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Abstract: Head and neck squamous cell carcinoma (HNSCC) are a prevalent malignancy with high mortality and 
morbidity rates. Therefore, in this study, we aimed to develop a novel risk score model by using a DNA meth-
ylation signature associated with ferroptosis to enhance the prognosis prediction of HNSCC. The transcriptome, 
methylome, and clinical data of HNSCC patients were collected from The Cancer Genome Atlas (TCGA) database. 
Additionally, data from a methylation dataset in the Gene Expression Omnibus (GEO) database were used for valida-
tion. The ferroptosis score (FS) in each patient was calculated using the transcriptome data, and the single-sample 
gene set enrichment analysis (ssGSEA) was performed to assess ferroptosis activity. Furthermore, a series of bio-
chemical experiments including CCK8, colony formation, wound healing, and ROS detection were carried out to 
evaluate the influence of MTDH on the malignancy of HNSCC. Our results revealed that the FS was associated with 
patient prognosis, as the patients with high FS had a poor prognosis. The receiver operating characteristic (ROC) 
curve established based on the ferroptosis-associated DNA methylation signature, demonstrated the excellent pre-
dictive power of FS for the 1-, 3-, and 5-year survival of HNSCC. Importantly, this predictive model was successfully 
validated in the GEO dataset. The nomogram also demonstrated excellent accuracy and reliability, as determined by 
the calibration curves and the decision curve analysis (DCA) plot. Interestingly, the risk score model was found to be 
correlated with immune cell infiltration and immunotherapy-related biomarkers, suggesting its potential in predict-
ing the immunotherapy response in HNSCC treatment. Moreover, we found that the expression of two risk score 
model component genes, SETD1B and MTDH, was significantly different between tumor and the adjacent tissues in 
patients with LSCC, which was also significantly correlated with patient prognosis. Further experimental validation 
showed that the upregulated expression of MTDH significantly inhibited ferroptosis through regulating GPX4 expres-
sion and enhanced the cytotoxicity of ferroptosis inducers in HNSCC cells. In conclusion, we have developed a risk 
score model by using a ferroptosis-related DNA methylation signature, which can be used as an alternative tool to 
predict the prognosis of patients with HNSCC. SETD1B and MTDH were identified as the pivotal genes in this model 
and might play important role in the progression of HNSCC.
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Introduction

As one of the most common malignancies 
worldwide, head and neck squamous cell carci-
noma (HNSCC) is characterized by the signifi-

cantly high mortality and morbidity rate [1]. 
Approximately 890,000 new cases of HNSCC 
are diagnosed worldwide each year, along with 
450,000 deaths reported by 2018 Global 
Cancer Report [2]. Despite the remarkable 
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efforts and progress over the past few decades 
in HNSCC management, the 5-year survival is 
still not significantly improved largely due to the 
locoregional recurrence [3, 4]. Hence, under-
standing the molecular mechanisms underlying 
the development of HNSCC to facilitate the 
early detection and diagnosis of HNSCC are 
vital to improve the prognosis and optimize the 
quality of life of HNSCC patients. 

Programmed cell death (PCD) plays an impor-
tant role in cell metabolism and tissue homeo-
stasis [5], while the abnormal regulation of  
PCD is tightly linked to cancer development and 
progression [6, 7]. There are several forms of 
PCD, including apoptosis, autophagy, necrosis, 
pyroptosis, and ferroptosis. Among them, apop-
tosis is the best studied form of PCD, which is 
essential to maintain tissue homeostasis and 
to remove potentially harmful cells [8]. On the 
other hand, autophagy is a dynamic process 
that triggers self-digestion of damaged organ-
elles and misfolded proteins in normal and 
tumor cells. As a result, autophagy plays a dual 
role in facilitating cellular adaptation to various 
stresses and inducing cell death during protein 
and organelle transformation [9, 10]. As for 
necrosis, it can be induced by acute injury and 
is characterized by cell swelling and the loss of 
cellular integrity [11]. Pyroptosis, a newly dis-
covered non-apoptotic form of PCD, is closely 
related to the inflammatory response, which is 
mainly triggered by inflammatory vesicles and 
executed by the caspase and gasdermin pro-
tein families [12-14]. Notably, ferroptosis is a 
type of iron-dependent PCD discovered in 2012 
and is induced by iron accumulation and lipid 
peroxidation [15]. Since then, many studies 
have demonstrated that ferroptosis-related 
genes are abnormally expressed in a variety of 
tumor types and could serve as potential thera-
peutic targets for cancer treatment [16, 17]. 

