Complex II contains RIPK1, RIPK3, FADD, mixed 
lineage kinase-like (MLKL), cFLIPL, cFLIPS, and 
caspase-8 [81]. It’s worth noting that Complex 
II can trigger diverse types of cell death depend-
ing on the cell environment, especially the rela-
tive expression of caspase-8 and the cFLIPL 
and cFLIPS isoforms [81]. In contrast to the uni-
versal expression of TNFR1, TNFR2 is restric-
tively expressed in specific cell types, such as 
neurons, certain immune cell subsets, and 
endothelial cells, especially in cancer cells 
[102]. Although it lacks the death domain and 
thus cannot directly induce programmed cell 
death, TNFR2 is required for RIPK1-dependent 
cell death in the absence of cIAP1/2 and X 
chromosome-linked IAP (XIAP) [103, 104]. Both 
Complex I and Complex II are present in cells 
but do not induce apoptosis because Complex 
II is formed later than Complex I and Complex I 
induces rapid gene activation, leading to up- 
regulation of many target genes, including anti-
apoptotic factors such as Bcl-2, cIAP2, and 
cFLIPS [99] (Figure 1).

Ubiquitination and deubiquitination of Complex 
I: Stimulated TNFR1 recruits RIPK1 and TRADD, 
and TRADD recruits TRAF2/5, which recruits 

HCC [80]. Furthermore, many studies show that 
ubiquitination can precisely regulate the forma-
tion and function of different death-signaling 
complexes [73, 81]. The subsequent sections 
will delve into the effects of ubiquitination and 
deubiquitination on apoptosis and the aber- 
rant expression of these E3 ubiquitin ligases 
LC, focusing on intrinsic and extrinsic apoptotic 
pathways.

Ubiquitination regulates TNFR1-induced apop-
tosis in HCC

Initially, newly synthesized TNF is expressed as 
a transmembrane protein and requires proteo-
lytic cleavage by metalloproteinase ADAM17 
(TNF-α converting enzyme) to release some 
soluble TNF [82-84]. TNF participates in vari-
ous processes, including apoptosis and necrop-
tosis, by binding to and activating TNF receptor 
1 (TNFR1) and TNFR2 [81, 85]. The binding of 
TNF to TNFR1 triggers the rapid formation of 
the TNFR1 signaling complex (also called 
Complex I), which contains tumor necrosis fac-
tor receptor type 1 associated death domain 
(TRADD), receptor-interacting protein kinase 1 
(RIPK1), TNF receptor-associated factor 2/5 
(TRAF2/5), cellular IAPs (cIAP1/2), A20, linear 
ubiquitin chain assembly complex (LUBAC), and 
kappa B kinase (IKK) and transforming growth 
factor-beta-activated kinase 1 (TAK1) complex-
es [81, 86, 87]. The death domain of TNFR1 
binds to another DD-containing adaptor TRADD, 
which contributes to stabilizing the binding of 
TRAF2 and recruits other molecules to com-
plexes RIPK1 and cIAP1/2 [67]. The cIAP1/2 
are members of the inhibitor of the apoptosis 
protein family that act as E3-ubiquitin ligases  
to mediate mixed-linkage ubiquitin chains of 
RIPK1 (K11, K48, and K63) [67, 88, 89]. The 
K63-linkage polyubiquitination of RIPK1 recr- 
uits other proteins, including a complex called 
LUBAC, which creates a linear ubiquitylation 
(M1) on RIPK1, and then the M1 recruits NEMO 
(NF-κB Essential Modulator) [67, 90, 91]. Con- 
sequently, the binding of NEMO (also known as 
IKKγ) recruits and activates the rest of the IKK 
complex (IKKα, IKKβ) and then activates the 
transcription factor nuclear factor-κB (NF-κB) 
[67, 92]. Besides, the K63-linkage polyubiquiti-
nation of RIPK1 also recruits TAB-TAK complex-
es and A20 [93-95]. Whereas, binding A20 to 
RIPK1 requires linkage between M1 and K63 
[81, 96]. The ubiquitination of Complex I is a 
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cIAP1/2 [105-107]. As the first protein to be 
recruited to TNFR1, TRADD also directly inter-
acts with TRAF2 and cIAP1/2 to promote K63-
linkage ubiquitination of RIPK1 and regulate 
the stability of RIPK1 [108-110]. Enjoyably, 
RIPK1 could block TRADD recruitment to FADD 
to limit apoptosis [111]. Besides, the presence 
of RIPK1 is vital to protect TRAF2 from degra-
dation by the proteasome [80]. An E3 ligase, 
HACE1, promotes the formation of K63-linkage 
chain on TRAF2, which in turn promotes recruit-
ment of downstream components of Complex I 
to activate the NF-κB signaling [112]. Con- 
versely, another E3 Siah2 introduces the ubiq-
uitination and degradation of TRAF2, efficiently 
decreasing the activation of JNK and NF-κB  
signal [113]. Research shows that TRADD has 
proapoptotic and antiapoptotic functions [114, 
115]. Previous studies have shown that TRADD 
can inhibit apoptosis in LC cells [116, 117] and 

is less positive in HCC tissues than in adjacent 
tissues [118]. While there are no specific E3 
ligases known to target TRADD for degradation 
directly, it is known that TRADD degradation 
can be regulated by the ubiquitin-proteasome 
system (UPS) [119].

RIPK1 kinase activity is a potent trigger for 
hepatocyte apoptosis, which can lead to chron-
ic liver disease and ultimately contribute to the 
development of HCC [120, 121]. RIPK1 con-
tains an N-terminal kinase domain, an interme-
diate domain, and a C-terminal death domain 
[122]. RIPK1 kinase activity regulates the 
assembly of two death-inducing complexes, 
namely Complex IIa (RIPK1/FADD/TRADD), 
which drives apoptosis, and the Complex IIb 
(RIPK1/RIPK3/MLKL), resulting in necroptosis 
[81]. Conversely, RIPK1 functions as a scaffold 
to promote the recruitment of other Complex I 

Figure 1. Overview of ubiquitin-mediated regulation of TNFR1-induced apoptosis. When trimer TNF-α binds to trimer 
TNFR1, Complex I is formed through interprotein and Ub chain-mediated interactions. Complex I is formed before 
Complex II and mainly activates the MAPKs and NF-κB pathways to produce inflammatory cytokines and antiapop-
totic proteins. If RIPK1 or others major component is not ubiquitinated, they can dissociate from complex I and 
form complex IIa or IIb. Complex IIa (RIPK1/FADD/TRADD) and IIb (RIPK1/RIPK3/MLKL) mediate apoptosis and 
necroptosis, respectively. The TNFR1 signaling pathway is finely regulated by E3s and DUBs, and these regulators 
are abnormally expressed in LC (see Table 1 for details).
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Table 1. Regulators of the ubiquitination in TNFR1 signaling

Regulator of theu-
biquitination

Substrate Targeted 
protein Ubiquitination 
type

Impact on TNFR1-
inducedcell death

Impact on TNFR1-in-
ducedgene activation

Deregulation and 
role in liver cancer Refs

cIAP1/2 (E3) RIPK1 (K63) Apoptosis↓
Necroptosis↓

NF-κB signaling↑
MAPKs signaling↑

Upregulation
Cancer promotion

[105, 127]

RIPK1 (K11) Apoptosis↓ NF-κB signaling↑ [89]
RIPK1 (K48) Apoptosis↓

Necroptosis↓
ND [88]

TRAF2 (K48?) Apoptosis↑ ND [371, 372]
cIAP1 (K63/K48/K11) Apoptosis↑ ND [53, 285, 373]

LUBAC (E3) RIPK1 (M1) Apoptosis↓
Necroptosis↓

NF-κB signaling↑
MAPKs signaling↑

Upregulation
Cancer promotion

[34, 91, 137, 
138]

cFLIPL/S (M1) Apoptosis↓
Necroptosis?

ND [91, 171]

NEMO (M1) Apoptosis↓ NF-κB signaling↑ [137, 374]
FADD (M1) Apoptosis↓ ND [172]
TRADD (M1?) Apoptosis↓ ND [375]

Parkin (E3) RIPK1 (K63) Apoptosis↓
Necroptosis↓

NF-κB signaling↑
MAPKs signaling↑

Downregulation
Cancer inhibition

[123, 150]

TRAF2/6 (K48) Apoptosis↑ NF-κB signaling↓ [150]
TRAF6 (E3) NEMO (K63) Apoptosis↓ NF-κB signaling↑

MAPKs signaling↑
Upregulation
Cancer promotion

[142, 143]

TAK1 (K63) NF-κB signaling↑ [144]
TRAF7 (E3) cFLIPL (K29/K33/K63) Apoptosis↑

Necroptosis↑
ND Upregulation

Cancer promotion
[173, 174]

MIB2 (E3) cFLIPL (K48/K63) Apoptosis↓
Necroptosis↓

ND ND [180, 364]

ITCH (E3) cFLIPL (K48) Apoptosis↑
Necroptosis↑

ND Upregulation
Cancer inhibition

[176, 177, 179]

MLKL (K63) ND ND [193]
TAK1 (K48) Apoptosis↑ NF-κB signaling↓ [376]

HECTD3 (E3) Caspase-8 (K63) Apoptosis↓ ND ND [187]
c-Cbl (E3) cFLIPS (K48?) Apoptosis↑ ND ND [186]
PELI1 (E3) RIPK1 (K63) Apoptosis↓

Necroptosis↑
ND ND [190]

RIPK3 (K48) Necroptosis↓ ND [191]
TRAF7 (E3) cFLIPL (K29/K33/K63) Apoptosis↓ JNK signaling↑ Upregulation

Cancer promotion
[173, 174]

HACE1 (E3) TRAF2 (K63) Apoptosis↑
Necroptosis↓

NF-κB signaling↑ Downregulation
Cancer inhibition

[112, 377]

Siah2 (E3) TRAF2 (K48?) ND NF-κB signaling↓
JNK signaling↓

[113]

