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Abstract: In early-stage colorectal cancer (CRC), AQP8, GUCA2B, and SPIB were important suppressor genes and
frequently co-expressed. However, the underlying co-regulation effect remains unknown and need to be elucidated.
We aimed to investigate the co-regulatory network of AQP8, GUCA2B, and SPIB in CRC using in vitro and in silico
methods. Q-PCR, western blot, and immunohistochemistry were used to assess the co-regulatory network of the
target genes in the HCT-116 cell line and fresh tumor tissues. Bioinformatical methods were used to validate the
findings using the Cancer Genome Atlas COlon ADenocarcinoma and REctum ADenocarcinoma datasets, as well as
large scale integrated data sets from Gene Expression Omnibus. In clinical CRC tissues, SPIB, AQP8, and GUCA2B
were barely expressed compared to normal mucosa. When compared to 22 well-known genetic biomarkers, they are
independent predictors of CRC identification with near 100% accuracy. In the co-regulatory network, they were co-
upregulated at the mRNA and protein expression levels. AQP8, GUCA2B and SPIB were linked to immune cell infiltra-
tion and GUCA2B and SPIB were negatively associated with tumor purity. The co-regulatory network in miRNA-mRNA
analysis was mediated by cancer-related microRNAs miR-182-5p and miR-27a-3. The functional analysis of the co-
regulatory network’s protein-protein interaction networks reveals three clusters and three major functions: complex
interactions of transcription factors in mediating cytokine biology in T cells (SPIB cluster), guanylin, and Intestinal
infectious diseases (GUCA2B cluster), and water channel activity balance (AQP8 cluster). The co-regulatory network
of SPIB, AQP8, and GUCA2B was confirmed. MiR-27a-3p and miR-182-5p were two possible mediators. The mecha-
nisms of SPIB, AQP8, GUCA2B, miR-182-5p, and miR-27a-3p in CRC merit further investigation.
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Introduction only when this tumor has advanced because
CRC is asymptomatic in the early stage. Late

Colorectal cancer (CRC) is a major public health diagnosis could lead to treatment challenges

problem. It is the third most common cancer and reduced survival times.

and the fourth leading cause of cancer-related

death worldwide [1]. Timely diagnosis and prop- Few diagnostic genetic biomarkers are current-

er management can cure up to 80% of patients ly being utilized in clinical practice [3, 4]. One

[2]; however, numerous cases are diagnosed reason is that the findings for diagnostic bio-
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markers have lacked overlap among studies.
These disparities among biomarkers are cau-
sed by differences in such aspects as tumor
heterogeneity, dataset source, analysis plat-
forms, and approaches [5]. In our previous
study [5], the top candidate genes were highly
associated. We speculated that their co-func-
tion might cause the discrepancy in genetic bio-
markers from various studies in the same co-
regulatory network.

Defects in multiple tumor suppressor genes
are markedly associated with carcinogenesis
and cancer [6-8]. The accumulation of genetic
and epigenetic alterations is the driving force
for CRC tumorigenesis [9]. In our previous study
[5], we used a large number of integrated
genome datasets and multiple bioinformatics
approaches, including machine learning and
traditional statistics, to determine AQP8, GU-
CA2B, and SPIB were repeatedly selected as
top suppressor genes for CRC identification.

AQPS8 has been discovered to be differentially
expressed in a variety of cancers [10]. The
upregulation of AQPS8 inhibited CRC cell prolif-
eration in vivo [11]. AQPS8 inhibits colorectal
cancer cell proliferation and metastasis by
interfering with PISBK/AKT signaling and re-
gulating PCDH7 expression [10]. Uroguanylin
(GUCA2B-encoded) is involved in the regulation
of intestinal secretion [12]. Uroguanylin inhibits
intestinal epithelial cell proliferation by upregu-
lating nuclear transcription of cell cycle inhibi-
tors (p21 and p27) and inhibiting proliferative
transcription activated by Wnt/beta-catenin/
tcf and AKT pathways [13]. SPIB functions as a
tumour suppressor in colorectal cancer cells
by activating the NFkB and JNK signalling
pathways via MAP4K1 [14]. Additionally,
AQP8, GUCA2B, and SPIB were frequently co-
expressed and confirmed as significant bio-
markers to early CRC [15-18]. However, the
underlying co-regulation effect remains un-
known. Therefore, we aimed to investigate the
co-regulatory network of AQP8, GUCA2B, and
SPIB in CRC wusing in vitro and in silico
methods.

Methods and materials
Datasets
RNA sequencing data were retrieved from The

Cancer Genome Atlas (TCGA) colon adenocarci-
noma and rectum adenocarcinoma datasets
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(COADREAD) containing 20,531 probes and
434 samples. COADREAD consists of data on
380 primary tumors, two recurrent tumors,
one metastatic tumor, and 51 normal solid tis-
sues. Recurrent and metastatic tumors were
excluded because of the small sample size.
The gene expression profile was experimentally
measured using an lllumina HiSeq 2000 RNA
sequencing platform at TCGA Genome Cha-
racterization Center of the University of North
Carolina. This dataset revealed gene-level
transcription estimates as log2(x + 1)-trans-
formed RSEM normalized counts. We used
the integrated mRNA dataset from GSE4045,
GSE4107, GSE4183, GSE5851, GSE8671,
GSE9348, GSE1096, GSE12630, GSE12945,
GSE13067, GSE13294, GSE13471, GSE15-
960, GSE17538, GSE18105, and GSE14333
[5], mentioned as “integrated dataset” in the
study. There were 88 cases of normal mucosa,
53 cases of adenoma, 521 cases of adenocar-
cinoma and 79 cases of metastatic tumors.