Emerging studies have indicated the regulatory 
role of DNA methylation, one type of epigenetic 
modification in gene transcription, in a variety 
of cellular processes [18], and the aberrant 
DNA methylation contributes to cancer patho-
genesis [19, 20]. Especially, the hyper-methyla-
tion of tumor suppressor genes can cause epi-
genetic inactivation which exerts a crucial role 
in tumorigenesis [21]. Nonetheless, there also 
exists some rare DNA hypermethylation that 
leads to gene activation, although the underly-
ing molecular mechanism remains unclear [22, 

23]. Currently, DNA methylation information 
has diagnostic, predictive, and prognostic value 
for a diversity of cancers such as lung and 
breast cancers because of its stability and 
accuracy [24]. Importantly, accumulating evi-
dence has suggested that DNA methylation 
regulates the expression of ferroptosis-related 
genes including GPX4 and SLC7A11 [25, 26] 
and that the signature constructed by ferropto-
sis related gene methylation may serve as a 
biomarker to predict the prognosis and guide 
the therapy options of HNSCC. In our previous 
study, we have investigated the interplay 
between m6A RNA methylation and MTDH, 
unraveling the potential mechanisms underly-
ing immune therapy resistance [27]. Hence, in 
this study, we further delve into the pivotal role 
of MTDH in sensitizing ferroptosis inducers. 
Based on the expression of ferroptosis-associ-
ated genes, we calculated the ferroptosis score 
(FS) and divided HNSCC patients into the high 
or low FS group. Differentially methylated CpG 
sites (DMCs) between these two groups were 
further defined, and the DNA methylation relat-
ed risk score was established to predict the 
prognosis of HNSCC patients. Moreover, we 
investigated the oncogenic role of MTDH and 
the significance of MTDH as a marker of ferrop-
tosis inducers (Figure 1). Our results suggest 
that the DNA methylation related risk score is 
reliable and robust in predicting patient pro- 
gnosis and providing the treatment guidance 
for HNSCC patients. MTDH may serve as a  
biomarker for the application of ferroptosis 
inducers.

Methods

Patients

This study retrospectively analyzed 36 cases. 
These patients were pathologically diagnosed 
with LSCC from July 2016 to August 2017 and 
underwent laryngectomy at the Head and Neck 
Nasopharyngeal Surgery Department of the 
Tumor Hospital of Harbin Medical University. It 
was reviewed and approved by the ethics com-
mittees of the two institutions and was carried 
out in accordance with the principles of the 
Declaration of Helsinki and its amendments. All 
participants provided informed consent to par-
ticipate in the study. A total of 36 patients 
enrolled in the study underwent in-hospital 
case review and telephone follow-up until June 
2022.
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Clinical sample and data collection

We downloaded gene expression quantification 
data (FPKM and counts format) for HNSCC from 

TCGA (https://portal.gdc.cancer.gov/) and clini-
cal data from the UCSC Xena website (https://
xena.ucsc.edu/). Then 502 HNSCC samples 
and 44 normal samples were identified. We 

Figure 1. The flowchart of our study showing the detailed process of the research.
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also normalized the expression level of genes 
and DNA methylation level using “preprocess-
Core” R package. In 90% of HNSCC patients, 
genes whose expression was “0” were removed. 
From the NCBI Gene Expression Omnibus (GEO) 
database, an additional dataset containing 
methylation data of 50 OSCC patients was 
obtained (GSE52793). 

Calculation of FS

Ferroptosis associated genes including 111 
markers, 108 drivers and 69 suppressors were 
identified in the FerrDb database [28]. The pos-
itive and negative relationships of gene expres-
sion with overall survival in HNSCC were con-
firmed by univariate Cox survival analysis using 
the stepwise method. In the “GSVA” package, 
the enrichment score for genes whose expres-
sion was positively and negatively correlated 
with survival from HNSCC was calculated with 
ssGSEA [29]. Specifically, we defined 44 ferrop-
tosis genes that were significant for univariate 
COX analysis as the gene set used for ssGSEA 
analysis. Next, we used the “ssGSEA Score” 
function in the “GSVA” package to calculate the 
ssGSEA enrichment score and adjusted it to 
obtain the FS score of the patient. The FS in a 
patient was defined as expression difference 
between positive and negative components 
which followed the method of inferring sample 
FS referred by Liu et al. [30]. Patients with high 
FS tend to show low ferroptosis activity. 

Construction and evaluation based on ferrop-
tosis-related DNA methylation signature

We determined DMCs between high and low FS 
group using the “limma” package and identified 
ferroptosis-related methylation sites associat-
ed with HNSCC survival using LASSO Cox 
regression analysis with the “glmnet” package. 
Then ferroptosis-related DNA methylation 
(FRDM) signature was constructed using multi-
variate Cox proportional hazards model. A time-
dependent ROC curve analysis was performed 
to determine the cutoff value for FRDM signa-
tures using the “plotROC” package [31]. The 
area under the ROC curve (AUC) was also iden-
tified using the “survivalROC” package. Based 
on the cutoff value, we divided patients into 
high-risk group and low-risk group. Kaplan-
Meier survival curve was drawn to assess the 
overall survival difference between two groups 
using the log-rank test. 

Construction and evaluation of nomograms

A nomogram was established combining the 
clinicopathological factors in the TCGA dataset 
with the FRDM signature. Using a calibration 
chart, we assessed the nomogram’s accuracy. 
A decision curve analysis was then performed 
to compare FRSM signature risk score with clin-
icopathological characteristics. 

Estimation of immune infiltration

The absolute abundance scores of 8 immune 
cells and 2 stromal cells were assessed using 
the “microenvironment cell population count 
(MCP-counter)” method [32]. A comparison of 
samples using the MCP-counter algorithm 
shows good results when assessing immune 
cell infiltration [33]. CIBERSORT was utilized to 
estimate the relative proportion of 22 infiltrat-
ing immune cells in each supplement sample. 
In addition, we examined the relationship 
between FRSM signature and molecules relat-
ed to immunotherapy response using the 
“ggstatsplot” package.