CARP-2 (E3) RIPK1 (K48) ND NF-κB signaling↓ ND [153]
RNF4 (E3) TAB2 (K29?) Apoptosis↑ NF-κB signaling↓ Upregulation

Cancer promotion
[378, 379]

MKRN1 (E3) FADD (K48?/K11?) Apoptosis↓ ND ND [166]
A20 (E3) RIPK1 (K48) Apoptosis↓ NF-κB signaling↓ Upregulation

Cancer inhibition
[156, 158, 
159, 380, 381]

A20(DUB) RIPK1 (K63) Apoptosis↓ NF-κB signaling↓ ND [156, 380]
CYLD(DUB) RIPK1 (K63) Apoptosis↑

Necroptosis↑
NF-κB signaling↓
MAPKs signaling↓

Downregulation
Cancer inhibition

[101, 382, 
383]

RIPK1 (M1) Apoptosis↑ NF-κB signaling↓
MAPKs signaling↓

[101]

TNFR1 (K63) ND ND [101]
TNFR1 (M1) ND ND [101]
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TRADD (K63) ND ND [101]
TRADD (M1) ND ND [101]
TRAF2/6 (K63) Apoptosis↑? NF-κB signaling↓ [384, 385]

USP8 (DUB) cFLIPL (K48?/K11?) Apoptosis↓
Necroptosis↓

ND Upregulation
Cancer inhibition

[182, 184, 
364]

USP4 (DUB) TAK1 (K63?) Apoptosis↑ NF-κB signaling↓
JNK signaling↓

Upregulation
Cancer promotion

[361, 362]

TRAF2/6 (?) ND NF-κB signaling↓ [151]
RIPK1 (K63) Apoptosis↑ NF-κB signaling↓ [152]

USP11 (DUB) IκBα ND NF-κB signaling↓ ND [386]
USP19 (DUB) TAK1 (K63/K27) ND NF-κB signaling↓ ND [387]
OTULIN (DUB) LUBAC (M1) Apoptosis↓

Necroptosis↓
NF-κB signaling↓ Cancer inhibition [388-390]

OTUD1 (DUB) RIPK1 (K63) ND NF-κB signaling↓ ND [90]
OTUB1 (DUB) cIAP1 (K48) Apoptosis↓ NF-κB signaling↑

MAPKs signaling↑
Upregulation
Cancer promotion

[135, 391]

Usp27× (DUB) cFLIPL (K48?) Apoptosis↑ ND Upregulation
Cancer promotion

[181, 307]

components through the non-degradative ubiq-
uitination of RIPK1, inducing the activation of 
NF-κB and MAPKs to promote cancer cell sur-
vival [123, 124]. In addition, the reduction or 
loss of ubiquitin chains of RIPK1 increases  
cell sensitivity to TNFα-induced apoptosis or 
necroptosis [125, 126]. Collectively, RIPK1-
ubiquitin modifications finely regulated these 
two RIPK1-mediated opposite effects. In HCC 
cells, the protein and mRNA of cIAP1, cIAP2, 
and XIAP were significantly increased com-
pared with normal liver tissue [127, 128] (Table 
1). As the E3 ligase of RIPK1, cIAP1/2 contrib-
utes to enhancing the K11/K48/K63-linkage 
polyubiquitination of RIPK1 by its ubiquitin-
associated (UBA) domain [88, 89, 105, 129, 
130]. Besides, the UBA-mediated ubiquitina-
tion of RIPK1 could avoid immoderately activat-
ing RIPK1 kinase in response to TNF-α by inhib-
iting the releasing of RIPK1 from Complex I, 
therefore preventing RIPK1 kinase-mediated 
cell death and systemic inflammatory response 
syndrome [88, 99]. Previous studies have 
shown that cIAP1/2 promotes cell survival by 
acting as E3 ligases that promote RIPK1 ubi- 
quitination and degradation [105, 131]. Con- 
formably, loss of cIAP1/2, particularly cIAP1, 
can promote the production of TNF and sensi-
tize cancer cell lines to TNF-induced necropto-
sis by promoting the formation of Complex IIb 
[126]. Intriguingly, RIPK1 ablation induces TNF-
mediated hepatocyte apoptosis but not af- 
fects the NF-κB signal [80]. Another study also 
showed that RIPK1 ablation induced TNF-me- 
diated hepatocyte apoptosis and liver tumors 

in liver parenchymal cells (NEMO-KO) [120]. 
Furthermore, the loss of RIPK1 leads to TNF-
induced TRAF2 (an E3 involved in NF-κB activa-
tion) degradation in liver parenchymal cells 
[80]. The deficiency of both RIPK1 and TRAF2 
leads to the over-activation of caspase-8. It 
impairs the activation of NF-κB and MAPKs, 
contributing to the dysregulation of hepatocyte 
apoptosis and promoting spontaneous HCC 
[80, 132]. Although cIAP1/2 degrades RIPK1 
through the K48-linkage chain, the expression 
of cIAP1/2 did not change with the degradation 
of RIPK1. Still, the activity of cIAP1/2 can be 
regulated by auto-ubiquitination modulating 
their ability to ubiquitinate RIPK1, which may 
explain why RIPK1 expression is elevated in 
HCC compared with normal liver tissue [80, 88, 
133]. Furthermore, a DUB (OTU domain alde-
hyde binding-1, OTUB1) reduced K48-linkage 
polyubiquitination of the cIAP1, thereby dimin-
ishing its degradation and avoiding hepatocyte 
death [134, 135]. In addition, the loss of RIPK1 
in hepatocytes converts the function of RIPK3 
from a mediator of necroptosis to a promoter of 
early hepatocyte apoptosis after TNF-α stimula-
tion [80].

LUBAC acts as another E3 ligase complex of 
RIPK1 to add an M1-linkage chain on RIPK1 
and is recruited by binding to the K63-linkage 
chain produced by cIAP1/2 [81, 136, 137]. The 
E3 ligase complex consists of HOIL-1 (heme oxi-
dation IRP2 ubiquitin ligase 1), HOIP (HOIL-1 
interacting protein), and SHARPIN, which can 
positively regulate the activation of NF-κB sig-
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nal induced by TNF [81, 136, 137]. HOIP is the 
catalytic subunit of the complex, while HOIL-1 
and SHARPIN serve as regulatory subunits. 
Studies have shown that LUBAC was signifi-
cantly increased in HCC and promoted the pro-
gression of HCC, which may be partly depen-
dent on the pro-survival effects of NF-κB [138, 
139]. Notably, HOIL-1L interacts with HOIP and 
inhibits its ubiquitination and proteasome deg-
radation, facilitating proliferation and metasta-
sis in HCC [139]. Based on the M1-linkage 
chain generated by LUBAC, the RIPK1 recruits 
NEMO, subsequently phosphorylating IKKα/β 
and activating NF-κB [67, 90, 140]. In turn, 
phosphorylation of RIPK1 by IKKα/β reduces 
its kinase activity to inhibit TNF-induced Com- 
plex II formation and thus prevent cell death 
[141]. It is worth noting that the binding of K- 
63 or M1-linkage polyubiquitination to NEMO 
strongly triggers the creation of droplets with 
liquid-like properties, which activate IKKα/β 
[92]. Another E3 ligase responsible for K63-
linkage NEMO polyubiquitination is TRAF6, 
which activates the IKK complex mediated 
NF-κB signal [142]. Significantly, TRAF6 incre- 
ase was observed in LC, and TRAF6 knock- 
down induced apoptosis and activated cas-
pase-3/7 activity [143]. Conformity, because 
TRAF6 also ubiquitin TAK1 with the k63-linkage 
chain, allows the TAK1 complex to phosphory-
late and activate the IKK complex, thereby acti-
vating NF-κB signaling [144]. Similarly, NEMO 
can also recruit other kinases, such as TBK1 
and IKKε, which are homologous to the canoni-
cal kinases IKKα and IKKβ, to inhibit RIPK1-
dependent cell death by reducing RIPK1 kinase 
activity [145]. Phenotypically, a large propor-
tion of NEMO expression decreased in HCC, 
and low NEMO expression is correlated with a 
poor 5-year overall survival in patients with 
HCC [146]. Recent studies have shown that 
NEMO prevents the occurrence of HCC inde-
pendent of NF-κB mediated gene transcription 
function [120, 147]. Besides, NEMO prevents 
the degradation of cFLIPL, cIAP1, and TRAF2 
from partly controlling spontaneous hepatocyte 
apoptosis and HCC development [120]. In 
short, NEMO is essential for normal cell surviv-
al and plays a particular role in inhibiting the 
occurrence and growth of HCC through NF-κB-
dependent and -independent functions [148, 
149].

Additionally, the K63-linkage ubiquitination of 
K376 on RIPK1 by Parkin in Complex I activates 