Statistics

COADREAD was used to examine the genetic
predictors of CRC/NM classification and prog-
nosis prediction (overall survival [0S] and
relapse-free survival [RFS]) under the control of
clinical and demographic characteristics. The
classification and prognosis prediction analy-
ses involved logistic regression and the Cox
proportional hazard model, respectively. The
significance threshold was set at P < 0.05.
These analyses were performed using SPSS
20.0 and R software (https://www.r-project.
org/). Accuracy, sensitivity, specificity, and area
under the curve (AUC) of receiver operating
characteristic (ROC) curves were calculated to
evaluate the classification of CRC and NM.

T-distributed stochastic neighbor embedding
and heatmap

T-SNE (t-Distributed Stochastic Neighbor Em-
bedding) is a popular nonlinear dimensionality
reduction technique that allows for high-dimen-
sional data visualization and clustering. It pre-
serves the inherent relationships between data
points while projecting the data’s local and
global structure into a lower-dimensional space.
T-SNE, unlike traditional methods such as PCA,
excels at preserving complex relationships,
making it an effective tool for uncovering hid-
den structures and visualizing data distribu-
tions. We use t-SNE to cluster the CRC data into
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different tissue types. A heatmap was plotted
to analyze the gene expression patterns using
the R package “pheatmap”.

Receiver operating characteristic curve

ROC curves were plotted to evaluate the
classification performance regarding CRCs of
the genes of interest using COADREAD and
R packages of “pROC” [19], “ggplot2”, and
“tidyverse” [20]. The reference script is avail-
able at https://stackoverflow.com/questions/
66505014/how-to-add-auc-to-a-multiple-roc-
graph-with-procs-ggroc. AUC ranges from O to
1. The higher the AUC, the better the model.

Protein-protein interaction

The protein-protein interaction of AQP8, GUC-
A2B and SPIB were analysis using STRING
(https://string-db.org/). The networks were
clustered using kmeans clustering. Function
analysis was conducted using Gene Ontology
(GO) knowledgebase.

Ethics statement

The handling of tissue samples and patient
data in the present study was approved by
the Tri-Service General Hospital Institutional
Review Board in Taiwan (IRB; TSGHIRB approv-
al number: 098-05-292). The board was orga-
nized and operated in accordance with the
International Conference on Harmonization
(ICH)/WHO GCP and applicable laws and regu-
lations. Written informed consent was obtained
from each patient, documented in each
patient’s record, and considered sufficient by
the ethics committee. Tissue samples were
registered as case numbers without names or
personal identification numbers.

Experiment on clinical specimens

Specimens: The pairs of specimens from nor-
mal and tumor tissues were collected from five
CRC patients with an average age of 66 + 10
years old and BMlIs ranging from 20 to 28.
Sample collection was performed in surgical
clinics, where the tumor and normal tissues
were simultaneously resected. Adjacent normal
tissue specimens were collected from an inci-
sion > 10 cm away from the carcinoma sites.
All the specimens were immediately stored in
liquid nitrogen. The resection procedure was
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reviewed by the Department of Colorectal
Surgery, Tri-Service General Hospital.

Hematoxylin-eosin (H&E) and immunohisto-
chemical analysis: Neoplastic colon and non-
neoplastic tissues around the tumor were col-
lected from the waste from surgical resection.
Tissue preparation and staining were pro-
cessed following regular protocol. Formalin-
fixed, paraffin-embedded tissues were sliced
into 4 um-thick sections and stained with H&E.
For immunohistochemical (IHC) analysis, for-
malin-fixed, paraffin-embedded tissue sections
with 4 pm-thickness were deparaffined and
rehydrated in xylene. Antigens were retrieved
by immersing sections in 10 mM sodium citrate
at a pre-heat of 98°C and then heated for 20
min. Next, the sections were permeabilized
with Triton X-100, blocked with bovine serum
albumin, and stained with primary antibody
[anti-AQP8 (Abclonal, A8539), anti-SPIB (Ab-
clonal, A7451), and anti-GUCA2B (Abclonal,
A8390)] for 16 h. Anti-SPIB, anti-GUCA2B, and
anti-AQP8 were diluted following the manufac-
turer’s protocol. Sections were stained with
HRP-linked secondary antibodies (Optiview
DAB IHC Detection kit, Ventana Roche, Arizona,
USA) for an additional 4 h.