Gene set enrichment analysis

Gene set enrichment analysis was conducted 
between high and low risk groups using GSEA 
software (version 4.0.1). The significantly 
enriched subset of KEGG canonical pathways 
and HALLMARK gene sets were identified 
based on GSEA. 

Cell culture

Precancerous cells of human oral mucosa 
(Dok) and a collection of head and neck squa-
mous carcinoma cells (Tca8113, HN8, and 
Cal27) were purchased from the Cell Bank of 
the Chinese Academy of Science (Shanghai, 
China). Squamous cell carcinoma of the human 
larynx (JHU011) came from Johns Hopkins 
Head and Neck Cancer Research Center 
(Baltimore, Maryland, USA). Other head and 
neck squamous cell carcinoma cell lines (FaDu, 
SCC4, and SAS) came from (Rockefeller, 
Maryland, USA). HEK293T was purchased from 
ATCC (CRL-3216). Cells were cultured in the 
DMEM (FaDu, HN8, Cal27 and HEK293T), RPMI 
1640 (Dok, Tca8113, and JHU011 cells), or 
DMEM/F12 medium (Tu686 and SAS) (Gibco, 
USA) supplemented with 10% fetal bovine 
serum (Gibco and Inner Mongolia Opcel Bio- 
technology Co., Ltd.), penicillin G (100 U/ml, 
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Beyotime, China), streptomycin (100 µg/ml, 
Corning, China) in a humidifed incubator with 
5% CO2, at 37°C. All cell lines were tested and 
confirmed to be free of mycoplasma.

Western blotting analysis

Whole-cell protein extracted from those cells 
were lysed with a RIPA bufer (Beyotime, Wuhan, 
China) containing protease inhibitor mix (GE 
Healthcare, Piscataway, USA) and phosphatase 
inhibitor cocktail (Termo, Rockford, IL, USA). 
And proteins were quantifed using a BCA pro-
tein assay kit (Beyotime, Wuhan, China) accord-
ing to the manufacturer’s instructions. Equal 
amounts of cell lysate were electrophoresed in 
SDS-PAGE (10%) and transferred to PVDF mem-
branes. After blocking with 5% skimmed milk in 
TBST at room temperature for 1 h, the mem-
branes were incubated overnight at 4°C with 
primary antibodies against SETD1B (1:1000, 
Proteintech, 55005-1-AP), MTDH (1:1000, 
Proteintech, 13860-1-AP), and β-Actin (1:1000, 
Cell Signaling Technology, 3700S), Vinculin 
(1:20000, Abcam, ab129002), FSP1 (1:2000, 
Abclonal, A22278), SLC7A111 (1:1000, Ab- 
cam, ab307601), DHODH (1:1000, Abcam, 
ab174288), GPX4 (1:2000, Abcam, ab125066). 
After washing with TBST, the membranes were 
incubated with a secondary antibody (1:3000, 
Cell Signaling Technology, USA) for 1 h at room 
temperature. Finally, an ECL detection system 
was used to detect targeted protein bands. 
β-Actin was used as internal controls for west-
ern blotting.

Immunohistochemistry

The expressions of SET Domain Containing 1B 
(SETD1B) and Metadherin (MTDH) on the laryn-
geal cancer tissue were performed by immuno-
histochemistry (IHC) staining. Tissue sections 
were incubated with a primary antibody against 
SETD1B (1:100, Proteintech) or MTDH (1:400, 
Proteintech) at 4°C overnight and then incubat-
ed with reaction booster fluid at room tempera-
ture for 20 min, horseradish peroxidase com-
bined with goat anti-mouse/rabbit antibody 
(PV-9000, ZSGB) at room temperature for 20 
min. Tissue sections were stained using DAB 
and counterstained with hematoxylin. The 
results of the experiment were analyzed by two 
doctors and two pathologists. The rules are as 
follows: 7, about 50% of tumor cells are strongly 
stained; 6, about 50% of tumor cells are weakly 
stained; 5, about 25% of tumor cells are strong-

ly stained; and 4, about 25% of tumor cells 
showed weak staining; 3, 5-25% of tumor cells 
showed strong staining; 2, about 5-25% of 
tumor cells showed weak staining; 1, < 1% of 
tumor cells showed low or no staining; 0, no 
staining was detected in the tumor cells (0%). 
Samples with a staining score of 0-2 were con-
sidered low expression, while samples with a 
score of 3-7 were considered high expression.

Lentiviral-mediated sgRNA transduction

HNSCC cell lines Fadu and HN8 were ei- 
ther transfected with LentiCRISPR-sgNC and 
LentiCRISPR-sgMTDH using viral transduction 
using lentiviral particles of LentiCRISPR-sgNC 
and LentiCRISPR-sgMTDH produced in HEK- 
293T cells by FuGENE 6 Tranfection Reagent 
(Promega) and lentiviral packaging plasmid 
psPAX2 (Addgene, 12260) and VSV-G envelope 
expressing plasmid pMD2.G (Addgene, 12259). 
Stable cell lines were established post-puromy-
cin selection and were subject to cellular 
assays and western blot analysis. The se- 
quence targeting MTDH is: 5’-AGAAGCCCA- 
AACCAAATGGG-3’ and 5’-TGCGGTTGTAAGTT- 
GCTCGG-3’. All sgRNAs were purchased from 
Tsingke. All constructs were confirmed by 
sequencing.