downstream pathways and regulates cell dea- 
th, promoting cell survival via NF-κB signaling 
[123]. Conversely, Parkin directly mediates the 
K48-linkage chains of TRAF2/6, thereby impair-
ing NF-κB activation and promoting LC cells 
apoptosis [150]. Similarly, USP4 directly deu-
biquitinates the TRAF2/6 to inhibit its activity, 
which negatively regulates TNFα-mediated ge- 
ne expression [151]. Besides, USP4 directly 
interacts with RIPK1 and deubiquitinates K63-
linkage ubiquitination of RIPK1 [152]. Moreover, 
direct binding between CARP-2 (E3 containing a 
RING domain) and RIPK1 kinase domains pro-
motes K48-linkage ubiquitination and degrada-
tion of RIPK1 and negatively regulates the 
NF-κB pathway [153]. However, whether CARP-
2 influences HCC progression by regulating 
RIPK1-mediated NF-κB has not been reported. 
Moreover, increased ubiquitination on RIPK1 
hinders the transition from Complex I to Com- 
plex II, inhibiting the activation of caspase-8 
[67]. The deubiquitination enzymes that target 
RIPK1 are not well-defined, but A20 and CYLD 
have been reported to interact with RIPK1 and 
remove M1, K48, and K63-linkage ubiquitin 
chains [154, 155]. Both A20 and CYLD have 
been implicated in the development and pro-
gression of LC. A20 is considered a ubiquitin 
editing enzyme, changing the chains on RIPK1 
by removing K63-linkage ubiquitin and generat-
ing K48-linkage ubiquitin chains [156]. A20’s 
deubiquitinating activity on RIPK1 can modu-
late the activity of downstream signaling cas-
cades, such as the NF-κB and JNK pathways. 
Significantly, A20, as a molecular switch, dis-
criminates TNF-induced NF-κB from JNK path-
way activation in hepatocytes [157]. The mRNA 
and protein expression of A20 was significantly 
higher in HCC tissues than in adjacent nontu-
mor tissues [158, 159]. Phenotypically, incre- 
ased expression of A20 was negatively corre-
lated with the tumor size, TNM stage, tumor 
thrombus formation, and capsular invasion 
[158]. Mechanistically, A20 has revealed its 
tumor-suppressive functions in LC cells partly 
by its A20-induced attenuation of NF-κB activi-
ty, inhibiting Twist1 expression [159]. Moreover, 
A20 inhibits apoptosis of hepatocytes and pro-
motes proliferation through the NF-κB signaling 
pathway, suggesting its protection function on 
normal liver cells [160]. Besides, TAX1BP1 acts 
as a bridging protein of A20 and is required  
for A20-mediated deubiquitination of RIPK1 
and inhibition of NF-κB [161]. Similarly, CYLD 
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has also been reported to have tumor-suppres-
sive functions in LC cells [162, 163]. CYLD acts 
as an essential regulator of hepatocyte ho- 
meostasis, inhibits the uncontrolled NF-κB and 
MAPKs activation pathways, and initiates apop-
tosis by deubiquitinating several molecules of 
Complex I, including RIPK1, TRAF2, TAK1, and 
NEMO, thereby facilitating the formation of 
Complex II [162, 164]. Studies have shown that 
the expression of CYLD is frequently downregu-
lated in LC, and this downregulation is associ-
ated with a poor prognosis [165]. A previous 
study showed that the mutation of CYLD exon9 
can induce liver fibrosis and LC [165]. Signi- 
ficantly, CYLD regulates RIPK1 ubiquitination in 
the TNFα-induced Complex II but not Complex I 
[154]. Overall, the abnormal expression of A20 
and CYLD in HCC is associated with the NF-κB 
and MAPKs signal, the Complex II formation, 
and the growth of HCC.

Ubiquitination and deubiquitination of Com- 
plex II: Deubiquitination of Complex I leads to 
decreased stability, and some components are 
dissociated from Complex I to form Complex II a 
and b, respectively. TRADD and RIPK1 contain 
a dead domain, and both interact directly with 
FADD to drive caspase-8 activation in cells 
[111]. During the transition of Complex I to 
Complex II, RIPK1 undergoes dimerization lead-
ing to its activation, then activated RIPK1 binds 
to FADD, which in turn binds to caspase-8 to 
mediate caspase activation and apoptosis 
[122]. FADD is an adaptor protein that medi-
ates the recruitment of procaspase-8 and 
allows procaspase-8 to homodimerize, thus 
being activated. FADD contains two main 
domains: the death domain and the death 
effector domain. Other proteins, including the 
death domain (e.g., RIPK1, TRADD), interact 
with the death domain of FADD, which enables 
the recruitment of procaspase-8 to the Com- 
plex II via interactions between the death effec-
tor domain of FADD and procaspase-8. FADD  
is regulated by Makorin Ring Finger Protein 1 
(MKRN1) E3 ligase-mediated ubiquitination 
and proteasomal degradation [166]. And MK- 
RN1 knockdown leads to the FADD protein sta-
bilization and formation of the rapid Complex II, 
promoting TNF-induced apoptosis [166]. The 
caspase-8’s activation is known to be regulat-
ed by its paralog, FLIP, which is expressed as 
two splice variants, cFLIP Long (cFLIPL)and 
cFLIP Short (cFLIPS) [53]. cFLIPL/S can form 

heterodimers with procaspase-8 and be tradi-
tionally thought to inhibit caspase-8 activation. 
However, while the cFLIPS/procaspase-8 het-
erodimer has no catalytic activity and potently 
inhibits caspase-8 activation, the cFLIPL/pro-
caspase-8 heterodimer does have catalytic 
activity (that is spatially restricted). cFLIPL can 
promote caspase-8 activation, depending on 
its relative levels to procaspase-8 [167].

Previous studies have shown that cFLIP is con-
stitutionally expressed in all human HCC cell 
lines, and its expression is higher in human 
HCC tissues than in non-tumor liver tissues 
[168]. Significantly, downregulation of cFLIP 
has been shown to enhance cell apoptosis and 
thus limit the progression of LC [169, 170]. 
Several mechanisms, including the abnormal 
E3 ubiquitin ligase, regulate the abnormally 
high expression of cFLIP protein in LC. Existing 
studies show that HOIP could conjugate M1- 
linkage ubiquitination chains at Lys 351 and 
353 of cFLIPL to stabilize cFLIPL, thereby pro-
tecting cells from TNFα-induced apoptosis 
[171]. Notably, HOIP is overexpressed in HCC 
and promotes the metastasis and growth of 
HCC cells [138], which may account for the 
abnormally high expression of cFLIP. Moreover, 
the N-terminal of HOIP binds with deubiquitin-
ases, such as CYLD and OTULIN [172]. Fur- 
thermore, caspase-mediated cleavage of HOIP 
breaks critical functional regions of HOIP, regu-
lating linear (de)ubiquitination of substrates 
upon apoptosis (e.g., FADD, NEMO) [172]. 
Another E3 ligase, TRAF7, can promote the 
polyubiquitination of cFLIPL, including K29, 
K33, and K63-linkage types, mainly promoting 
its degradation to enhance TNF-induced apop-
tosis [173]. Critically, previous studies have 
shown that TRAF7 is highly expressed in LC tis-
sues and contributes to the progression of HCC 
by promoting ubiquitination and degradation of 
p53 [174, 175]. TRAF7 was less able to inhibit 
HCC progression by promoting cFLIPL degrada-
tion. Additionally, it was found that E3 ligase 
ITCH could induce the ubiquitination and degra-
dation of cFLIPL via the K48-linkage chain [176, 
177]. It was reported that ITCH could inhibit the 
progression of HCC by destabilizing several tar-
get substrates, such as TAK1 [178] and RORα 
[179]. Similarly, ITCH may promote HCC cell 
apoptosis by promoting the degradation of 
cFLIPL and exerting its anticancer effect. In- 
terestingly, the E3 ligase Mind bomb 2 (MIB2) 
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forms K48- and K63-linkage polyubiquitin 
chains on cFLIPL, thus increasing its stability 
hence attenuating TNF-induced apoptosis 
[180]. Similarly, another E3 can destabilize 
cFLIPL via the ubiquitin proteasome system, 
enhancing cell apoptosis [181]. MIB2 also 
inhibits the kinase activity of RIPK1 and 
restricts the formation of Complex II but with-
out RIPK1 [180]. A deubiquitylase ubiquitin-
specific peptidase 8 (USP8) directly deubiqui- 
tylates and stabilizes cFLIPL, leading to TNF-
mediated apoptosis suppression [182]. Besid- 
es, USP8 also indirectly contributes to cFLIPL 
degradation by directly deubiquitinating and 
stabilizing ITCH [183]. USP8 is more upregulat-
ed in HCC than in normal liver tissues [184]. 
Inhibition of USP8 can induce apoptosis of HCC 
cells, and USP8 is considered to have a tumor 
suppressor effect in HCC [184, 185]. At pres-
ent, the only E3 ligase of cFLIPS reported is 
c-Cbl, which promotes proteasomal degrada-
tion of cFLIPS and, thus the activation of cas-
pase-8 and apoptosis [186].

An E3 ligase HECTD3 interacts with caspase-8 
death effector domains and ubiquitinates cas-
pase-8 via K63-linkage chains that decrease 
the caspase-8 activation [187]. A high HECTD3 
mRNA expression level is associated with poor 
prognosis in HCC [188], which may be related 
to caspase-8 overactivation. When caspase-8 
fails to be activated, the RIPK1/FADD/cas-
pase-8 complex binds to RIPK3 to form com-
plex IIb, which performs necroptosis by mediat-
ing MLKL activation and oligopolization [122, 
189]. Upon the TNF-induced necroptosis pro-
cess, an E3 ubiquitin ligase, PELI1 mediates 
K63 ubiquitination on K115 of RIPK1 promot-
ing cell necroptosis [190]. Paradoxically, PELI1 
mediates K48 ubiquitination on K363 of RIPK3 
causing its degradation and effectively prevent-
ing cell death triggered by RIPK3 hyperactiva-
tion [191]. The major function of the RIPK3 is  
to phosphorylate MLKL, triggering MLKL oli- 
gomerization, membrane translocation, and 
membrane disruption [192]. This paradoxical 
role of PELI1 highlights its dual functions in 
regulating necroptotic signaling by promoting 
necroptosis through RIPK1 ubiquitination and 
inhibiting necroptosis by targeting RIPK3 for 
degradation. Another report shows that conju-
gation of K63-linkage polyubiquitin chains to 
distinct lysine residues in the N-terminal HeLo 
domain of phosphorylated MLKL (facilitated by 

the ubiquitin ligase ITCH that binds MLKL via a 
WW domain) results in the release of phosphor-
ylated MLKL within extracellular vesicles [193].