RNA quantification: Total RNA was extracted
with TRIzol reagent (Invitrogen, MA, USA) and
reverse transcribed into cDNA using a high-
capacity cDNA reverse transcription kit (Applied
Biosystems, MA, USA) according to the manu-
facturer’s instructions. The cDNA samples were
quantified using qPCRBIO SyGreen Blue Mix
Lo-ROX (PCR Biosystems, London, UK) on an
ABlI QuantStudio 5 Real-Time PCR System
according to the manufacturer’s instructions.
The primers were (forward) CGGTCATTGAGA-
ATGGGACGG and (reverse) AGGAGCATCACCA-
GGTTGAGG for AQPS8; (forward) AGCACACAG-
TCAGTCTACATCC and (reverse) CACACAGCTC-
ACAGTCGTCG for GUCA2B; (forward) GGCAG-
GGACTCGCAAGAAG and (reverse) TCTTGGCGT-
AGTTTCGGAGG for SPIB; and (forward) TTCA-
CCACCATGGAGAAGGC and (reverse) GATGG-
CATGGACTGTGGTC for GAPDH. Data were nor-
malized to GAPDH expression levels in each
sample using the AACt method.

Co-regulatory network of target genes

Cell culture and transfection: HCT116 was pur-
chased from the Bioresource Collection and
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Research Center (Hsinchu, Taiwan) within 3
years and cultured in high-glucose DMEM
(Gibco, TX, USA) following the standard proto-
col. The plasmids carrying the open reading
frame for the candidate genes were synthe-
sized by OriGene (MD, USA), amplified in
Escherichia coli DH5«, and extracted using a
plasmid mini kit (Geneaid, Taipei City, Taiwan)
following the manufacturer’s instructions. Cells
were seeded in six-well plates and transfected
with 1 pg of plasmid per well using Lipofectamine
2000 (Thermo Fisher Scientific, MA, USA) to
overexpress the candidate genes according to
the manufacturer’s instructions. Serum-free
medium was used to avoid quenching of the
plasmids or transfection reagent by serum pro-
teins. The medium was replaced with a regular
culture medium after 6 h and refreshed daily.
The transfected cells were incubated under
standard culture conditions for 2 d.

Western blotting: Cells or colorectal cancer tis-
sues were dissociated using RIPA lysis buffer
supplemented with a proteinase inhibitor cock-
tail (Thermo Fisher Scientific) or a cOmplete™,
EDTA-free Protease Inhibitor Cocktail (Roche)
according to the manufacturer’s instructions.
The proteins were quantified using Qubit, and
the samples were analyzed by western blot-
ting. Primary antibodies, including anti-AQPS8
(Abclonal, A8539), anti-SPIB (Abclonal, A7451),
and anti-GUCA2B (Abclonal, A8390), were
used. For anti-AQP8 and anti-SPIB, the primary
antibodies were diluted 1,000-fold with PBS
supplemented with 0.1% Tween 20 (PBST),
while for anti-GUCA2B, they were diluted 500-
fold with TBS supplemented with 0.1% Tween
20 (TBST). The internal control antibody, anti-
GAPDH, was diluted 10,000-fold with PBST for
anti-AQP8 and anti-SPIB, and with TBST for
anti-GUCA2B. Secondary antibodies, including
goat anti-rabbit I1gG-conjugated HRP and goat
anti-mouse 1gG-conjugated HRP, were diluted
2,000-fold with PBST for anti-AQP8 and anti-
SPIB, and 10,000-fold with TBST for anti-
GUCA2B. HRP-conjugated antibodies were then
reacted with an ECL substrate (LFO8-500,
Visual Protein, Taipei City, Taiwan, or Immobilon
Western Chemiluminescent HRP Substrate,
Millipore), and the target proteins were detect-
ed using either the ChemiDoc Imaging Sys-
tem (Bio-Rad, CA, USA) or the Millipore GE
Healthcare Life Sciences system (USA).
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microRNA-transcription factor-mRNA function-
al analysis: Transcription factors and miRNAs
influence the expression of target gene expres-
sion, and the influence of one regulator affects
the impact of the other on the shared target
gene expression in CRC [21]. Understanding
the microRNA (miRNA)-transcription factor-
MRNA regulatory network is essential for under-
standing its biological function [22]. The miR-
Net 2.0 website (freely available at https://
www.mirnet.ca.) was used to analyze the regu-
latory networks of the TGs, miRNAs, and
Transcription factors. MiRNet's database was
derived from miRBase, miRTarBase, TarBase,
HMDD, and others. Human tissue-specific
miRNA annotations are derived from the TSmiR
and IMOTA databases, whereas human exo-
somal miRNA annotations are obtained from
ExoCarta. TransmiR 2.0, ENCODE, JASPAR, and
ChEA provide information on the interactions
between miRNAs, TFs, and genes [23].

Results
Identification of colorectal cancers

Higher expression levels of GUCA2B and SPIB
were significantly associated with lower stages
using the COADREAD dataset. The expression
levels of AQP8 and SPIB were higher in women
than in men (Table 1). No significant associa-
tion was found with pathological T/N/M stage,
lymphatic invasion, microsatellite stability sta-
tus, presurgical therapy, or tumor site.