Cell viability assay

Cells were seeded in 96-well plates and treated 
with the drugs at the appropriate time the next 
day. The medium with the drugs was then 
removed and replaced with fresh serum-free 
medium containing 10% Cell Counting Kit-8 
(CCK8) reagent (Beyotime Biotechnology, 
C0038) for each well of the plate. After incuba-
tion for two hours at 37 degrees, the plates was 
analyzed using an ELISA reader (Biotek Synergy 
H4) and the absorbance of the plates was mea-
sured. Absorbance at 450 nm is proportional to 
the number of living cells in the culture. The 
reagents used in this assay, RSL3 (S8155), 
Erastin (S7242), Ferrostatin-1 (Fer-1) (S7243), 
Z-VAD-FMK (S7023) and 3-MA (S2767) were 
obtained from Selleck.

Lipid peroxidation assay

Lipid ROS level was analyzed by flow cytometry 
using BODIPY-C11 dye. Cells were seeded at a 
density of 20%-30% density in six-well plates 
and grown overnight. Cells were treated with 
the drugs for 12 h. The culture medium was 
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replaced with 2 ml medium containing 5 μM of 
BODIPY 581/591 C11 (Thermo Fisher, D3861), 
and cells were returned to the cell culture incu-
bator for 20 min. The cells were then washed 
twice with 1 mL 1× PBS, digested with trypsin 
to obtain cell pellets, and suspended with 500 
μL PBS. The cell suspension was subjected to 
the flow cytometry analysis to examine the 
amount of lipid ROS within cells. Oxidation of 
BODIPY-C11 resulted in a shift of the fluores-
cence emission peak from 590 nm to 510 nm 
proportional to lipid ROS generation. The fluo-
rescence intensities of cells per sample were 
determined by flow cytometry using the BD 
FACS Aria cytometer (BD Biosciences). A mini-
mum of 10,000 cells was analyzed per 
condition. 

Statistical analysis

R (version 4.0.3) was used for all statistical 
analyses conducted in this study. P < 0.05 is 
considered as statistical significance. 

Results

FS calculation based on the transcriptome 
data of HNSCC patients

Ferroptosis-associated genes were screened 
from the FerrDb database to evaluate the fer-
roptosis activity in HNSCC. The differential 
expression of ferroptosis related genes be- 
tween normal and tumor tissues was present-
ed in Figure 2A. Forest map showed that 44 
ferroptosis related genes were identified by Cox 
proportional hazard regression using the step-
wise method, among which 22 genes were pos-
itively or negatively correlated with survival 
(Figure 2B). Through ssGSEA analysis based on 
the above two gene sets, we determined the 
FSs of HNSCC patients as an indicator of fer-
roptosis activity. Then, HNSCC patients were 
divided into two groups according to the medi-
an FS, and the Kaplan-Meier (K-M) survival 
analysis was performed in the high and low FS 
groups. The K-M survival curve showed that 
patients in the high FS group had a longer over-
all survival (OS) compared with those in the low 
FS group (Figure 2C). 

Construction of ferroptosis-related DNA meth-
ylation signature

A total of 20,381 DMCs between HNSCC 
patients and normal controls were identified 

when P < 0.01 and methylation difference > 
0.2. We further identified 1248 DMCs between 
the high and low FS groups when adjusted 
methylation difference > 0.1 and P < 0.01. 
Finally, 378 DMCs were identified between 
HNSCC patients and normal controls or 
between the high and low FS groups, which 
were incorporated into the LASSO Cox regres-
sion model to screen the DMC that were strong-
ly correlated with HNSCC survival to construct 
ferroptosis-related DNA methylation signature. 
Then, 16 CpGs with a coefficient value of not 0 
were chosen and integrated into multivariate 
Cox model. Finally, an FRDM signature was 
established according to the coefficient value 
and the methylation level of each CpG site  
in multivariate Cox model. Furthermore, we 
explored the impact of CpG sites on the survival 
of HNSCC patients. The K-M curves for HNSCC 
patients with either a high or a low percentage 
of DNA methylation were presented in Figure 
S1A-I. 

Assessment of risk model for predicting the 
survival of HNSCC patients

To better evaluate the predictive performance 
of the FRDM risk score model, we calculated 
the risk score for each HNSCC patient and then 
divided the patients into the high and low risk 
groups based on the median score (Figure 3F). 
We found that the risk score model was an 
independent risk factor for the prognosis of 
HNSCC patients. The AUC value of risk score 
and the clinicopathological factors was depict-
ed in Figure 3A, showing the superior predictiv-
ity of this risk score model, while Figure 3B 
demonstrated the ROC curve of the risk score 
with the cut off value of 1.640. We further per-
formed univariate and multivariate Cox propor-
tional analyses to explore the relationship of 
the risk score model with other clinical factors 
and found that tumor metastasis and risk score 
were independent factors for HNSCC prognosis 
(Figure 3C and 3D). Moreover, a K-M survival 
analysis revealed that patients in the high risk 
group had poor survival compared with those in 
the low risk group (Figure 3E), and the distribu-
tion of death increased with the increase of risk 
score (Figure 3G). 

