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Abstract: Deep learning (DL)-based image analysis has recently seen widespread application in digital pathology. 
Recent studies utilizing DL in cytopathology have shown promising results, however, the development of DL models 
for respiratory specimens is limited. In this study, we designed a DL model to improve lung cancer diagnosis accu-
racy using cytological images from the respiratory tract. This retrospective, multicenter study used digital cytology 
images of respiratory specimens from a quality-controlled national dataset collected from over 200 institutions. 
The image processing involves generating extended z-stack images to reduce the phase difference of cell clusters, 
color normalizing, and cropping image patches to 256 × 256 pixels. The accuracy of diagnosing lung cancer in hu-
mans from image patches before and after receiving AI assistance was compared. 30,590 image patches (1,273 
whole slide images [WSIs]) were divided into 27,362 (1,146 WSIs) for training, 2,928 (126 WSIs) for validation, 
and 1,272 (1,272 WSIs) for testing. The Densenet121 model, which showed the best performance among six con-
volutional neural network models, was used for analysis. The results of sensitivity, specificity, and accuracy were 
95.9%, 98.2%, and 96.9% respectively, outperforming the average of three experienced pathologists. The accuracy 
of pathologists after receiving AI assistance improved from 82.9% to 95.9%, and the inter-rater agreement of Fleiss’ 
Kappa value was improved from 0.553 to 0.908. In conclusion, this study demonstrated that a DL model was effec-
tive in diagnosing lung cancer in respiratory cytology. By increasing diagnostic accuracy and reducing inter-observer 
variability, AI has the potential to enhance the diagnostic capabilities of pathologists.
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Introduction

Lung cancer is the leading cause of cancer-
related death worldwide [1]. Because approxi-
mately 70% of newly diagnosed lung cancer is 
found in the unresectable advanced stage, 
early detection and diagnosis are the most 
important issues to improve its prognosis [2]. 
Several small studies have investigated the use 
of chest X-rays and sputum cytology for lung 

cancer screening, but these tests were found to 
have limited sensitivity and specificity for 
detecting lung cancer in its early stages [3-6]. 
The results of the National Lung Screening Trial 
(NLST), the first large-scale clinical trial, showed 
that low-dose computed tomography (LDCT) 
scans were significantly more effective than 
chest X-rays at detecting early-stage lung can-
cer and reducing lung cancer-related mortality 
by 20% [7]. Based on the results of NLST, sev-
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eral countries, including the United States, 
Canada, Japan, and South Korea, have adopt-
ed LDCT screening for lung cancer. However, 
current evidence shows that LDCT screening 
for lung cancer is associated with significant 
harms, including overdiagnosis, false positives, 
consequences of invasive follow-up proce-
dures, procedure related complications, and 
relatively higher test cost [8].

Cytological examination has the advantages of 
inexpensive, rapid, and minimally invasive pro-
cedures for cancer screening. However, com-
pared to histopathological examination, cyto-
pathologic diagnosis has the disadvantages of 
not only low diagnostic accuracy but also labor-
intensiveness, time-consumption, and inter-
observer variation in interpretation [9, 10]. The 
diagnostic performance of cytology for lung 
cancer is relatively low: sensitivity of exfoliative 
sputum cytology (0.49-0.71) and of abrasive 
cytology obtained from bronchoscopy (0.43-
0.59) [11]. 

The application of artificial intelligence (AI), 
especially deep learning (DL) techniques, to 
image analysis may offer a promising alterna-
tive to conventional lung cancer screening tools 
by augmenting the accuracy of cytopathology 
diagnostic performance. Recently, deep learn-
ing techniques inspired by the mechanisms of 
vision have been widely applied to image clas-
sification, object detection, and prediction by 
utilizing multilayer neural networks, namely 
convolutional neural networks (CNNs) [12]. 
CNNs have also been widely applied in the 
medical imaging field, especially digital pathol-
ogy, suggesting potential for use in clinical 
pathology [13-16]. In comparison, there have 
been few studies on the application of AI in the 
field of digital cytopathology [17, 18]. Several 
studies on digital cytopathology image analysis 
of lung cancer have reported the potential  
usefulness of DL-based classification models 
(binary classification [malignant vs. benign dis-
ease] and lung cancer subtypes classification) 
[19-22]. However, these results are limited by 
relatively low diagnostic accuracy, small sam-
ple size, and lack of pathologist involvement. 