SPIB, AQP8, GUCA2B expressed significantly
higher mRNA levels in normal mucosa com-
pared with tumors using COAD dataset (Figure
1A). Their expression decreased from normal
mucosa, adenoma, adenocarcinoma to metas-
tasis in order using integrated dataset (Figure
1B). AQP8, GUCA2B, and SPIB mRNA expres-
sion could be used to differentiate normal
mucosa, CRC and metastatic tumors using
t-SNE (Figure 1C). In addition, AQP8, GUCA2B,
and SPIB were independent genetic predictors
for identifying CRC and NM under the adjust-
ment for any of the clinical and demographic
characteristics of tumor sites (colon/rectum),
radiation therapy (yes/no), sex, microsatellite
instability, lymphatic invasion (yes/no), patho-
logical TNM, and stage (Table S1). The heatmap
of AQP8, GUCA2B, and SPIB mRNA expression
is shown in Figure 1D.
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Table 1. Association of target genes with clinical and demographic characteristics using the COAD-

READ dataset and univariable linear regression

AQPS GUCA2B SPIB
(Mn+SD)  (Mn+SD)  (Mn £SD)

Gender
Female
Male
Tumor site
Colon
Rectum
Stage
-1
-1V
Pathological T stage
T1-2
13-4
Pathological N stage
NO
N1-2
Pathological M stage
MO
M1
Lymphatic invasion
No
Yes
Microsatellite stability status

*

5.73(4.41) 3.41(3.69) 5.02(2.59)
4.87 (4.07) 2.91(3.29) 4.48(2.48)

5.27 (4.39) 3.16(3.54) 4.82(2.62)
5.24 (3.75) 3.05(3.27) 4.42(2.28)
* *
5.72(4.83) 3.75(4.14) 5.22(2.83)
5.05(3.86) 2.82(3.00) 4.41(2.33)

5.22 (4.08) 2.88(3.35) 4.79(2.39)
5.29(4.31) 3.22(3.53) 4.71(2.58)

5.33(4.22) 3.20(3.50) 4.78(2.49)
5.13 (4.43) 2.98(3.48) 4.53(2.84)

5.20 (4.34) 3.12(3.53) 4.78(2.52)
6.05(4.14) 3.62(3.61) 4.60(2.83)

5.15(4.28) 3.01(3.50) 4.70(2.51)
5.65(4.32) 3.44(3.46) 4.95(2.55)

Microsatellite stability (MSS) and microsatellite instable-low (MSI-L) 5.35(3.99) 3.11(3.38) 4.63(2.50)

Microsatellite instable-high (MSI-H)
Pre-surgical therapy

No

Yes

4.26(5.13) 2.96(3.86) 5.27 (2.70)

5.19 (4.07) 3.09(3.34) 4.81(2.43)
5.58(3.74) 3.53(3.42) 4.09 (1.77)

*Significant variables are marked with an asterisk (P < 0.05). mRNA gene expression was log2 base transformed. Mn, mean;

SD, standard deviation.

We identified 22 well-known genes related to
early-stage CRC [24-27], the phenotypic classi-
fication of nonpolyposis and polyposis [28],
and biomarkers for early detection [29, 30]
using literature review. The CRC classification
performance of SPIB, AQP8, and GUCA2B
was then compared to 22 well-known genes
using COADREAD dataset. The heatmap is
shown in Figure 2A. SPIB, AQP8, and GUCA2B
expression was significantly associated with
the CRC tissue types compared with other 22
genes.

The classification performance of GUCA2B,
SPIB, and AQP8 outperformed the 22 well-
known genes with AUCs of 1.00, 0.99, and
0.98, respectively, using the TCGA COADREAD
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dataset (Figure 2B). GUCA2B exhibited the
best classification efficacy. The best genetic
prediction model consisted of SPIB and GUC-
A2B in the logistic prediction model logit(p/1-p)
=22.31-0.91*10g2(GUCA2B mRNA expression
+ 1) - 1.80*l0g2(SPIB mRNA expression + 1)
with the cut-off point of 0.5. The AUC of this
genetic model was 0.9993 (sensitivity: 0.99,
specificity: 1.00) (Figure 2C). The average accu-
racy of training and testing sets with 100 boot-
strap replicates was 0.99 (Figure 2D).

Prognosis prediction
The prognostic prediction of CRC was evaluat-

ed in terms of RFS and OS using the COADREAD
dataset and Cox proportional hazard regres-

Am J Cancer Res 2023;13(11):5271-5288



A AQPOGUCABSPIB B
B I 15
; %
2 |
-
b y
% | - . ]
= o o0 10 |
c v s a ‘
o s = g
] <
@ | 2 |
o o
S .
3 é 5
o
c . T
o .
(G} .
FEE
EERE