Construction and evaluation of nomograms

To improve the degree of predictive accuracy, 
we incorporated the risk score with other clini-
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cal characteristics and constructed a new 
nomogram prediction map based on multivari-
ate Cox proportional analysis (Figure S2A). This 
nomogram can be easily employed to deter-
mine the probability of 1-, 3-, and 5 year- OS by 
calculating the total score for each patient. The 
prediction calibration curve showed that four 
calibration points in 1, 3, 5 and 10 years were 
close to the standard curve, indicating the 
accurate predictivity of our risk score model 
(Figure S2B). DCA was also applied to assess 
the reliability of the model and showed that the 
risk score model curve was dramatically higher 
than the limit curve and clinical characteristics 
(Figure S2C). Importantly, we validated the pre-
dictive ability of the risk score model in a sepa-

rate cohort, GSE52793. As shown in the K-M 
survival curve, patients with a high risk score 
had a shorter OS than those with a low risk 
score (Figure S2D). Consistently, the AUC value 
of the risk score model for 1-5 years’ OS in 
GSE52793 cohort was significantly high, con-
firming the accurate predictive power of this 
model (Figure S2E and S2F). 

The correlation between immune cell infiltra-
tion and the risk score model

CIBERSORT algorithm was applied to further 
calculate the relative proportion of 22 infiltrat-
ing immune cells in each sample. As shown in 
Figure 4A, there was a significant difference in 

Figure 2. Correlations between FS and HNSCC overall survival. A. The expression of ferroptosis related genes be-
tween normal and tumor tissues. B. Forest map showing 44 ferroptosis related genes identified by Cox proportional 
hazard regression using the stepwise method. C. Kaplan-Meier survival curve of HNSCC with high and low FS group. 
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the relative proportions of CD8 T cells, CD4 
memory activated T cells, Tregs, naïve B cells, 
and plasma cells between the high and low risk 
groups. We also used the MCP counter method 
to investigate the abundance of 8 types of 
immune cells as well as 2 types of stromal cells 
(Figure 4C) and found that patients with a low 
risk score had a higher infiltration level of B 

cells, CD8 T cells, dendritic cells, and T cells 
than those with a high risk score. In addition, 
the correlation between the infiltration level of 
immune related cells and the risk score was 
investigated (Figure 4D), and the results sug-
gested that the immune infiltration level was 
negatively associated with the risk score. We 
further compared the survival of HNSCC 

Figure 3. Correlations between ferroptosis-related DNA methylation signature and HNSCC overall survival in TCGA 
cohort. A. The AUC value of risk score and clinicopathological factors. B. The ROC curve of risk score with the cut 
off value of 1.640. C, D. Relationship of risk score with HNSCC survival using univariate and multivariate Cox pro-
portional hazards model. E. Kaplan-Meier survival curve of HNSCC with high and low risk group. F, G. Risk score 
distribution and survival status in high and low risk group. 
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patients between the high and low percentage 
of various immune cell types, as shown in 
Figure S3A-E. Since it has been reported that 
the deficiency of mismatch repair system can 
help detect patients who are more likely to 
respond to immunotherapy [34], we also 
explored the relationship between the risk 
score and the mismatch repair proteins includ-
ing MSH2, MSH6, MLH1 and PMS2 (Figure 4B). 
Although no statistical significance was detect-
ed, there was a trend of a positive correlation 
between mismatch repair protein and the risk 
score. 

Assessment of response to immunotherapy in 
the high and low risk groups 

As the application of immune checkpoint inhibi-
tors (ICIs) has dramatically changed the land-

scape of HNSCC treatment [35], we assessed 
the relationship of the risk score with immuno-
therapy and immune checkpoints expression in 
the high and low risk groups (Figure 5A). 
Compared to the low risk group, the expression 
of PDCD1LG2 was significantly higher in the 
high risk group (P=0.0081), suggesting a better 
clinical outcome with ICIs in the high risk popu-
lation. In addition, HNSCC patients with a high 
risk score tend to express higher levels of 
CD274 and PDCD1LG2 while lower levels of 
PDCD1, CTLA4, LAG3, and HAVCR2 than those 
with a low risk score (Figure 5B). Furthermore, 
the expression of HLA-F, HLA-B, HLA-H, HLA-A, 
HLA-J, HLA-C and HLA-E was significantly down-
regulated in the low risk group (Figure 5C). 
Since immune escape is a hallmark of cancer 
which could be facilitated by the loss of human 
leukocyte antigen (HLA) [36], we speculated 

Figure 4. Correlation between risk score and immune cell infiltration. A. Radar chart of the relationship between 22 
immune cell infiltration and high and low risk group. B. The relationship of mismatch repair protein including MSH2, 
MSH6, MLH1 and PMS2 with high and low risk group. C. The infiltration level of 8 immune cells and 2 stromal cells 
populations in high and low risk group using Wilcoxon rank-sum test. D. The relationship between infiltration level of 
immune cells and stromal cells and risk score using spearman’s correlation. Area of the fan represents the degree 
of correlation in which a positive correlation is represented by red and a negative correlation is represented by blue. 
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that patients in the low risk group will exhibit 
immune evasion and ICIs insensitivity. To sup-
port this, we analyzed the K-M survival curve 
for HNSCC patients with high and low levels of 
immune checkpoints, mismatch repair protein, 

and HLA molecules (Figure S4). As presented 
by violin plot in Figure 5D, 5F and 5G, the rela-
tive response probability to ICIs was higher in 
the high risk group, suggesting that patients in 
this group was more likely to benefit from ICIs 