In this study, we aimed to design a DL algorithm 
to improve the accuracy of lung cancer diagno-
sis by pathologists from cytological images of 
respiratory specimens using a quality-con-
trolled, nationally representative dataset.

Materials and methods

Study design

In this retrospective, multicenter study, we col-
lected digital cytopathology images of respira-
tory specimens from sputum and bronchial 
washing, corresponding to clinical information. 
The study was approved by the Institutional 
Review Board of the Catholic University of 
Korea, College of Medicine (UC21SNSI0064), 
the Institutional Review Board of the Yonsei 
University College of Medicine (4-2021-0569), 
and the Institutional Review Board of the 
National Cancer Center (NCC2021-0145). The 
review boards waived the requirement for writ-
ten informed consent because of the retro-
spective study design, and data were collected 
and anonymized according to confidentiality 
guidelines. Figure 1 shows a schematic over-
view of the method and workflow proposed in 
this paper.

Datasets

The study utilized respiratory cytology speci-
mens obtained from sputum and bronchial 
washing in “The OPEN AI Dataset PROJECT” for 
training, validation, and testing (Supplementary 
Figure 1). This project is part of the AI learning 
data construction project conducted by the 
Korea Intelligence Information Society Agency 
since 2017 and aims to provide AI learning 
data, software, and computing resources 
essential for AI technology and service develop-
ment. This is an open-source public dataset 
available at “AI-hub (https://aihub.or.kr/)” and 
we utilized respiratory cytology specimens 
obtained from sputum and bronchial washing 
fluid collected between 2021 and 2022 among 
the non-gynecologic cytopathology image data-
sets from body fluids. 

This dataset comprises digitalized cytopathol-
ogy slides obtained from the Quality Control 
Committee of the Korean Society of Cyto- 
pathology. The cytology image dataset of respi-
ratory specimens consisted of whole slide 
images (WSI) from more than 200 universities, 
general hospitals, and laboratory centers in 
Korea, collected for use in quality control pro-
grams (20%) and three tertiary hospitals 
(Catholic University Medical Uijeongbu St. 
Mary’s Hospital, Yonsei University Severance 
Hospital, and National Cancer Center) and 
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eight major hospitals nationwide (80%). The 
WSIs were obtained by scanning the slides  
at focal planes at 40× magnification using 
Pannoramic 250 Flash III (3DHistech, Hungary), 
AT2 (Leica Biosystems, Germany), and Nano- 
Zoomer S360 (Hamamatsu, Japan) scanners. 
All cytopathology specimens were reviewed by 
pathologists, who compared cytopathology 
images with histopathology diagnoses to select 
matched pathologic confirmation and typical 
textbook cases from quality control programs 
(20%) and collected daily practice cases from 
three tertiary hospitals and eight major hospi-
tals nationwide (80%). Specimens of cygology 
collected from each institution were initially 
reviewed for corresponding histology by board-
certified pathologists of the respective institu-
tions. Subsequently, they underwent a secomd 
review by the Quality Assurance Committee. 
Following the scanning of the cytology speci-
mens on glass slides, the scanned images 
underwent refinement and validation. During 
the labeling process, image quality was reex-
amined to account for factors such as discolor-
ation, artifacts, air bubbles, and out-of-focus 
areas, and images with low image quality or no 
corresponding tissue diagnosis were excluded 
(Supplementary Figure 1).

Labeling was initially performed on WSIs during 
scanning according to each institution’s diag-
nostic classification criteria and was primarily 
based on the corresponding histopathology 
diagnosis on cytology slides from the same par-

ticipant. The basic characteristics of the corre-
sponding cytology image datasets, including 
the participant’s age, gender, histological type, 
cytological preparation, and staining method, 
were collected from medical records of partici-
pating hospitals.

Image preprocessing

To reduce the phase difference of cell clusters 
while digitizing cell slides, extended Z-stack 
images were generated through separating and 
integrating of Z-stack image layers, as present-
ed in Figure 2. Color normalization was per-
formed on the integrated images prior to patch 
extraction. The resulting images were subse-
quently cropped to dimensions of 1,024 × 
1,024 pixels and resized to 256 × 256 pixels to 
serve as input for model training. Each patch 
image was evaluated by experienced patholo-
gists to ensure accurate diagnosis. 30,590 
image patches were obtained from 1,273 respi-
ratory tract WSIs.