Ubiquitination regulates TRAIL-induced apopto-
sis in HCC

A general overview of the protein recruitment 
events in TRAIL-R signaling: Ligand Binding and 
Receptor Trimerization: The TRAIL ligand binds 
to TRAIL-R1 or TRAIL-R2 receptors on the cell 
surface, leading to receptor trimerization [81, 
194]. This ligand-receptor interaction initiates 
the signaling cascade [81, 194]. Formation of 
Death-Inducing Signaling Complex (DISC): Up- 
on receptor trimerization, the death domains of 
TRAIL-R1 or TRAIL-R2 recruit the adaptor pro-
tein FADD to the receptor complex [195]. FADD 
serves as a scaffolding protein, facilitating the 
assembly of the DISC [196, 197]. Recruit- 
ment of Initiator Caspases: The DISC complex 
recruits procaspase-8 or procaspase-10, whi- 
ch are inactive forms of caspases [198]. 
Procaspase-8 or procaspase-10 undergoes a 
conformational change and is activated within 
the DISC complex [197]. Actived caspase-8 or 
caspase-10 serves as an initiator caspase, trig-
gering downstream apoptotic events [49, 50]. 
Activation of Effector Caspases: Actived cas-
pase-8 or caspase-10 cleaves and activates 
downstream effector caspases, such as cas-
pase-3, caspase-6, and caspase-7 [49, 50]. 
Effector caspases cleave a variety of cellular 
substrates, leading to the characteristic mor-
phological and biochemical changes associat-
ed with apoptosis.

TRAIL is known to interact with four distinct cell 
surface receptors that are named TRAIL-R1, 
TRAIL-R2, TRAIL-R3, and TRAIL-R4. Among 
these four receptors, only TRAIL-R1 and 
TRAIL-R2 contain cytoplasmic death domains 
that are capable of recruiting FADD to initiate 
the DISC [81]. TRAIL has gained a lot of atten-
tion in recent years due to its remarkable ability 
to selectively induce apoptosis in cancer cells 
while leaving normal cells unharmed. TRAIL 
plays its role in the apoptotic pathway by bind-
ing to death receptors (TRAIL-R1/2) on the  
surface of cancer cells, leading to the cancer 
cell’s death [199]. However, several studies 
have shown that HCC exhibits inherent resis-
tance to TRAIL-induced apoptosis [200, 201]. 
Upon binding to TRAIL-R1/2, TRAIL triggers the 
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Figure 2. Overview of ubiquitin-mediated regulation of TRAIL-R-induced apoptosis. When trimer TRAIL binds to trimer 
TRAIL-R, Complex I is formed through interprotein and Ub chain-mediated interactions. The TRAIL signaling pathway 
is finely regulated by E3s and DUBs, and these regulators are abnormally expressed in LC (see Table 2 for details).

formation of two complexes: the TRAIL-R-as- 
sociated Complex I and a cytosolic Complex II 
that lacks TRAIL-Rs [81]. Previous studies have 
demonstrated that TRAIL-R simulation can 
induce the formation of complexes like TNFR1-
induced complexes with a similar regulation 
mechanism via ubiquitination [53, 199]. No- 
tably, the finding that Complexes I and II con-
duct apoptotic signals and pro-survival signals 
[81]. In TRAIL-R signaling, proapoptotic proteins 
(FADD and caspase-8) are initially recruited to 
TRAIL-R. They can serve as a scaffold for 
recruiting antiapoptotic proteins, including 
RIPK1, TRAF2, cIAP1/2, LUBAC, and the TAK1 
and IKK complexes [81]. Importantly, LUBAC 
controls the TRAIL signaling outcomes of Com- 
plexes I and II since RIPK1 and caspase-8 as 
linearly ubiquitinated targets of LUBAC [202] 
(Figure 2).

Earlier studies have reported a prevalently low 
expression of TRAIL-R1 and -R2 in human HCC 
tissues and cell lines, negatively correlated 

with the survival rate of HCC patients [203, 
204]. An E3 ligase, membrane-associated 
RING-CH-8 (MARCH8), targets TRAIL-R1 for 
lysosomal degradation and attenuates its cell 
surface expression [205] (Table 2). The high 
expression of MARCH8 in HCC is compared 
with that in normal tissues, and it can inhibit 
the apoptosis of HCC cells [206], suggesting 
that MARCH8 may exert its cancer-promoting 
effect by inhibiting TRAIL-R1/2-mediated apop-
tosis. When FADD binds to the trimerization of 
TRAIL-R1 and TRAIL-R2, it exposes the death 
effect domain (DED) of FADD, which contributes 
to interacting with caspase-8 and DED of 
cFLIPL/S. Caspase-8 will come together to form 
a homologous oligomerization, while caspase-8 
and caspase-10 or cFLIPL/S will join forces in a 
hetero-oligomerization [81]. Stimulation with 
TRAIL has been shown to induce the ubiquitina-
tion of caspase-8, and this ubiquitination has 
been associated with the cullin3-based E3 
ligase (CUL3) [207]. CUL3 can facilitate cas-
pase-8 oligomerization and activation by medi-
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Table 2. Regulators of the ubiquitination in TRAIL-R signaling
Regulator of 
the ubiquitina-
tion

Substrate
Targeted protein
Ubiquitination type

Impact on 
TRAIL-R induced 
cell death

Impact on TRAIL-
R induced gene 
activation

Deregulation 
and role in liver 
cancer

Refs

MARCH8 (E3) TRAIL-R1 (K11?) Apoptosis↓ ND Upregulation
Cancer promotion

[205, 206]

MKRN1 (E3) FADD (K48?/K11?) Apoptosis↓ ND ND [166]
CUL-3 (E3) Caspase-8 (K48/K63) Apoptosis↑ ND ND [207]
HECTD3 (E3) Caspase 8 (k63) Apoptosis↓ ND Upregulation [187, 188]
TRAF2 (E3) Caspase-8 (K48) Apoptosis↓

Necroptosis↓
NF-κB signaling↑
JNK signaling↑

Downregulation
Cancer inhibition

[80, 208, 209, 392]

P62 (K63) Apoptosis↓? [210]
cIAP1/2 (E3) RIPK1 (K63) Apoptosis↓

Necroptosis↓
NF-κB signaling↑ Upregulation

Cancer promotion
[127, 209, 393]

SCFSkp2 (E3) cFLIPL (K48?) Apoptosis↓ ND ND [217]
LUBAC (E3) Caspase-8 (M1) Apoptosis↓

Necroptosis↓
ND Upregulation

Cancer promotion
[393]

RIPK1 (M1) Apoptosis↓
Necroptosis↓

NF-kB signaling↑
ERK signaling↑

[393]

ITCH (E3) cFLIPL/S (K48?) Apoptosis↑ ND ND [183, 394]
CHIP (E3) FADD (K6) Apoptosis↓

Necroptosis↓
ND ND [260]

DTX1 (E3) cFLIPL (K29?) Apoptosis↑ ND ND [221]
A20 (DUB) Caspase-8 (K48/K63) Apoptosis↓ ND ND [207]
A20 (E3) RIPK1 (K63) Apoptosis↓ Apoptosis↓ ND [395]
USP8 (DUB) cFLIPL (K48?) Apoptosis↓ ND Upregulation

Cancer inhibition
[182]

ating K48/K63 ubiquitination of caspase-8, 
which leads to the recruitment of the Ub-bind- 
ing protein p62 to the DISC. This recruitment 
allows for p62-mediated aggregation and full 
activation of caspase-8, initiating the apopto- 
tic cascade [207]. In contrast, the events were 
reversed by activating A20, which removes the 
ubiquitin chains from procapsase-8 [207]. 
Notably, CUL3 also promotes TNF - and FasL-
induced caspase-8 activation. Additionally, the 
E3 ligase TRAF2 directly interacts with cas-
pase-8 at Complex I and induces K48-linkage 
polyubiquitination of caspase-8, resulting in 
the proteasomal degradation of activated cas-
pase-8 [208]. Besides, TRAF2 and cIAP1 medi-
ate the K63-linkage ubiquitination of RIPK1, 
allowing NF-κB activation and cell survival 
[209]. Interestingly, TRAF2 also induces K63-
linkage polyubiquitination on the K420 residue 
of p62 [210]. This may reduce the aggregation 
of p62 and prevent p62 from accumulating to 
caspase-8, thereby exerting its antiapoptotic 
effect. Previous studies have shown that de- 
creased TRAF2 promotes spontaneous devel-
opment of HCC via inducing overactivation of 

caspase-8 and impaired activation of NF-κB 
[80].

Besides, another E3 ligase, HECTD3, increases 
the ubiquitination of caspase-8 through the 
K63-linkage polyubiquitin chain [187, 188]. It 
should be noted that while CUL-3 activates cas-
pase-8 through K63-linkage chain attachment, 
HECTD3 has the opposite effect by inhibiting 
caspase-8 activation. In addition, several other 
E3 ligases, WWP1, Siah2, and POSH, do not 
regulate the ubiquitination of caspase-8. How- 
ever, inhibition of WWP1 increases the recruit-
ment caspase-8 into Complex I, and silencing 
Siah2 and POSH enhances caspase-8 activity, 
ultimately sensitizing TRAIL-mediated apopto-
sis [211, 212]. In addition to caspase-8, cas-
pase-10 is also recruited to the DISC, but its 
role in death receptor signaling is unclear. 
Previous study shows that expression of cas-
pase-10 sensitizes MCF-7 breast carcinoma 
cells to TRAIL- but not TNF-induced apoptosis 
[213]. Importantly, caspase-10 was unable to 
compensate for the loss of caspase-8 in TRAIL 
or FasL-induced apoptosis of caspase-8-defi-
cient Jurkat cells [167, 214]. Interestingly, cas-
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induces the formation of DISC on the cytoplas-
mic side of the receptor [223]. Specifically, the 
death domain of Fas recruits FADD, then FADD 
binds procaspase-8 and cFLIP to form the DISC 
[224]. In mammals, two major cFLIP isoforms 
dominate, namely cFLIPL and cFLIPS. These 
two major isoforms are potent inhibitors of the 
caspase activity at the DISC [225, 226]. After 
the DISC is formed, oligomerization of procas-
pase-8 promotes its autocatalytic activation 
and the release of a mature tetramer to the 
cytosol, implementing apoptosis [224]. This 
apoptosis can be blocked by several mecha-
nisms, including the production of soluble Fas 
(sFas) [227]; production of a soluble decoy 
receptor (DcR3) for FasL [228]; lack of Fas 
expression on the cell surface [229]; overex-
pression of inhibitory proteins in the signal 
transduction pathways such as Fas-associated 
phosphatase 1 (FAP-1) [230], Bcl-2 family mem-
bers and FLICE inhibitory protein [231, 232]; 
and mutations in Fas’s primary structure [233]. 
In addition, the activation of Fas can promote 
apoptosis by regulating the transcriptional 
activity of proapoptotic genes. FAS activation 
enhances the activity of LATS1, and LATS1-
induced phosphorylation of YAP1 increases the 
affinity for p73, causing YAP1 to form a nuclear 
complex with p73, thereby inducing the tran-
scription of the proapoptotic puma gene [234].