Figure 5. The relationship between risk score and immunotherapy. A. The expression of immune checkpoints in high 
and low risk group. B. The relationship between immune checkpoints expression and risk score using spearman’s 
correlation. A positive correlation is represented by red and a negative correlation is represented by blue. C. The ex-
pression of HLA molecules in high and low risk group. D-G. The relative probability to immune checkpoint inhibitors 
and IPS difference between high and low risk group. 
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therapy. Consistently, IPS score, a quantifica-
tion tool for immune checkpoint expression 
[37], was significantly upregulated in the high 
risk group (Figure 5E). Moreover, since tumor 
mutation burden (TMB) can be regarded as  
a strong predictive indicator for anti-tumor 
immune response [38], we calculated TMB and 
detected a significant difference between the 
high and low risk groups (Figure S3F). 

Drug sensitivity and gene set enrichment 
analysis 

To guide the clinical treatment of HNSCC, we 
compared the IC50 value of chemotherapy 
drugs between the high and low risk groups 
and found that patients in the high risk group 
might benefit from Vinblastine, Cetuximab, 
Gemcitabine, Doxorubicin treatment, while 
patients in the low risk group might benefit 
from Paclitaxel, Rapamycin and Bleomycin 
therapy (Figures S5A-H, S6). Sine our risk score 
model was tightly related to the survival, 
immune infiltration and ICIs efficacy in HNSCC 
patients, we conducted functional enrichment 
analysis to reveal the signaling pathways asso-
ciated with risk score. The results showed that 
the high risk group was significantly enriched in 
proteasome, NOD like receptor signaling path-
way, and ECM receptor interaction pathway, 
while the low risk group was enriched in prima-
ry immunodeficiency and intestinal immune 
network for IgA production (Figure S5I). 
Additionally, GSEA was also performed to iden-
tify the biological processes related with the 
risk score model. Seven hallmarks, including 
INTERFERON_ALPHA_RESPONSE, ANGIONEN- 
ESIS, EPITHELIAL_MESENCHYMAL_TRANSITI- 
ON, INTERFERON_GAMMA_RESPONSE, HYP- 
OXIA and APOPTOSIS were correlated with high 
risk scores, indicating that these biological pro-
cesses may contribute to HNSCC progression. 
In contrast, one hallmark, KRAS_SIGNALING_
ON, was correlated with low risk scores, sug-
gesting that it may improve the survival of 
HNSCC patients as a protective factor (Figure 
S5J). 

Experimental validation of the risk score 
model

Since SETD1B and MTDH have been reported 
to be related to iron-induced death and are dif-
ferentially expressed in our analysis, they were 
selected for further experimental validation. 

First, the protein levels of SETD1B and MTDH in 
HNSCC cell lines and immortalized epithelial 
cells DOK were examined by western blot, and 
the results showed that the protein level of 
SETD1B in HNSCC was upregulated in HNSCC 
cells, especially in Tca8113 and JHU011 cells, 
while the expression of MTDH was significantly 
higher in SAS and SCC4 cells than in DOK cells 
(Figure 6A). In addition, we performed immuno-
histochemical staining of SETD1B and MTDH in 
tumor and adjacent normal samples obtained 
from 36 HNSCC patients who were enrolled in 
the study. Consistently, both SETD1B and 
MTDH expression levels were significantly high-
er in tumor samples than in adjacent normal 
samples (Figure 6B, 6C). By further integrating 
patient survival information, we found that the 
patients’ survival time was prolonged with the 
increased SETD1B expression level (P=0.045). 
However, the survival time of patients was 
gradually decreased with the increased MTDH 
expression (P=0.019), which was consistent 
with the online database sample information 
(Figure 6D, 6E). 

Inhibiting MTDH expression reduced the prolif-
eration and ferroptosis of HNSCC cells

To directly investigate the effect of MTDH on 
the phenotype of HNSCC cells, we knocked 
down the expression level of MTDH in Fadu and 
HN8 cells, which was confirmed by western blot 
analysis. Notably, the depletion of MTDH mark-
edly elevated the expression level of GPX4, 
while the effect on other ferroptosis-related 
proteins was less pronounced (Figure 7A). In 
addition, the knockdown of MTDH resulted in a 
substantial reduction in both the colony forma-
tion and the migration of Fadu and HN8 cells 
(Figure 7B-F). Furthermore, since MTDH deple-
tion affected the expression level of GPX4, we 
explored the effect of MTDH depletion on type I 
and type II ferroptosis inducers-induced cell 
death. Compared to the control group, the 
MTDH knockdown group exhibited more tumor 
cell survival. Further cell proliferation examina-
tion by using CCK-8 assay revealed that the 
knockdown of MTDH significantly suppressed 
the RSL3- and erastin-induced cell death in 
HNSCC cells (Figure 8A-D). However, this effect 
was abrogated by ferroptosis inhibitor ferro-
statin-1, but not by apoptosis inhibitor Z-VAD-
FMK and autophagy inhibitor 3-MA (Figure 
8E-H), indicating a ferroptosis-mediated cell 
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death. In consistent with this finding, the fer-
roptosis inducers-induced ROS level was sig-
nificantly higher in MTDH depleted HNSCC cells 
(Figure 8I and 8J).