tsne 1

AQP8, GUCA2B, SPIB and CRC

GUCA2B
~

® Normal mucosa
® Adenoma
© Adenccarcinoma
® Metastasis

Normal mucosa

Adenoma

Adenocarcinoma
_Metastasis

SPIB

I\I
|

84OV

2edATaNSSIL L e
edfy"enss|y NI I S T O [ I IMIMITENIE T 1T

Jeisnjo” o dues M

8zvono

gene_cluster
I 14 gene_cluster
1

12

8
6

8Ids

2

10

sample_cluster
1
2

Tissue_type2
Normal_mucosa
Adenoma+CRC

Tissue_type1
Normal_mucosa
Adenoma
Adenocarcinoma
Metastasis

Figure 1. (A) AQP8, GUCA2B, and SPIB mRNA expression in colon cancer using the TCGA COAD dataset and the
TIMER2.0 web tool (https://cistrome.shinyapps.io/timer/). (B) t-SNE plot visualizing assignment of tissue types us-
ing AQP8, GUCA2B, and SPIB gene expression. (D) Log2 mRNA expression of AQP8, GUCA2B, and SPIB in normal
mucosa, adenoma, adenocarcinoma and colorectal cancer. The dataset of (B-D) was from integrated mRNA dataset
(normal mucosa n = 88, adenoma n = 53, adenocarcinoma n = 521, metastatic tumors n = 79).

sion. AQP8, GUCA2B and SPIB were not statisti-
cally associated with OS and RFS in the univari-
ate and multivariate models adjusted in terms
of the stage (Table S2). However, the high
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expression levels of AQP8 (hazard ratio [HR] =
0.91, P < 0.05) and GUCA2B (HR = 0.87, P <
0.05) were associated with favorable RFS in
the multivariable models adjusted regarding
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Figure 2. A. Heatmap of the target genes (AQP8, GUCA2B, and SPIB) and known genes of the early stage, detection,
and phenotypic classification of colorectal cancers. B. Receiver operating characteristic curves and area under the
curves (AUC) of the target genes (AQP8, GUCA2B, and SPIB) and known genes for the early stage, detection, and
phenotypic classification of colorectal cancers. C. We split the COADREAD dataset into a training set (80%) and a
testing set (20%) and resampled 100 times to evaluate the prediction model of normal mucosa and primary CRCs
using stepwise logistic regression. The best genetic prediction model was logit(p/1-p) = 22.31 - 0.91*log2(GUCA2B
mMRNA expression + 1) - 1.80*10g2(SPIB mRNA expression + 1) at the cut-off point of 0.5. The mean (Mn) and stan-
dard deviation (sd) of prediction accuracies are displayed in the boxplot. The average accuracies of the training and
testing set were 0.99. D. The ROC curve of the genetic prediction model demonstrated perfect prediction efficacy
with an AUC of 0.9993, sensitivity of 0.99, and specificity of 1.00. The dataset was from the COADREAD.

PMID:25123282
Complex interactions of
transcription factorsin
mediating cytokine biology in
T cells.

Guanylin, and Intestinal
infectious diseases
Hsa 00230
Purine metabolism

CL:7537

Nuclear membrane protein

complex, and Initiation of
Nuclear Envelope (NE)

Figure 3. Protein-protein interaction using STRING. K-means clustering was used to divide the network into three
clusters. The input genes are circled in red. The plot showed the annotations that were the most significant and
insightful. The sources of pathway annotation are addressed by the prefixes PMID (Pubmed article), CL (String da-
tabase), GO (Gene-ontology), and Has (KEGG).

pathological M stage. High SPIB expression
was related to favorable OS in the multivariable
model adjusted regarding presurgical therapy.

A co-regulatory network in vitro

We analyzed the protein-protein interaction of
AQP8, GUCA2B and SPIB using STRING data-
base. The result is shown in Figure 3. GUCA2B
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and AQPS8 interacted directly but indirectly with
SPIB. The interaction networks were clustered
into several subnetworks for AQP8, GUCA2B
and SPIB. The corresponding functional anno-
tation are water channel activity for AQPS8; gua-
nylin and intestinal infectious diseases, and
purine metabolism for GUCA2B; complex inter-
actions of transcription factors in mediating
cytokine biology in T cells for SPIB.
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quantitative data from the western blot. Figures shown in the plots are the fold changes for gene expression. The
results of overexpressed AQP8, GUCA2B, and SPIB are marked in green, pink, and orange, respectively. The figure
beside each node is the self-overexpression fold change. The baseline protein expression levels of AQP8, GUCA2B,

and SPIB are 6,412, 12,279, and 6,884, respectively.

SPIB, AQP8, and GUCA2B gene expression
were extremely low in CRC tumors. As a result,
we used overexpression experiments to deter-
mine the co-regulatory network of SPIB, AQPS,
and GUCA2B. In HCT116 cells, we overex-
pressed one and measured the levels of pro-
tein expression of the others. Although we over-
expressed one gene, the expressions of other
genes were simultaneously upregulated based
on gPCR (Figure 4A) and western blot (Figure
4B). The overexpression of SPIB increased
GUCA2B expression 8-fold, the overexpression
of AQPS8 increased SPIB and GUCA2B expres-
sion by approximately 3-fold, and the overex-
pression of GUCA2B increased AQP8 expres-
sion by 2-fold and SPIB expression by 36-fold at
the mRNA levels (Figure 4A). The co-regulatory
network was drawn using quantitative data
from the western blot analysis (Figure 4C).
These genes were also co-upregulated at the
protein levels.
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Transcription factors bind to DNA motifs and
alter nearby transcription. Transcription factors
were causally responsible for the observed
transcriptional changes [31, 32]. SPIB is one of
the ETS Transcription factors essential in regu-
lating the immune system [33]. Its overexpres-
sion increased the protein levels of AQP8 and
GUCA2B by 1.62- and 2.04-fold, respectively.
When AQP8/GUCA2B was overexpressed, SPIB
expression increased by 5.2-/2.33-fold, respec-
tively. The most significant change was appar-
ent in the regulation of AQP8 on SPIB (5.2-fold
increase). AQP8 and GUCA2B were positively
co-regulated (Figure 4C).