Remarkably, FasL/Fas activation also regulat- 
es pro-survival pathways such as NF-κB. For 
instance, the caspase-8-induced cleavage pro- 
ducts of cFLIPL are conducive to stimulating 
NF-κB signaling [235, 236]. Moreover, cFLIPL 
requires a LUBAC-driven ubiquitination mecha-
nism to activate NF-κB, presumably to generate 
a ubiquitinated substrate to interact with NEMO 
[237]. DISC also recruits caspase-10, which 
blocks caspase-8 activation and enhances the 
NF-κB response [238, 239]. Dysregulation of 
the FasL/Fas pathway has been implicated in 
the development and progression of cancer. In 
some cancers, overexpression of FasL in tumor 
cells can induce apoptosis of Fas-expressing 
tumor-infiltrating lymphocytes, thereby promot-
ing immune evasion and tumor growth [240, 
241]. Both Fas and FasL are expressed on the 
surface of LC cells, the Fas displaying while 
FasL is inhibiting compared with normal liver 
tissue, contributing to the anti-apoptosis for  
LC cells [242-244]. Significantly, the Fas/FasL 
pathway is finely regulated by ubiquitination, 

pase-10 can act as a negative regulator of 
FasL-induced apoptosis [215], suggesting cas-
pase-8 has opposite effects in several death 
receptor induced-apoptosis. Another study sh- 
owed that FADD is modified by small ubiquitin-
associated modifier 2 (SUMO2) on multiple 
lysine residues (K120/125/149), thereby re- 
cruiting caspase-10 to mitochondria for regu-
lated necroptosis [216]. However, the ubiquiti-
nation modification of caspase-10 has not 
been clear yet. Therefore, gaining insight into 
how ubiquitination/deubiquitination affects the 
stability, oligomerization, and activation of cas-
pase-10 could enhance our understanding of 
how it regulates death signaling.

In contrast to the inactive cFLIPS/caspase-8 
heteropolymers, cFLIPL/caspase-8 heteropoly-
mers exhibit spatially limited activity, enabling 
them to cleave RIPK1, RIPK3, and CYLD, there-
by preventing necroptosis [217-219]. Impor- 
tantly, the ratio of cFLIPL, cFLIPS, and cas-
pase-8 also regulates the degree of caspase-8 
activation via DED-mediated filament exten-
sion [81]. ITCH is thought to reduce the stability 
of cFLIPL and cFLIPS, thereby promoting TRAIL-
induced apoptosis signaling [220]. Similarly, 
another E3, DELTEX1 (DTX1), binds cFLIPL and 
directs it into the endosome-lysosomal path-
way for degradation, enhancing TRAIL-induced 
and FasL-induced apoptosis in T cells [221]. 
Enjoyable, Skp1-Cullin-1-F-box (SCF) Cullin-Ring 
E3 Ubiquitin Ligase complex containing Skp2 
(SCFSkp2) promotes ubiquitination and protea-
some degradation of cFLIPL, thereby restrain-
ing TRAIL-R2-mediated apoptosis [217]. This 
suggests that cFLIPs are functionally different 
in TRAIL-R2/TRAIL-R1 mediated apoptosis. In 
contrast, USP8 interacts with cFLIPL through 
its caspase-like domain, resulting in its deubiq-
uitination, thereby preventing the degradation 
of cFLIPL [171].

Ubiquitination regulates FasL-induced apopto-
sis in HCC

FasL is a type II transmembrane protein that 
belongs to the tumor necrosis factor family 
[222]. FasL plays a crucial role in inducing 
apoptosis, a form of programmed cell death, 
through binding to its receptor Fas on the sur-
face of target cells [222]. FasL is mainly ex- 
pressed in activated T lymphocytes and natu- 
ral killer (NK) cells. When FasL binds to Fas, it 
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including protein stabilization and localization 
changes. For example, the E3 ubiquitin ligase 
Hrd1 protected B cells from activation-induced 
cell death by degrading Fas [245]. Similarly, 
another E3 ligase MARCH8 directly interacts 
with Fas, promoting its ubiquitination and deg-
radation [246]. Besides, the E3 ubiquitin ligase 
TRAF2 interacts with caspase-8 at the DISC, 
generating K48-linkage polyubiquitination in 
the large catalytic domain of caspase-8, ulti-
mately promoting activated caspase-8 mole-
cules to rapid proteasomal degradation [247]. 
Interestingly, KPC2 directly recognizes the Fas 
and serves as an adaptor to recruit p65 and 
KPC1, which acts as an E3 ubiquitin ligase pro-
moting the cleavage of p105 into p50, eventu-
ally inhibiting NF-κB activation [248]. More- 
over, another E3 ubiquitin ligase, AIP2, binds to 
and supports ubiquitin-mediated degradation 
of EGR2. This zinc finger transcription factor 
has been found to up-regulate FasL expression 
during activation-induced T-cell death [249]. 
Additionally, a role in the monoubiquitylation of 
FasL at Lys 72 and 73 is essential for correctly 
sorting FasL into the inner vesicles of secretory 
lysosomes [250]. 

The protein level of Fas is considerably de- 
creased during the HCC transformation [244]. 
Notably, Fas expression was significantly higher 
in all the subtypes of tumor-infiltrating lympho-
cytes (CD3 positive, CD4 positive, CD8 positive, 
NK cells, and natural T cells) compared with 
normal liver tissues [251]. Therefore, Fas de- 
creased significantly in HCC cells, and Fas 
expression increased in lymphocytes, contrib-
uting to the failure of HCC cells to be effectively 
recognized and killed by lymphocytes and the 
declined number of lymphocytes. There are 
many potential causes of abnormal changes in 
Fas-induced apoptosis in HCC, including tran-
scriptional regulation and post-translational 
modification. In glioblastoma cells treated with 
temozolomide, E3-ubiquitin ligase Siah1 inter-
acts with HIPK2 causing its degradation, and 
HIPK2 plays a role in the phosphorylation of 
p53 at serine 46, enhancing the activity of Fas 
promoter, which eventually inhibits the expres-
sion of Fas and Fas-induced apoptosis [252]. 
The tyrosine phosphatases family member 
PTEN, a tumor suppressor, promotes cas-
pase-8 activation and Bcl-2 family member BID 
cleavage dependent on FADD, hence promoting 
Fas-induced apoptosis in prostate cancer cells 

[253]. Consistently, loss of PTEN led to the 
binding of phosphorylated PEA-15 to FADD, 
resulting in diminished DISC formation and 
decreased Fas-induced apoptosis in Jurkat-T 
cells [254]. PTEN also plays a proapoptotic role 
in HCC, and its expression is reduced or ab- 
sent in almost half of HCC patients, which is 
closely associated with tumorigenesis [255, 
256]. Previous studies have shown that the 
non-phosphorylated form of PTEN is destabi-
lized through the ubiquitin-proteasome path-
way [257-259] and that proper phosphorylation 
of PTEN is essential to protect the PTEN from 
ubiquitin-proteasome mediated degradation 
[258]. Recent studies show that FADD’s Lys 
149 and 153 residues are ubiquitinated by the 
E3 ligase CHIP in DISC, preventing cell death 
[260].

Ubiquitination of the intrinsic apoptotic path-
way in LC

Intrinsic apoptosis senses a wide range of in- 
ternal stress signals usually produced by cellu-
lar stresses, such as DNA damage, high levels 
of reactive oxygen species, ER stress, or nutri-
ent starvation. All intracellular stress signals 
eventually converge at the mitochondria [261]. 
In the intrinsic apoptotic pathway, ubiquitina-
tion has been shown to influence the activa- 
tion and function of key regulators (Figure 3). 
For instance, the E3 ubiquitin ligase MDM2 
(mouse double minute 2) can ubiquitinate the 
proapoptotic protein p53, targeting it for degra-
dation and suppressing its proapoptotic acti- 
vity [262]. Conversely, DUBs such as USP7 pro-
posed to stabilize MDM2 that promotes the 
proteasomal degradation of p53, leading to 
enhanced apoptosis [263]. Additionally, ubiqui-
tination of Bcl-2 family proteins, which control 
mitochondrial membrane permeabilization and 
the release of apoptotic factors, can modulate 
their stability and activity, thereby impacting 
the intrinsic apoptotic pathway. Ubiquitination 
of Bax, a proapoptotic protein, has been shown 
to regulate its localization and function [264, 
265]. Moreover, several studies have shown 
that intrinsic apoptosis defects have been ob- 
served in LC [266, 267]. In LC, mutations or 
inactivation of the p53 gene are common, lead-
ing to the loss of its proapoptotic function  
and allowing cancer cells to evade apoptosis. 
Besides, alterations in the expression or ac- 
tivity of Bcl-2 family proteins have also been 
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Figure 3. Overview of ubiquitin-mediated regulation of intrinsic apoptosis. The core of intrinsic apoptosis is the 
change of Mitochondrial Outer Membrane Permeabilization (MOMP) mediated by Bax/Bak. Upon MOMP, some cy-
tokines like SMAC, AIF, Omi, and ARTS were released into the cytoplasm causing activation of caspases and sequent 
apoptosis. The activity of Bax/Bak is largely regulated by the proapoptotic BH3-only protein and the antiapoptotic 
Bcl-2 proteins. E3s and DUBs finely regulate the processes; these regulators are abnormally expressed in LC (see 
Table 3 for details). Under certain conditions, such as phosphorylation and ER stress, the binding ability of E3s and 
DUBs to substrates is affected.

observed in LC. For example, decreased expres-
sion of proapoptotic proteins such as Bax and 
increased expression of antiapoptotic proteins 

such as Bcl-2 have been observed in HCC tis-
sues, suggesting that HCC cells resist apopto-
sis [268]. Additionally, defects in other compo-
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nents of the intrinsic apoptotic pathway, such 
as cytochrome c release from mitochondria 
and the activation of caspases, have also been 
reported in LC. These defects can disrupt the 
downstream apoptotic signaling cascade and 
contribute to the survival and proliferation of 
cancer cells. Therefore, abnormal or defective 
intrinsic apoptosis in LC is closely related to 
ubiquitination.