Discussion

As a new form of cell death, ferroptosis plays an 
important role in cancer development and pro-
gression [39]. Not only novel therapies target-
ing ferroptosis provide new strategies in the 
treatment of cancers including HNSCC [40, 41], 
but also ferroptosis related genes are consid-
ered as promising biomarkers of HNSCC prog-
nosis [42, 43]. Likewise, DNA methylation has 
also been widely investigated and applied in 
predicting the prognosis of various cancer 
types due to its accuracy and stability [44]. 
Notably, ferroptosis activity can be modulated 

by DNA methylation through the regulation of 
corresponding gene transcription [25]. Thus, 
the risk score model based on the methylation 
of ferroptosis related genes could be an effi-
cient predictive indicator in the diagnosis and 
prognosis of HNSCC. 

In our study, we analyzed the methylome, tran-
scriptome and clinical data in TCGA database 
as well as calculated the FS for each HNSCC 
patient based on the expression of ferroptosis 
related genes that were strongly related with 
survival. The K-M curve was further applied to 
determine the relationship of FS with HNSCC 
prognosis. We found that patients with high FS 
had shorter OS than those with low FS (P < 
0.05), suggesting the correlation between FS 
and patient survival. We further identified 
DMCs between the high and low FS group and 

Figure 6. SETD1B and MTDH gene expression levels were associated with clinical outcomes. A. WB was used to 
detect the expression of SETD1B and MTDH protein in DOK of immortalized epithelial cells and HNSCC cell lines. 
B, C. We selected 4 representative immunohistochemical pictures to show the expression of SETD1B and MTDH 
in tissues. D. The Kaplan-Meier curve showed that high SETD1B and low MTDH expression were associated with 
higher OS in LSCC patients, and the p value was calculated by log-rank test (All P < 0.05). E. Kaplan-Meier curve of 
OS associated with SETD1B and MTDH risk stratifification in external database.
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incorporated them into the construction of risk 
score model. As revealed by ROC curve analy-
sis, the AUC value of risk score model was sig-
nificantly higher than that of clinical factors, 
which was also validated in GSE52793 cohort, 
indicating the superior predictive performance 
of our risk score model. To further optimize the 
predictive power of our model, a nomogram 
combining risk score and clinical characteris-
tics was established, which exhibited excellent 
accuracy and reliability. 

Moreover, we explored the difference in 
immune infiltration landscape between the 
high and low risk groups and revealed that the 
low risk group had higher infiltration levels of B 
cells, CD8 T cells, dendritic cells and T cells, 
whereas the high risk group was infiltrated with 
higher levels of macrophages and mast cells. 
Previous studies have indicated that the infiltra-
tion of T cells, specifically CD8+ T cells, is a 
good predictor of survival [45, 46]. A high level 

infiltration of B cells and dendritic cells is also 
known to have anti-tumor activity [47, 48]. In 
contrast, the activated mast cells are reported 
to play pro-tumorigenic roles in malignancies 
[49]. Similarly, macrophages were believed to 
contribute to tumor development and growth, 
causing aggressive phenotypes and chronic 
inflammation in most tumors. For example, a 
poor prognosis is associated with macrophage 
infiltration in breast cancer, bladder cancer and 
gastric cancer [50-52]. 

Immunotherapy related biomarkers such as 
immune checkpoints, HLA and TMB can help 
stratify patient subpopulations who are more 
likely to benefit from therapies with ICIs [53-
55]. In this study, we observed that immune 
checkpoints including PDCD1LG2 and CD374 
were highly expressed in the high risk group, 
whereas PDCD1, CTLA4, LAG3 and HAVCR2 
were highly expressed in the low risk group, 
although the molecular mechanisms underly-