Validation in clinical tissue samples

The expression levels of target proteins of
AQPS8, GUCA2B, and SPIB were extremely low in
colonic adenocarcinoma tissues compared
with those in non-neoplastic colon tissues
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(Figure 5A). SPIB, AQP8, and GUCA2B mRNA
expression levels in clinical samples from
paired CRC tumors and adjacent NM were
examined. AQP8, GUCA2B, and SPIB were bare-
ly expressed in tumor tissues compared with
that seen in NM, except for GUCA2B in S67 and
SPIB in S67/S68 (Figure 5B). In the western
plot of fresh tissues, the protein expression of
SPIB and AQPS8 were relatively higher in tumors
compared with adjacent NM. However, GUCA2B
has the opposite finding (Figure 5C).

MIiRNA-transcription factor-target gene regula-
tory network

miRNAs are non-coding RNAs that regulate the
expression of TGs and play a role in the occur-
rence and development of cancers [34]. miR-
NAs have a strong potential for use as oncologi-
cal biomarkers for CRC. Direct non-invasive
detection of circulating miRNAs would provide
information for the diagnosis, prognosis, and
predictive treatment responses in CRC patients
[35]. Therefore, we used miRNet 2.0 to plot the
MiRNA-TF-TG regulatory network (Figure 6).
SPIB was connected with GUCA2B by miR-27a-
3p, and GUCA2B was connected with AQPS8 by
miR-182-5p. The evidence suggests that miR-
27a-3p and miR-182-5p may mediate the
co-regulatory network of SPIB, GUCA2B, and
AQPS8.

Tumor microenvironment

We used the TIMER 2.0 web tool to assess the
relationship between AQP8, GUCA2B, and SPIB
and the tumor microenvironment; the results
are shown in Figure 7. AQP8 and GUCA2B had
similar association curve patterns with immune
cell quantity. SPIB was found to be significantly
associated with all immune markers, with
tumor purity being negatively associated but
the other immune cells being positively associ-
ated. SPIB and B cells were found to have a
strong positive relationship.

Discussion

Aberrations in tumor suppressor genes play
essential roles in carcinogenesis [6]. In this
study, first, we validated that SPIB, AQPS8, and
GUCA2B were expressed at very low levels in
CRC primary tumor tissues compared with that
in adjacent normal mucosa. Second, we identi-
fied that SPIB, AQP8, and GUCA2B were in the

5280

same co-regulatory network led by SPIB and
mutually co-regulated in vitro at both mRNA
and protein levels. Third, SPIB, AQPS8, and
GUCA2B were strong and independent genetic
predictors for CRC identification, with consider-
able prediction efficacies AUCs close to 1. They
all outperformed the well-known genetic bio-
markers for early CRC included in this study.
Fourth, SPIB, AQP8, and GUCA2B were associ-
ated with tumor microenvironment. Finally, the
co-regulation of SPIB, AQP8, and GUCA2B may
be moderated by miR-27a-3p and miR-182-5p.
Taken together, in the tumorigenesis of CRC, we
assumed that SPIB dysregulation resulted in
complex interactions of transcription factors in
mediating cytokine biology in T cells and tran-
scription factor DNA binding dysregulation [36],
which then cascaded into dysregulation of gua-
nylin, and intestinal infectious diseases (relat-
ed to GUCA2B) [12] and the balance of water
channel activity (related to AQPS8) in intestines.

AQP8, GUCA2B and SPIB were frequently co-
expressed in the gene expression analysis of
CRC and normal mucosa [5, 15, 16, 37]. The
single-cell sequencing profile supported our
assumed co-regulatory network of AQPS,
GUCA2B, and SPIB. AQP8, GUCA2B, and SPIB
were identified as significant genes for CRC
identification by Zhang et al. [38]. Their findings
of dysregulated pathways were enriched on cel-
lular response to zinc ion, response to zinc ion,
cellular response to cadmium ion, and diges-
tion biological processes for down regulated
transcripts in CRC epithelial cells. These were
epithelial cell-specific functions that were dis-
rupted in tumor tissues. These findings corrob-
orated our findings on AQP8-protein networks
involved in water channel activity. Furthermore,
dysregulation of the receptor guanylyl cyclase
signaling pathway (GUCA2B-protein networks)
would result in intestine barrier breakdown,
genomic instability, and abnormal metabolism
[12].