The ubiquitination of the Bcl-2 family execu-
tioners: Members of the Bcl-2 family can be 
both proapoptotic and antiapoptotic, and a bal-
ance between their protein levels determines 
whether apoptosis occurs or not [111, 269]. 
There are three subclasses of the Bcl-2 family: 
the proapoptotic executioners, the proapoptot-
ic BH3-only proteins, and the antiapoptotic 
Bcl-2 proteins [111]. When activated, Bax and 
Bak are the main proapoptotic executioners 
that can oligomerize in the outer mitochondrial 
membrane, forming pores that induce MOMP 
[81]. The pro-survival Bcl-2 proteins, including 
Bcl-2, Bcl-xL, and MCL-1, which have four BH 
domains, are primary antagonists of Bax/Bak 
by preventing their outer mitochondrial mem-
brane localization and activation [270, 271]. 
Enjoyably, these antagonists of Bax/Bak are 
distributed differently in LC. The Bcl-xL protein 
was expressed in HepG2, Hep3B, and Huh7 
human hepatoma cell lines at high levels, but 
none of these cells expressed Bcl-2 [272]. Bcl-2 
protein is constitutive expression in HCC-T 
cells, but not in HepG2 cells [231]. Moreover, 
Bcl-2 confers protection to HCC cells against 
Fas-mediated apoptosis [231]. Previous stud-
ies have demonstrated that the progression 
and tumorigenesis of LC is associated with 
decreased Bax protein [75, 273]. Specifically, 
the expression and mitochondrial translocation 
of Bax promote apoptosis of HCC cells, while 
translocation of Bax into the cytoplasm pro-
motes survival of HCC cells. The E3 ligase 
IBRDC2 has been reported to target Bax for 
ubiquitin-mediated degradation, and, interest-
ingly, IBRDC2 localizes to the mitochondria  
only when activated Bax emerges there [274] 
(Table 3). Similarly, mitochondrial Bax is  
also ubiquitinated by Parkin, causing targeted 
proteasome degradation [270]. Furthermore, 
Parkin-mediated ubiquitination of Bax in the 
cytoplasm inhibits the translocation of Bax to 
the mitochondria [275, 276]. Several studies 
have shown that E3 ubiquitin ligase Parkin acts 

as a tumor suppressor protein, and its protein 
expression was significantly decreased or 
absent in LC [150, 277]. Notably, the exon of 
the Parkin gene has a high-frequency mutation 
in HCC cell lines, suggesting the loss of  
function mutations may be associated with  
the occurrence and progression of LC [277]. 
Besides, recent reports have shown that anoth-
er E3 TRIM17 is able to interact with Bax, pro-
moting its K48-linkage polyubiquitin chains 
and proteasome degradation, leading to a defi-
ciency in Bax-dependent apoptosis in gastric 
cancer cells in the absence and presence of 
apoptosis stimuli [265]. TRIM17 has not been 
studied in detail in LC, and whether it is related 
to the mechanism of LC cells escaping apopto-
sis in Bax-dependent needs further study. 
Rather than directly regulating Bax, most E3 
ubiquitin ligases indirectly regulate Bax by regu-
lating the stability or activity of their interacting 
partner. While Bak is also a crucial proapoptot-
ic protein, its role in LC has not been extensive-
ly studied compared to Bax. Current studies 
have shown that LC tissues have higher Bax 
transcription levels, which are positively corre-
lated with poor prognosis, compared with adja-
cent non-cancer tissue [278]. Recent studies 
have shown that the loss of E3 ubiquitin ligase 
activity of MARCH5 could drive Bax to adopt an 
activated conformation [279]. In addition, previ-
ous research has shown that high MARCH5 
expression levels are correlated with improved 
survival of HCC patients [280], suggesting that 
MARCH5 may promote the apoptosis of LC cells 
by promoting the degradation of Bax.

Once activated Bak/Bax has induced MOMP, 
pro-apoptotic factors such as cytochrome c, AIF 
(apoptosis-inducing factor) and IAP antagonists 
(SMAC, Omi, ARTS) are released from the mito-
chondria into the cytosol [281]. In the presence 
of ATP, cytochrome c, Apaf-1, and procaspase-9 
interact and oligomerize, forming a complex 
known as the apoptosome [281]. The apopto-
some triggers procaspase-9 to form homodi-
mers, which induces its enzymatic activity and 
autoproteolytic cleavage, activating it. Activat- 
ed caspase-9 can then cleave the executioner 
caspases, procaspase-3/7, thereby promoting 
apoptosis. However, if the antiapoptotic protein 
XIAP is present, it can potently block cas-
pase-3/7/9 activity [282]. Overexpression of 
XIAP has been observed in HCC and is strongly 
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Previous studies have shed light on the regula-
tion of XIAP via ubiquitination and deubiquitina-
tion. The E3 ligase TRIM32 has been shown to 
either stimulate XIAP’s auto-ubiquitination or 
directly bind to and ubiquitinate it, leading to  
its degradation [286]. TRIM32 is significantly 
upregulated in LC and has been shown to pro-
mote cancer progression [287, 288], suggest-
ing that it may weaken XIAP-mediated inhibition 
of apoptosis, contributing to the early growth of 
LC. In contrast, the deubiquitinases USP11 and 
USP9X exhibit the reverse effect by interacting 
with the BIR2 domain of XIAP and inducing XIAP 

associated with poor patient prognosis and 
increased resistance to chemotherapy and 
radiation therapy [283, 284]. XIAP is an E3 
ligase and a potent inhibitor of both the intrin-
sic and extrinsic apoptotic pathways. In hu- 
mans, the E3 ligase activity of XIAP does not 
appear necessary for its anti-apoptotic func-
tion, as its primary mechanism of inhibiting 
apoptosis involves direct binding to aspase- 
3/7/9. However, it’s worth noting that the E3 
ligase activity of XIAP plays a crucial role in its 
auto-ubiquitination, which is responsible for its 
degradation [285]. 

Table 3. Regulators of the ubiquitination in intrinsic apoptosis
Regulator of the
ubiquitination

Substrate
Targeted protein

Impact on intrin-
sic apoptosis

Deregulation and role in 
liver cancer Refs

IBRDC2 (E3) Bax Apoptosis↓ ND [274]
Parkin (E3) Bax Apoptosis↓ Downregulation

Cancer inhibition
[150, 270, 277] 

TRIM17 (E3) Bax Apoptosis↓ ND [265]
Mcl-1 Apoptosis↑ [284]

MARCH5 (E3) Bax Apoptosis↓ Upregulation
Cancer inhibition

[279, 280]

c-Cbl (E3) BimEL Apoptosis↓ Downregulation
Cancer inhibition

[297, 396]

CRL2CIS (E3) BimEL Apoptosis↓ ND [300]
TRIM2 (E3) Bim Apoptosis↓ ND [301]
SCFβ-TrCP (E3) BimEL Apoptosis↓ Upregulation

Cancer promotion
[304, 305, 397]

Mcl-1 Apoptosis↑ [316]
XIAP (E3) Bcl-2 Apoptosis↑ Upregulation

Cancer promotion
[283, 284, 289]

SMAC, AIF, and ARTS Apoptosis↓ [289-291]
Arel1 (E3) SMAC, AIF, and Omi Apoptosis↓ ND [293]
RNF183 (E3) Bcl-xl Apoptosis↑ ND [323]
SCFFBW7 (E3) Mcl-1 Apoptosis↑ ND [315, 398, 399]
MULE (E3) Mcl-1 Apoptosis↑ ND

Cancer promotion
[218, 400]

Cdc20 (E3) Mcl-1 Apoptosis↑ Upregulation
Cancer promotion

[267, 268, 320, 401]

Siah1 (E3) XIAP Apoptosis↑ Downregulation
Cancer promotion

[292, 402, 403]

Usp11 (DUB) XIAP Apoptosis↓ Upregulation
Cancer promotion

[16, 403]

Usp13 (DUB) Mcl-1 Apoptosis↑ Upregulation
Cancer promotion

[19, 404-406]

Usp9× (DUB) Mcl-1 Apoptosis↑ Upregulation
Cancer promotion

[309, 407, 408]

XIAP Apoptosis↓ [15]
Usp27× (DUB) Bim Apoptosis↓ Upregulation

Cancer promotion
[17, 307]
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deubiquitination and stabilization [16], and US- 
P9X deubiquitinate and stabilize XIAP to pro-
mote cell survival during the mitotic spindle 
assembly checkpoint, respectively [15]. XIAP 
has also been reported to function as an E3 
ligase for several apoptotic-related proteins, 
including Bcl-2, SMAC, AIF, and ARTS [289-
291]. To counteract XIAP’s anti-apoptotic func-
tion, IAP antagonists such as SMAC, Omi, and 
ARTS are released from the inner mitochondrial 
membrane space following MOMP. In the case 
of ARTS, it is removed from the outer mitochon-
drial membrane preceding MOMP [282]. These 
IAP antagonists inhibit XIAP through various 
mechanisms. Of particular interest, ARTS can 
trigger the XIAP auto-ubiquitination and/or ubi- 
quitination through the E3 ligase Siah1 [292]. 
However, the E3 ligase Arel1 (apoptosis-resis-
tant E3 Ub protein ligase 1) has been reported 
to ubiquitinate and degrade SMAC, Omi, and 
ARTS under apoptotic conditions, likely due to 
its localization in the cytoplasm after MOMP 
and its proximity to XIAP antagonists [293].