For image patches extracted from WSIs, nor-
mal slides were assigned benign disease class 
annotations for all image patches. Lung cancer 
slides were reclassified as normal or malignant 
by two or more experts (cytotechnologists and 
cytopathologists) after reviewing the extracted 
image patches. During this process, data that 
did not meet the quality standards were exclud-
ed. In addition, for image patches extracted 
from lung cancer WSIs, if there was disagree-

Figure 1. Flow chart of the study design. Abbreviations: AI, artificial intelligence; WSI, whole slide image.
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ment between two experts during the review 
process, those image patches were excluded 
from the image dataset.

Deep learning model training

To identify the most optimal model for our 
study, we evaluated and compared the accura-
cy of six representative convolutional neural 
network (CNN) models: VGG19, ResNet50, 
ResNext50, InceptionV3, DenseNet121, and 
EfficientNetB7. For training and validation of 
the model, we used 10,069 image patches 
extracted from 716 malignant WSIs and 20,521 
image patches extracted from 557 benign 
WSIs, which were divided into a hematoxylin 
and eosin (H&E) staining set and papanicolaou 
(PAP) staining set according to the staining 
methodology.

Outcomes: comparison of performance be-
tween human and AI

We randomly selected 1,272 patches out of  
a total of 30,590 image patches and used 
them to compare the diagnostic accuracy of 
humans and AI. The diagnostic performance of 
the AI was evaluated by three experienced 
pathologists and one trained non-medical stu-
dent. Furthermore, the diagnostic accuracy of 
the pathologists was reevaluated after they 
referred to the results obtained from AI. All 
pathologists and students conducted their 
reevaluation after a washout period of two 

weeks, and in both evaluation (before and after 
the AI model diagnostic reference) were con-
ducted without knowledge of the ground truth. 

Statistical analysis

To evaluate the AI model performance, we used 
Python (version 3.11.2) to calculate several 
metrics. We calculated the numbers of true 
positives, false negatives, true negatives, and 
false positives at a classification threshold of 
0.5 using the sklearn.metrics.confusion_matrix 
function. From these values, we calculated the 
sensitivity, specificity, accuracy, positive predic-
tive value (PPV), and negative predictive value 
(NPV) using standard formulas. We also calcu-
lated 95% confidence intervals for these met-
rics using exact binomial confidence limits. To 
assess inter-rater reliability among multiple rat-
ers, we calculated Fleiss’ kappa coefficient 
using R (version 4.1.2). This was done using the 
fleiss.kappa function from the package. The 
input to this function is a matrix whose rows 
each represent an item being rated and col-
umns each represent a rater. The entries in the 
matrix are the ratings assigned by each rater to 
each item. The fleiss.kappa function returns 
the Fleiss’ kappa coefficient, which measures 
the degree of agreement among the raters. The 
t-test was conducted using the SPSS statistical 
software package, and the significance level 
was set at P < 0.05. A paired t-test was used to 
compare the mean diagnostic accuracy before 
and after referencing the AI results. 

Figure 2. Image preparation process. Image preprocessing and patch extraction from whole slide image and resizing 
on digitalized respiratory cytology images (A). Generation of extended Z-stacking images in H&E stain (B), and PAP 
stain (C). Abbreviations: WSI, whole slide image; H&E, hematoxylin and eosin; PAP, Papanicolaou.
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Results

Participant information

The detailed clinical and pathological informa-
tion used in this study is summarized in 
Supplementary Table 1. A total of 1,273 
patients were included in the study. The mean 
age of the patients was 65.6 ± 12.6 years. Of 
the patients, 884 (69.4%) were male and 389 
(30.6%) were female. The histopathologic diag-
nosis were lung malignancies in 716 (56.2%) 
and benign diseases in 557 (43.8%) patients. 
Cytology preparation was performed using con-
ventional smear in 346 (27.2%) patients and 
liquid-based cytology in 927 (72.8%) patients. 
Staining was performed using H&E stain in 252 
(19.8%) patients and PAP stain in 1,021 (80.2%) 
patients. 