The immune system’s adaptive and innate
arms can clearly work together to boost the
anti-tumor response. Many studies had under-
pin the potential of harnessing the innate
immune system and local immunological micro-
environment to treat colorectal cancer [39].
SPIB was found to be significantly associated
with tumor immune infiltration and immune
checkpoint genes in over 35 tumors. In most
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nification x200); immunohistochemical (IHC) analysis of AQP8 (d), GUCA2B (e), and SPIB (f) in non-neoplastic colon
tissue; and IHC analysis of AQP8 (g), GUCA2B (h), and SPIB (i) in colonic adenocarcinoma tissue (original magnifica-
tion x400). B. Relative mRNA expression levels of the genetic predictors in the clinical samples of colorectal cancer
(T) and paired adjacent normal mucosa (N). AQP8, GUCA2B, and SPIB are suppressed in the tumor tissues. S65-69
is the ID number of the tissue samples. *** P < 0.001 using a signed test. C. The western plot of two paired fresh
tissues from two patients of adjacent normal mucosa and tumors.

tumors, SPIB was found to be inversely related and B-cell receptor signaling pathways [40].
to tumor mutational burden and microsatellite Furthermore, SPIB is a member of the erythro-
instability. SPIB may be involved in NF-kappa B blast transformation-specific transcription fac-
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tor family. It is a candidate master regulator of
the differentiation of intestinal microfold cells,
which initiate mucosal immune responses
through the uptake and transcytosis of luminal
antigens [41]. SPIB is also a tumor suppressor
in CRC cells through the NF-kB and JNK signal-
ing pathways. In CRC, it inhibits cell prolifera-
tion, motility, and invasion, prevents angiogen-
esis, induces cell cycle arrest in the G2/M
phase, and promotes cell apoptosis [42]. A
number of AQP isoforms were found upregulat-
ed in inflammatory conditions and are consid-
ered essential for the migration and survival of
immune cells. The downregulation of AQP3 and
AQP8 was accompanied by an increase in intes-
tinal inflammation and injury, suggesting that
both AQP3 and AQP8 may be involved in the
pathogenesis of inflammatory bowel disease
[43, 44]. A model of 5-fluorouracil (5-FU)-
induced diarrhea in mice showed increased
pro-inflammatory cytokines (TNF-«, IL-183, IL-6,
IL-17A and IL-22) correlating with decreased
AQP4 and AQP8 mRNA throughout the entire
colon compared to control mice [45]. MiRNAs
are non-coding RNAs that regulate the expres-
sion of target genes and play a role in the occur-
rence and development of cancers. The inte-
grated analysis of miRNA and mRNA has facili-
tated the identification of potential biomarkers
of CRC [34]. In addition, miRNAs are notable
diagnostic biomarkers and therapeutic targets
[46-53] that can be detected in blood [52, 54,
55] and are regulated by microRNA sponges,
such as circular RNAs [56]. Moreover, a panel
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combining serum CA19-9 and peripheral blood
mononuclear cells miR-27a-3p level could have
considerable clinical value in diagnosing pan-
creatic cancer [55]; miR-182-5p and miR-375-
3p in blood plasma are better than prostate-
specific antigens for discriminating prostate
cancer from benign prostate hyperplasia [57].

MiR-27a-3p [51, 53, 56, 58-64] and miR-182-
5p [48, 52, 54, 57, 65-76] have been studied
extensively in cancers this decade. MiR-27a-3p
was associated with the oncogenesis or pro-
gression of gastric, cervical, breast, non-small
cell lung, and esophageal cancers. In terms of
CRC, miR-27a-3p is a diagnostic, prognostic,
and potential therapeutic biomarker [51, 64].
MiR-182-5p can discriminate prostate cancer
[57], increase tamoxifen sensitivity in breast
cancer [65], and promote glioblastoma angio-
genesis [54, 77]. In CRC, miR-182-5p mediates
cell proliferation, migration, and invasion via
the Tiam1/Racl/p38 MAPK axis [66], inhibits
proliferation and metastasis by targeting MTDH
[78], accelerates CRC progression via E2F4-
induced AGAP2-AS1 expression upregulation
[59], and inhibits tumorigenesis, angiogenesis,
and lymphangiogenesis by directly downregu-
lating VEGF-C expression [71]. Furthermore,
miR-27a-3p has been found to promote immune
evasion in breast cancer by increasing the
expression of PD-L1, a protein associated with
immune checkpoint inhibition. In the case of
lung adenocarcinoma and obesity, miR-27a-3p
has been shown to inhibit ICOS(+) T cell prolif-
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eration and interferon-gamma secretion, which
could explain why immunotherapy is more
effective in obese patients [62, 79]. This finding
highlights the role of miR-27a-3p in immune
response modulation and shed light on poten-
tial therapeutic targets for cancer treatment.

GUCAZ2B is a physiological regulator of intesti-
nal fluid and electrolyte transport. It is a secret-
ed protein specific to colon tissues and plays a
role as a tumor suppressor gene in CRC [80]
in blood and urine [81]. Guanylate cyclase acti-
vator 2A (GUCA2A) and GUCA2B are endoge-
nous hormones that bind to and activate the
transmembrane receptor GUCY2C to mediate
and orchestrate intestinal homeostatic mecha-
nisms [13]. Therefore, GUCA2B is a new para-
digm for CRC prevention via hormone replace-
ment therapy involving synthetic hormone ana-
logs [13]. However, in this study, the protein
expression patterns of GUA2B in fresh tissues
were found heterogeneous in the study, contra-
dicting to low expression in tumor tissues. It
suggests that GUCA2B may have multiple roles
in different parts of the intestine and at differ-
ent stages of cancer.