The ubiquitination of the BH3-only proteins: 
Proapoptotic BH3-only proteins (Bid, Bim, 
Puma, Noxa, Bad, Bmf, Hrk, and Bik) induce 
Bax/Bak pore formation either directly by acti-
vating Bax/Bak or passively by isolating anti-
apoptotic Bcl-2 proteins [294, 295]. Notably, 
only Bim has been reported to be regulated by 
several E3 ligases/DUBs, regulating its protein 
level. Bim protein was significantly expressed in 
HCC tissues compared to normal tissues [296]. 
Significantly, overexpression of Bim EL, L, S and 
all alpha isoforms induced apoptosis in HCC 
cells, while overexpression of Bim beta iso-
forms showed no effects on cell survival after 
5-FU treatment [296].

Studies have shown that the ultra-long splicing 
variant (BimEL) of Bim is labeled degradable by 
the E3 ligase c-Cbl [297]. However, another 
study has shown that this is not the case in dif-
ferent cell lines [27], suggesting that the effects 
of c-Cbl on Bim may be cell type-specific. 
Previous studies have shown that ablation of 
Cbl-b and c-Cbl in dendritic cells causes spon-
taneous liver cirrhosis via altering multiple 
properties of CD103+ cDC1s [298]. Besides, 
other results imply that the Bim can be of 
importance in the livers of patients with prima-
ry biliary cirrhosis [299]. These studies suggest 
that c-Cbl may inhibit the occurrence of HCC by 

degrading Bim. In addition, BimEL is degraded 
by the E3 ligase complex CRL2CIS, which con-
tains Elongin B/C, Cullin-2, and CIS [300]. 
Another E3 ligase TRIM2 binds to Bim when it is 
phosphorylated by p42/p44 MAPK but does 
not interact with a Bim mutant (3ABim, loss of 
phosphorylation) [301]. Besides, ERK-mediated 
Bim phosphorylation at serine 69 induced 
BimEL degradation via ubiquitin-proteasome 
pathway [302]. These studies show that TRIM2 
and Bim that are phosphorylated enhance their 
ability to interact with each other. Critically, the 
MAPK/ERK signaling pathway is activated in 
more than 50% of human HCC cases, suggest-
ing TRIM2 may play a role in promoting cancer 
in HCC [303]. In addition, Rsk1/2 (Ribosomal 
protein S6 kinase 1/2) and Aurora kinase  
phosphorylated BimEL at Ser93/Ser94/Ser98, 
inducing ubiquitination and degradation via the 
SCFβ-TrCP complex [304, 305]. Therefore, the 
phosphorylation-induced ubiquitination and 
degradation of BimEL by Rsk1/2, Aurora 
kinase, and the SCFβ-TrCP complex can potential-
ly impact the levels of BimEL in LC cells. For 
example, activating mutations, changes in pro-
tein expression, and phosphorylation patterns 
of Rsk1/2 and Aurora kinase in LC should be 
considered and further researched.

OTUD1 directly interacted with Bim and inhibit-
ed its ubiquitination at the lys 3 residue, stabi-
lizing it [306]. LC cells often exhibit reduced 
apoptosis, allowing them to evade cell death 
and promote tumor growth. Stabilizing Bim 
through its deubiquitination by OTUD1 can 
potentially counteract this apoptosis resistance 
by restoring or enhancing its proapoptotic func-
tion. According to another study, Usp27x has 
the ability to decrease ERK-dependent Bim 
ubiquitination, while increasing its levels and 
stabilizing phosphorylated Bim [17]. However, 
Usp27× expression is increased in HCC and is 
positively correlated with poor prognosis [307], 
which may be related to the abnormal phos-
phorylation pathway in HCC.

The ubiquitination of the anti-apoptotic Bcl-2 
proteins: The antiapoptotic Bcl-2 proteins (Bcl-
2, Bcl-xL, Bcl-w, Mcl-1, and A1) can inhibit apop-
tosis either by the direct binding and inhibition 
of Bax/Bak or by sequestering BH3-only pro-
teins that directly interact with Bax/Bak [308]. 
Several studies have shown that degradative 
types of ubiquitination regulate Mcl-1. The DUB 
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USP9X was reported to stabilize Mcl-1 by re- 
moving K48-linkage ubiquitin chains, promot-
ing tumor cell survival [309]. Another DUB, 
USP13, was also shown to stabilize Mcl-1 by 
reducing its K48-linkage ubiquitin chains [19]. 
In the context of LC, the stabilization of Mcl-1 by 
USP9X and USP13 through deubiquitination 
has been implicated in promoting tumor cell 
survival and contributing to LC progression. 
Previous studies have shown that Mcl-1 is cru-
cial for the survival and self-renewal of cancer 
stem-like cells in HCC [310]. Furthermore, 
Mcl-1 protein expression was considerably 
enhanced in human HCC tissue compared to 
adjacent non-tumor tissue [311]. Additionally, 
knockdown of Mcl-1 efficiently enhanced apop-
tosis sensitivity towards combined treatment 
modalities [311, 312].

In neuronal cells, the E3 ligase TRIM17 was 
shown to mediate the ubiquitination and prote-
asomal degradation of Mcl-1 in a process de- 
pendent on GSK3 (Glycogen synthase kinase 3) 
induced phosphorylation of Mcl-1 [313]. The E3 
ligase MULE was also shown to interact with 
Mcl-1, resulting in subsequent ubiquitination 
and degradation [218]; however, basal levels of 
Mcl-1 were not affected in MULE-deficient cells 
[314]. The SCFβ-TrCP and SCFFBW7 E3 ligase com-
plexes have been implicated in regulating the 
intrinsic apoptotic pathway via inducing Mcl-1 
ubiquitination and degradation of Mcl-1 [315, 
316]. GSK3-mediated phosphorylation of Mcl-1 
at Ser159/Thr163 enhances the interaction 
between both SCFβ-TrCP and SCFFBW7 association 
with Mcl-1, contributing to elevated ubiquitina-
tion and degradation [317]. Previous studies 
have shown that the presence of GSK3 inacti-
vation in LC enhances the stability of Mcl-1 and 
inhibits HCC cell apoptosis, thus promoting 
liver carcinogenesis [318, 319], suggesting 
that these three E3 ligases may play an anti-
cancer role in LC dependent on Mcl-1. Addi- 
tionally, phosphorylation of Mcl-1 at Thr92 by 
CDK1/Cyclin B1, in response to mitotic arrest, 
was shown to induce APC/C (Cdc20) E3 ligase 
complex mediated ubiquitination and degrada-
tion of Mcl-1 [320]. However, another study 
shows that Cdc20-mediated degradation of 
PHD3 stabilizes HIF-1a and promotes tumori-
genesis in HCC [267]. It’s possible that a 
change of CDK1/Cyclin B1 activity and expres-
sion in LC weakens the anticancer impact of 

Cdc20, which is dependent on Mcl-1 [321, 
322].

In addition to Mcl-1, a recent study has shown 
that Bcl-xL is also subject to regulation by ubiq-
uitin-mediated degradation via the E3 ligase 
RNF183 in response to ER stress [323]. While 
RNF183 is typically localized to the ER and Bcl-
xL to the mitochondria, it’s worth noting that 
the mitochondria and ER often come into prox-
imity and form membrane contact sites [324], 
indicating the plausibility of ER-located RNF183 
being able to ubiquitinate mitochondria-located 
Bcl-xL. Bcl-xL is mainly present in the cytoplasm 
of hepatocytes, but in HCC cells Bcl-1xL is not 
only present in the cytoplasm but also in part of 
the nucleus [325]. This suggests that the redis-
tribution of Bcl-xl may be involved in the evade 
of HCC cell apoptosis. After inducing apoptosis, 
ARTS introduced XIAP and Bcl-2 into the ternary 
complex so that XIAP promoted ubiquitination 
and degradation of Bcl-2 further enhancing 
apoptosis [289].

Other ubiquitin-involved apoptosis pathways 
in HCC

The tumor suppressor p53 plays a pivotal role 
in the cellular stress response (e.g., DNA dam-
age, oxidative stress, or oncogene activation), 
which is closely associated with the process of 
cell death. When cells are under stress, p53 
can activate a variety of proapoptotic target 
genes, ultimately leading to the elimination of 
the damaged cells via apoptosis. p53 can 
induce the expression of proapoptotic genes in 
the Bcl2 family, including Bax [326], Puma 
[327], and Noxa [328], among others. Fur- 
thermore, p53 promotes the expression of 
genes that target the death receptor, including 
Fas [329] and DR5 [330]. In non-stressed cells, 
the levels of p53 are maintained at a low level 
mainly due to its polyubiquitination by the E3 
ubiquitin ligase MDM2 [331]. However, in LC, 
inactivation of p53 and overactivation of MDM2 
are among the factors that contribute to the 
transformation of normal liver cells into cancer 
cells [331]. Moreover, p53 mutation is also 
involved in the proliferation and radiosensitivity 
of HCC cells through Bcl-2/Bax pathway [268]. 
Similarly, E3 ubiquitin ligases such as NEDD8 
[332] and FBXW7 [333] directly target p53 to 
modulate its expression and thereby impede  
its transcriptional activity. Previous studies 
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have shown that the expression of FBXW7 is 
impaired in HCC tissues, and FBXW7 can act as 
a tumor suppressor to inhibit HCC by inducing 
apoptosis and growth arrest [334, 335]. This 
stands in contrast to the FBXW7-mediated deg-
radation of p53, which can promote cancer cell 
survival [333], suggesting the involvement of 
other E2s or E3s in the intricate regulation of 
p53. Indeed, numerous E3 ubiquitin ligases 
also ubiquitinate the E3 ligases directly binding 
p53, leading to precise regulation of p53 activ-
ity [336]. 