Figure 7. MTDH deletion inhibited the malignant phenotype of head and neck tumor cells and inhibited ferroptosis. 
(A) Levels of ferroptosis-related genes were examined in MTDH-knockdown Fadu cells or HN8 cells by western blots. 
Vinculin (VCL) was used as a loading control. (B) Colony formation of Fadu and HN8 cells following 10 days MTDH 
knockdown. Colonies were visualized by crystal purple staining. Scramble (sgNC) conditions are also displayed. (C, 
D) Relative Growth of MTDH-knockdown Fadu (C) or HN8 (D) cells were detected by acetic acid dissolution. (E, F) 
Scratch wound-healing assays (magnification, ×100) were performed to detect the effects of MTDH on the migration 
and invasion of MTDH-knockdown Fadu cells (E) or HN8 cells (F). Data represent mean ± SEM, n=3 independent 
repeats. P values were determined using 1-way repeated measures ANOVA (E, F).
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Figure 8. MTDH deletion inhibits cell death induced by ferroptosis inducers. (A-D) Knockdown of MTDH suppressed ferroptosis. MTDH-knockdown Fadu cells (A, 
B) or HN8 cells (C, D) was treated with different concentrations of RSL3 or Erastin for 48 h. The cells were exposed to 0.1% DMSO as control. Cell viability was as-
sayed using a CCK8 kit. (E-H) Cell viability of MTDH-knockdown Fadu cells (E, F) or HN8 cells (G, H) was measured after treated with RSL3 (6 µm) or Erastin (9 µm) 
combined with Ferr-1, Z-VAD, or 3-MA for 48 h. (I, J) Lipid peroxidation was measured by flow cytometry after C11-BODIPY staining in MTDH-knockdown Fadu cells (I) 
or HN8 cells (J). Data represent mean ± SEM, n=3 independent repeats. P values were determined by 1-way repeated measures ANOVA (A-D) or 1-way ANOVA with 
Tukey’s multiple comparison test (E-H).
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ing this difference require further investigation. 
Additionally, our results showed that the HLA 
family including HLA-F, HLA-B, HLA-H, HLA-A, 
was downregulated in the low risk group, which 
might cause tumor immune evasion and immu-
notherapy insensitivity. It is known that tumors 
with a higher TMB tend to produce more new 
antigens and are more easily recognized by the 
immune system, thereby leading to better 
immune response. In this study, we found a 
higher level of TMB in HNSCC patients in the 
low risk group, suggesting that patients in this 
group may benefit more from immunotherapy. 

As chemotherapy was the standard treatment 
for recurrent and metastatic HNSCC [56], we 
also investigated the ability of this risk model in 
predicting the efficacy of chemotherapy for 
HNSCC patients. By comparing the IC50 value 
of several chemotherapeutic agents between 
the low and high risk groups, we found this 
model could stratify subgroups that might ben-
efit from chemotherapy, thus helping treatment 
decision making. 

SETD1B is a ferroptosis related gene, and its 
frameshift mutations as well as its regional het-
erogeneity in gastric and colorectal cancers 
with high microsatellite instability were first 
reported by Choi et al. [57]. It is worth noting 
that SETD1B has been reported as an onco-
gene [58]; however, in this study, we found that 
it was highly expressed in HNSCC tumor tissues 
and that this high expression was associated 
with a better prognosis of patients. We demon-
strated that SETD1B could inhibit the tumori-
genesis and progression of HNSCC. Therefore, 
its specific functional mechanism remains to 
be elucidated. MTDH, one of the most common 
oncogenes, facilities cancer progression mainly 
through two mechanisms: enabling tumors to 
withstand the stress of chemotherapy and to 
escape from immune surveillance [59]. MTDH 
has been reported to promote the progression 
of a variety of tumors, including breast cancer, 
colorectal cancer, hepatocellular carcinoma, 
and glioma [60-63]. Consistent with the study 
by Liu et al., we found that the high expression 
of MTDH was significantly correlated with the 
poor prognosis of HNSCC patients [64]. Further- 
more, the overexpression of MTDH enhanced 
the sensitivity of HNSCC cells to ferroptosis 
inducers. However, since MTDH also promotes 
the malignant phenotype of tumor cells, this 

dual role of MTDH should be considered when 
targeting MTDH for cancer treatment. 

Although our risk score model showed excellent 
predictive power for the prognosis and therapy 
efficacy of HNSCC, there were some limitations 
in this study. First, our results on the efficacy of 
immunotherapy need to be further confirmed 
with HNSCC patients. Second, to apply the risk 
score model in clinical settings, additional clini-
cal and functional studies are required for fur-
ther validation. Lastly, the functional mecha-
nisms by which SETD1B and MTDH impact the 
different clinical outcomes in patients need to 
be elucidated. 

In conclusion, we established a risk score 
model based on ferroptosis-related DNA meth-
ylation signature which could serve as a poten-
tial biomarker to assess the prognosis of 
HNSCC patients, stratify high risk population 
and achieve precision therapy. In addition, we 
identified MTDH as a sensitizer for ferroptosis 
inducers, highlighting its potential as a novel 
therapeutic target. 
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Figure S1. K-M curves for HNSCC patients with high and low percentage of DNA methylation levels.
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Figure S2. Construction and evaluation of clinical prognostic model. A. Nomogram predicting the probability of HN-
SCC patient’s mortality based on risk score and clinicopathological factors. B. Calibration curves of the nomogram 
for 1, 3 and 5 years. C. Decision curve analysis of the nomograms based on the risk score and clinicopathological 
factors. D. Kaplan-Meier survival curve of HNSCC with high and low risk group in GSE52793 cohort. E. The AUC 
value of risk score in GSE52793 cohort. F. The ROC curve of risk score at 1-5 years in GSE52793 cohort. 
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Figure S3. A-E. Kaplan-Meier survival curve for HNSCC patients with high and low percentage of various immune cell 
types. F. The level of TMB between high and low risk group. 
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Figure S4. Kaplan-Meier survival curve for HNSCC patients with high and low percentage of immune checkpoints, mismatch repair protein and HLA molecules. 
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Figure S5. Drug sensitivity and gene set enrichment analysis. A-H. The estimated IC50 value of drugs between high 
and low risk group. I. The significantly enriched subset of KEGG canonical pathways based on GSEA. J. The signifi-
cantly enriched HALLMARK gene sets based on GSEA. 
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Figure S6. The estimated IC50 value of drugs between high and low risk group. 