Training and validation data

For the H&E stain, the training dataset consist-
ed of 4,786 image patches of benign cases and 
651 image patches of malignant cases, for a 
total of 5,437 image patches (Table 1). The 
validation dataset consisted of 533 image 
patches of benign cases and 36 image patches 
of malignant cases, for a total of 569 image 
patches. Overall, there were 5,319 and 687 
image patches of benign and malignant cases 
for the H&E stain, respectively. For the PAP 
stain, the training dataset consisted of 13,902 
image patches of benign cases and 8,047 
image patches of malignant cases, for a total of 
21,925 image patches. The validation dataset 

consisted of 1,300 image patches of benign 
cases and 1,335 image patches of malignant 
cases, for a total of 2,659 image patches. 
Overall, there were 15,202 and 9,382 image 
patches of benign and malignant cases for the 
PAP stain, respectively. 

Pre-test for AI model selection

The preliminary analysis was conducted to test 
6 different AI models for their diagnostic perfor-
mance in terms of sensitivity, specificity, and 
accuracy for each model and stain type 
(Supplementary Table 2). For H&E stain, 
DenseNet121 had the highest sensitivity of 
0.889 and specificity of 0.993, resulting in  
an accuracy of 0.986. For PAP stain, 
DenseNet121 had the highest sensitivity of 
0.956 and specificity of 0.944, resulting in an 
accuracy of 0.950. These results suggest that 
DenseNet121 has the potential to perform well 
in the detection of malignant cells using both 
H&E and PAP stains. Therefore, DenseNet121 
was selected for further analysis.

AI model training

Table 2 summarizes the confusion matrix and 
diagnostic performance of an AI model using 
the DenseNet121 network for both H&E and 
PAP stains. For H&E stain, the model had a sen-
sitivity of 0.889 and specificity of 0.993 for the 
benign and malignant categories, respectively, 
resulting in an accuracy of 0.986. For PAP stain, 
the model had a sensitivity of 0.955 and speci-
ficity of 0.944 for the benign and malignant cat-

Table 1. Train and validation dataset split for AI model training
H&E stain PAP stain

Benign Malignancy Total Benign Malignancy Total
Train 4,786 (135) 651 (92) 5,437 (227) 13,902 (367) 8,047 (552) 21,925 (919)
Validation 533 (15) 36 (10) 569 (25) 1,300 (40) 1,335 (61) 2,659 (101)
Total 5,319 (150) 687 (102) 6,006 (252) 15,202 (407) 9,382 (613) 24,584 (1,020)
Data are presented as number of image patches (whole slide images). H&E, hematoxylin and eosin; PAP, Papanicolaou.

Table 2. Confusion matrix and diagnostic performance of AI model using DenseNet121 network
Ground truth

H&E stain PAP stain
Benign Malignancy Total Benign Malignancy Total

Prediction Benign 529 4 533 Sensitivity 0.889 1,227 61 1,288 Sensitivity 0.955
Malignancy 4 32 36 Specificity 0.993 73 1,371 1,444 Specificity 0.944

Total 533 36 569 Accuracy 0.986 1,300 1,432 2,732 Accuracy 0.950
H&E, hematoxylin and eosin; PAP, Papanicolaou.
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egories, respectively, resulting in an accuracy 
of 0.950. 

Comparison between AI and human using ran-
domly selected image patches

To compare the performance of three patholo-
gists, one student, and AI in diagnosing lung 
cancer from respiratory cytology images, we 
randomly selected 1,272 image patches from 
the dataset. The patch images included 557 
benign lesion and 715 lung cancer cytopatho-
logical images. The results show that AI assis-
tance improved the diagnostic performance of 
both the student and pathologists (Table 3 and 
Figure 3A). The diagnostic performance of the 
AI system was high, with a sensitivity of 95.9%, 
specificity of 98.2%, and accuracy of 96.9%. 
Compared to humans, the AI system showed 
higher diagnostic performance. 

Without AI assistance, the sensitivity, specifici-
ty, and accuracy of the student were 71.5%, 
86.5%, and 77.4%, respectively. With AI assis-
tance, these values increased to 94.4%, 94.4%, 
and 94.4%, respectively. The average sensitivi-
ty, specificity and accuracy of pathologists are 
83.1%, 82.7% and 82.9%, respectively. When 
pathologists work with AI, their sensitivity, 
specificity, and accuracy increase significantly 
to 95.2%, 96.8% and 95.9% respectively. 
Additionally, The Fleiss’ Kappa scores increased 
from 0.553 before AI assistance to 0.908 after 
AI assistance, improving inter-examiner agree-
ment in three pathologists. We also confirmed 
in the correlation plot that the diagnostic agree-
ment of pathologists and students improved 
before (Figure 3B) and after (Figure 3C) refer-
ring to the AI reading results. Examples of cor-

rectly and incorrectly diagnosed image patches 
by the AI are shown in Supplementary Figure 2, 
and examples from pathologists are shown in 
Supplementary Figure 3.