Targeting specific components of the UPS for 
HCC therapy

Dysregulation of the UPS has been implicated 
in various diseases, including LC. Since protea-
somes are responsible for the degradation of 
ubiquitinated proteins, inhibiting their function 
can impair cancer cell survival and promote 
apoptosis. Bortezomib and carfilzomib are pro-
teasome inhibitors that have been approved for 
the treatment of multiple myeloma [337, 338]. 
In LC, bortezomib can be used for advanced 
HCC [339]. Bortezomib interferes with the 26S 
proteasome and inhibits proteasomal activity 
and promotes apoptosis by enhancing activi-
ties of the two major pathways (death receptor 
superfamily and intrinsic mitochondrial cell 
death pathway) involved in apoptosis-associat-
ed caspase activation [339]. Emerging eviden- 
ce demonstrated that bortezomib performs its 
canonical functions in bortezomib-susceptible 
HCC, which has been associated with the accu-
mulation of proapoptotic Bcl-2 proteins Bax 
and Noxa [340-342]. Moreover, treatment with 
MG132 (another proteasome inhibitor) sup-
pressed the proliferation of LC cells and 
induced apoptosis in a dose-dependent man-
ner [343]. MG132 treatment promotes the 
apoptosis of LC cells probably via increasing 
the accumulation of proapoptotic Bcl-2 pro-
teins Bim and Bax [344]. 

E3 ligases are responsible for the transfer of 
ubiquitin to substrate proteins. By inhibiting 
specific E3 ligases, it may be possible to modu-
late the stability of oncogenic or tumor suppres-
sive proteins. The IAPs (inhibitor of apoptosis 
proteins) family comprises several members, 
including NAIP, cIAP1/2, XIAP, Survivin, Apolon 
and ML-IAP. IAPs all contain one or more bacu-
lovirus IAP repeat motifs through which they 

interact with various other proteins [345]. Many 
IAPs also have another zinc-binding motif, the 
RING domain, which can recruit E2 ubiquitin-
conjugating enzymes and catalyse the trans- 
fer of ubiquitin onto target proteins [345]. For 
example, cIAP1/2 can promote survival and 
inhibit apoptosis in LC cells by targeting RIPK1 
for ubiquitination and degradation [120]. The 
E3 ligase activity of cIAP1 can be inhibited by 
D19 or promoted by SMAC mimics (LCL161 and 
birinapant) [346]. Inhibitors of IAPs, such as 
SMAC and LCL161, have been shown to induce 
apoptosis of LC cells both in vitro and in vivo, 
suggesting that targeting IAPs could be a prom-
ising strategy for the treatment of LC [128, 
347]. SMAC is the best characterized inhibitor 
of IAPs that can increase the apoptosis of XIAP 
in HCC cells [348]. Small molecule SMAC mi- 
metics can also inhibit IAPs function and lead 
to cell apoptosis [349, 350]. So far, SMAC mim-
ics that are expected to inhibit the progression 
of HCC include LCL161 [128], SM-164 [347], 
APG-1387 [127, 351] and birinapant [352]. A 
phase I dose-escalation study of LCL161 in 
patients with advanced solid tumors has been 
published, indicating that LCL161 is tolerated 
and had significant pharmacodynamic activity 
[353]. In HCC cells, LCL161 is found to be effec-
tive in combination with paclitaxel to lead can-
cer cell apoptosis and depress cell proliferation 
[128]. Down regulating Bcl-2 overcomes drug 
resistance to LCL161 in HCC cells [354]. Al- 
though SM-164 induced complete cIAP1 degra-
dation, it showed a weak inhibitory effect on 
HCC cell activity [347]. Nevertheless, SM-164 
considerably potentiated TRAIL mediated apop-
tosis in HCC cells in combination with chemo-
therapeutic agents [347]. APG-1387 exhibits 
an antitumor effect on HBV-positive HCC with 
high expression of cIAP2 by inducing apoptosis 
[127]. Biinapant promotes apoptosis of LC cells 
and inhibits invasion of LC cells by activating 
cIAP1/TRAF3 axis [352]. SMAC mimics treat-
ment alone significantly reduced the protein 
levels of IAPs, but had only a modest effect on 
the viability and apoptosis of HCC cells in vitro. 
However, these mimics in combination with 
TNF-α or TRAIL significantly reduced cell viabil-
ity and proliferation, and induced cell apopto-
sis. All these results indicated IAPs inhibitors as 
promising drugs for HCC therapy, and further in 
vivo and in vitro studies in HCC are warranted. 
Besides, the E3 ubiquitin ligase MDM2 is over-
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expressed in many tumors, including HCC, and 
promotes cell survival by targeting the tumor 
suppressor protein p53 for degradation. Nu- 
tlin-3 is a small molecule inhibitor of MDM2 
that has been shown to induce apoptosis in 
HCC cells both in vitro and in vivo by stabilizing 
p53 and promoting its activity [355]. LUBAC, as 
a significant regulator of extrinsic apoptosis 
pathway, can significantly promote the survival 
of HCC cells. The administration of thiolutin 
inhibits catalytic activity of HOIP (a catalytic 
subunit of linear LUBAC), which impairs the 
propagation of myeloid leukemia [356]. While 
several inhibitors of E3 ubiquitin ligases have 
shown promising results in preclinical studies, 
further research is needed to determine their 
safety and efficacy in clinical trials.

DUBs remove ubiquitin from substrate pro-
teins, potentially reversing the effects of ubiq-
uitination. Inhibiting DUBs can increase the lev-
els of ubiquitinated proteins, leading to their 
degradation by the proteasome. PR-619 is a 
broad-spectrum DUB inhibitor that has been 
investigated for its potential in various cancers 
via regulating cell apoptosis, including oesoph-
ageal squamous cell carcinoma [357] and  
metastatic bladder urothelial carcinoma [358]. 
But, PR-619 in LC is still under investigation. 
Given that cancer cells preferentially have 
TRAIL receptor overexpressed on their cell sur-
face, TRAIL signaling can provide another ther-
apeutic target for cancer treatment. The activa-
tion of NF-κB induced by TRAIL renders HCC 
resistant to TRAIL-mediated cell apoptosis. 
Notably, CYLD augmented the cytotoxicity of 
TRAIL in HCC cells by negatively regulating 
NF-κB activity since CYLD could reverse the 
ubiquitination of TRAF2 and interact with the 
NEMO [359]. Recent studies have shown that 
CAP-Gly domains (ubiquitin-binding domains) in 
CYLD are vital in determining CYLD activity 
[360], which raises the possibility of treating LC 
by controlling CYLD. USP4 can promote cell 
apoptosis and inhibit pro-survival signals, but it 
can promote the progression of HCC, which 
may be related to the occurrence of HCC [361, 
362]. Degrasyn (WP1130) is a selective deu-
biquitinase (including USP4 and USP9X) inhibi-
tor [362]. Furthermore, combined treatment 
with WP1130 sensitized HCC cells to doxoru- 
bicin via USP9X-depedent p53 degradation 
[363]. USP8 inhibits cell death by affecting 
cFLIPL/stability, and its protein expression is 

increased [182, 184, 364]. Of note, USP8 inhi-
bition significantly enhanced doxorubicin or 
sorafenib’s efficacy in HCC cells and mouse 
models [184]. Hence, inhibitors of USP8 such 
as HY50737, HY0736 and DC-U43-10 are 
expected to treat HCC [184].

Conclusion and perspectives

In conclusion, dysregulation of apoptosis is a 
crucial characteristic of LC, and targeting the 
ubiquitination pathway, particularly E3 ubiqui-
tin ligases, represents a promising strategy for 
treating LC. The balance between proapoptotic 
and antiapoptotic proteins plays a pivotal role 
in maintaining the homeostasis of apoptosis. 
However, there are still limited knowledge 
about these pathways. (i.) The incompleteness 
of the death pathways: Although several core 
components of apoptosis have been identified, 
additional regulators and effectors likely re- 
main undiscovered. For example, ferroptosis 
and cuproptosis have recently been viewed as 
new forms of programmed cell death process-
es [365-367]. (ii.) Limited understanding of 
cross-talk between pathways: There is little 
knowledge of how different apoptosis pathways 
interact with one another, as well as with other 
cellular processes like autophagy, necroptosis, 
and inflammation. For example, low levels of 
death signaling stimulate apoptosis, whereas 
high death signaling often result in necroptosis 
[368]. Nevertheless, autophagy significantly 
improves the fitness of metastatic cells under 
stressful conditions to counteract apoptosis 
and necroptosis [368]. Moreover, apoptosis 
and necroptosis also inhibited each other. (iii.) 
Species and cell-type specificity: Apoptosis 
pathways can vary between organisms and cell 
types. For example, compared to the normal 
cell, TNFR2 is mainly expressed on the tumor 
cell surface and inhibitory immune cells in the 
tumor microenvironment [369]. (iv.) In the 
death signaling, the expression, localization, 
and activation of essential regulator proteins 
still need further research, such as the discov-
ery of related E3s. These limitations, among 
others, highlight the need for continued re- 
search and development of novel approaches 
to better understand and manipulate apoptosis 
pathways in a variety of biological contexts. 

While several inhibitors of E3 ubiquitin ligases 
have shown promising results in preclinical 
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studies of LC, several challenges need to be 
addressed. These include the development of 
drug resistance, the potential toxicity of these 
agents, and identifying the most effective drug 
combinations and dosing regimens. Additiona- 
lly, further research is needed to fully under-
stand the mechanisms underlying the dysregu-
lation of the ubiquitination modification in LC. 
One potential strategy to overcome these chal-
lenges is to develop more selective E3 ubiquitin 
ligase inhibitors/activators that target specific 
oncogenic substrates. For instance, recent 
studies have shown that STAT3 inhibitors 2- 
benzylmalonic acid derivatives inhibit tumor 
growth in HCC by upregulating β-TrCP E3 ubiqui-
tin ligase [370]. This approach may reduce the 
potential toxicity of these agents and minimize 
the development of drug resistance. Another 
promising avenue of research is to identify bio-
markers that can predict which patients are 
most likely to respond to E3 ubiquitin ligase 
inhibitors/activators, allowing for more person-
alized treatment approaches. Additionally, com-
bining E3 ubiquitin ligase inhibitors/activators 
with other targeted therapies or immunothera-
pies may enhance their efficacy and reduce  
the likelihood of resistance. Overall, continued 
research into the role of the ubiquitin pathway 
involved death in LC and the development of 
novel therapeutic strategies is critical to improv-
ing clinical outcomes for patients with LC.
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