AQPS8 is a water channel transporter expressed
primarily at the apical surface of enterocytes
facing the lumen of the normal colonic mucosa
[82]. It is a marker of normal proliferating colon-
ic epithelial cells [83]. It is mainly expressed in
paraneoplastic normal tissues and is barely
expressed in colorectal carcinoma cells [84].
Its downregulation serves as an early driver of
CRC tumorigenesis and persists until tumor for-
mation [82, 84]. AQPS8 restrains CRC cell prolif-
eration, migration, and invasion capacities [11]
by downregulating PI3K/AKT signaling [10].

The divergence between mRNA and protein
expression is a notable observation, signifying
that the coordinated control of AQP8, GUCA2B,
and SPIB is governed by complex factors. In the
context of cancer, this disparity is a multifacet-
ed phenomenon shaped by various factors
including post-transcriptional processes, trans-
lation machinery alterations, and protein
degradation disruptions. N6-methyladenosine
(m6BA) modification, driven by METTL3, boosts
MRNA translation and has oncogenic impli-
cations, potentially contributing to the mRNA-
protein disparity [85]. Dysregulation of m6A
modification, particularly in the 3’ untranslated
region, is linked to cancer. Abnormal expres-
sion of translation factors like elF4A and RNA
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helicases can also affect protein synthesis,
impacting the mRNA-protein relationship [86].
Dysfunctions in protein degradation pathways,
including proteasome and autophagy, play
roles in cancer and can worsen the disparity
[871]. Further research is essential to fully grasp
this phenomenon’s mechanisms and its impli-
cations for cancer. Interestingly, genes with dif-
ferentially expressed mRNA in an ovarian can-
cer xenograft model exhibit stronger correla-
tions between mRNA and protein levels, under-
lining the biological significance of mMRNA
changes [88].

There are some limitations in this study, the
gene expression of AQP8, GUCA2B and SPIB
were extremely low and barely detected that
make gene knock-down of target genes experi-
ments hard to operate. In future work, knock-
out experiments are demanded to get gain
more evidence. The relatively modest clinical
sample size may limit the generalizability of our
findings to broader CRC patients. We discov-
ered the inconsistent mMRNA and protein expres-
sion patterns among target genes inconsisten-
cy that may implicate valuable regulation infor-
mation. More patients’ samples were essential
to figure out the co-regulatory pattern of three
genes. However, due to abovementioned limita-
tions, we did the best to validate our hypothesis
with multiple public datasets, analysis meth-
ods and in vitro experiments.

Conclusion

SPIB, AQP8, and GUCA2B are powerful and
independent predictors of early CRC detection.
They have been shown to function in a co-regu-
latory network. The major functions were tran-
scription regulation, water channel balance,
guanylin regulation, and intestinal infectious
diseases. MiR-27a-3p and miR-182-5p are two
possible mediators. The mechanisms of SPIB,
AQP8, GUCA2B, miR-182-5p, and miR-27a-3p
in CRC merit further investigation.
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Table S1. Genetic predictors of colorectal cancer and normal mucosa classification in univariable and
multivariable logistic regression models using the COADREAD dataset

G Model 1 Model 2  Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model 10
ene OR OR OR OR OR OR OR OR OR OR

AQP8 0.37 *** 036 *** 041 *** 0.36 *** 0.38 *** 037 *** (031 *** (037 *** (036 *** 029 ***
GUCA2B 0.20 *** 0.20 *** 0.24 *** (019 *** (020 *** 018 *** (0.03 * 020 *** 016 *** (0.08 ***
SPIB 0.14 *x% 044 *x% 012 *xx (012 **x (13 *¥* (011 *¥x (13 **¥* (010 *¥* (012 *¥*k (013 Fx¥

Model 1 is univariable logistic regression. Models 2-10 are multivariable logistic regression models under the control of one covariate (2. tumor primary site [colon/rec-
tum], 3. radiation therapy [yes, no], 4. gender, 5. MSI [MSS/MSI], 6. lymphatic invasion [yes/no], 7. pathological M stage [0 and 1], 8. pathological N stage [0, 1, and 2],
9. pathological T stage [1, 2, 3, and 4] or 10. pathological stage [1, 2, 3, and 4]) in each model. ***P < 0.001 and *P < 0.05.

Table S2. Multivariable Cox proportional hazard regression of the genetic predictors of relapse-free
survival and overall survival

RFS (n = 380) 0S (n = 380)
Gene
HR HR P
AQPS8? 0.91 * 0.97 0.43
GUCA2B? 0.87 * 0.94 0.32
SPIB® 0.93 0.32 0.85 *

aUnder the adjustment of pathological M stage. "Under the adjustment of presurgical therapy. RFS: relapse-free survival; 0S:
overall survival; *P < 0.05.