Discussion

In this study, we used a dataset of respiratory 
cytologic images that maximized the generaliz-
ability for AI models by considering different 
genders, ages, diagnoses, staining methods, 
scanner types, and geographical distributions, 
collected from over 200 hospitals in South 
Korea. We found that a DL model showed prom-
ising results in distinguishing lung cancer cells 
from benign cells in respiratory cytology and 
could improve the diagnosis of pathologists by 
balancing sensitivity and specificity and reduc-
ing inter-observer variation.

This demonstrates sufficient reliability in terms 
of performance compared to previous studies 
that were conducted at a single institution with 
relatively small sample sizes (Supplementary 
Table 3). Teramoto et al. [19] constructed a DL 
model for lung cancer subtype classification of 
298 cytology image patches from fine needle 
aspiration (FNA) and bronchoscopy into three 
subtypes of small cell carcinoma (SCLC), ade-
nocarcinoma (ADC), and squamous cell carci-
noma (SqCC), which showed an accuracy of 
71.1%. In the following years, the same 
research team sequentially reported a CNN 
model to classify benign and malignant disease 
with an accuracy of 79.2% on 621 image patch-
es [20] and an accuracy of 85.3% on 793 image 
patches [21]. In addition, Gonzalez et al. trained 
the Inception V3 CNN model to distinguish 
SCLC from large cell neuroendocrine carcino-

Table 3. Comparison of diagnostic performance between AI and human
Sensitivity Specificity Accuracy p-value* Fleiss’ Kappa

Student 71.5% 86.5% 77.4% P < 0.05
Student + AI 94.4% 94.4% 94.4%
Pathologist A 76.5% 93.0% 83.7% P < 0.05
Pathologist A + AI 95.4% 98.7% 96.9%
Pathologist B 77.1% 90.8% 83.1% P < 0.05
Pathologist B + AI 95.4% 98.2% 96.6%
Pathologist C 95.8% 64.3% 82.0% P < 0.05
Pathologist C + AI 95.0% 93.4% 94.3%
Average Pathologists 83.1% 82.7% 82.9% P < 0.05 0.553
Pathologists + AI 95.2% 96.8% 95.9% 0.908
AI 95.9% 98.2% 96.9%
AI, artificial intelligence. *Paired t-test.
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ma using 114 WSIs of FNA samples [22]. The 
reported performance was a sensitivity of 
100%, specificity of 87.5%, and AUC of 100% 
on a Diff-Quik stain dataset, 100%, 85.7%, and 
100% on a PAP stain set, and 100%, 87.5%, 
and 87.5% on a H&E stain set, respectively. In a 
2021 study, Teramoto et al. used multiple 
instance learning (MIL) and several CNN archi-
tectures to achieve a 91.6% accuracy in binary 
classification with 322 image patches [23]. 
Meanwhile, Tsukamoto et al. [24] classified 
three lung cancer types using 298 image patch-
es from various architectures: AlexNet (73.7% 
accuracy), GoogLeNet/InceptionV3 (66.8%), 
VGG-16 (76.8%), and ResNet-50 (74.0%). Al- 
though the performance of these studies was 
relatively good, the small dataset size from a 

single institute cannot guarantee the generaliz-
ability that can be applied to daily practice. In 
contrast to previous studies, our study utilized 
a larger dataset (30,590 image patches from 
1,274 WSIs) from various institutions, which 
was large enough to compensate for dataset 
imbalance, prevent algorithmic bias and ensure 
the reliability of the DL diagnostic algorithm. 

One of the important lessons from the results 
of this study is that AI will be a potential aug-
mentation tool for human pathologists by 
enhancing and adjusting the imbalanced per-
formance of each observer. As shown in Table 
3, pathologists A and B exhibited similar diag-
nostic tendencies with relatively low sensitivity 
(76.5% and 77.1%, respectively) and relatively 

Figure 3. Comparison of diagnostic performance between human and AI model in respiratory tract cytologic images. 
Comparison of diagnosis results of 3 pathologists, 1 non-medical major student, and AI (A). Correlation plot of diag-
noses before (B) and after referencing AI results (C). Abbreviation: AI, artificial intelligence.
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high specificity (93% and 90.8%, respectively). 
In contrast, pathologist C had relatively high 
sensitivity (95.8%) but relatively low specificity 
(64.3%). This discrepancy can result in false 
positives or false negatives, leading to a 
decrease in diagnostic accuracy. In this study, 
the AI-assisted diagnosis achieved a sensiti- 
vity of 95.2%, which was 12% higher than the 
average pathologist sensitivity, and a specifici-
ty of 96.8%, which was 14% higher than the 
average pathologist specificity. We can see  
that the low sensitivity of pathologist A and B, 
and the low specificity of pathologist C were 
greatly improved after referring the AI diagnosis 
and the level of agreement on the diagnosis 
between pathologists was also greatly im- 
proved. This indicates that the AI system could 
assist in increasing diagnostic performance of 
pathologists by enhancing the weaker part of 
each pathologist. 

Another interesting finding was the results of 
the student (Table 3). The participant student 
was a student researcher majored in the com-
puter science without biological background or 
knowledge of cytopathology. We taught him the 
cytologic findings and characteristics of benign 
and malignant cells for few hours and let him 
diagnose the image patches as benign or malig-
nant. The accuracy of the student was fairly 
good for the first timer as 77.4%. However, 
more interesting thing was his accuracy after 
the referring the AI results increased greatly to 
94.4% which is higher than the accuracy of 
average pathologists. This suggest AI can be 
helpful as a second opinion for the trainees and 
it could be used as an aid to reduce the time 
and cost to educate cytopathologists in the 
field of cytopathology, which typically requires 
significant time and field experience to become 
an expert. Many countries, including Korea, are 
facing a shortage of cytologists and cytopathol-
ogists due to global ageing and increasing cyto-
logic exams that will cause them at risk of mis-
diagnosis due to the increased workload from 
cancer patients. Applying AI aids to cytopatho-
logic diagnosis can be the potential solution to 
the fundamental problems of labor-intensity, 
time-consumption, and low-accuracy.

In comparing the diagnostic performance of 
human and AI, we reviewed the correctly diag-
nosed positive and negative cases by AI as well 

as the misdiagnosed positive and negative 
cases (Supplementary Figure 2). False positive 
and negative cases (Supplementary Figure 2B 
and 2C) were all correctly diagnosed by human 
pathologists. Reactive alveolar macrophages 
ingesting foreign particles and debris often 
presents a wide spectrum of morphologic find-
ings that are sometimes very challenging, even 
to expert pathologists. Also, reactive bronchial 
epithelial cells are commonly found due to sec-
ondary infection and inflammation from various 
causes as well as mechanical obstruction of 
cancer mass. In this situation, pathologists 
make a diagnosis by comprehensively collect-
ing information both from background and indi-
vidual cells and clusters. However, it is not 
always easy to collect sufficient samples con-
taining tumor cells and background due to sam-
pling difficulty. When either a typical back-
ground or individual cell features of malignancy 
is missing, it can be very challenging for pathol-
ogists to make a correct diagnosis. In these 
examples, the cytologic findings including 
nuclear atypia and structural abnormality of the 
cell clusters were generally understandable for 
pathologists in true positive and true negative 
cases (Supplementary Figure 2A and 2D). 
However, some of the cytologic findings of false 
positive and false negative cases were not eas-
ily understandable representing the black box-
like nature of AI interpretation. There were 
cases that the AI model over- or underdiag-
nosed while all the human pathologists cor- 
rectly diagnosed (Supplementary Figure 3A and 
3B) and all the human pathologists over- or 
underdiagnosed while only AI model correctly 
answered (Supplementary Figure 3C and 3D). 
The most cases that the AI model overdiag-
nosed were from artifacts such as mucin mate-
rials and pyknotic cells in the bloody back-
ground that mimic dyskeratotic squamous cells 
(Supplementary Figure 3A). On the other hand, 
most false negative cases that the AI models 
misdiagnosed but all the pathologists correctly 
answered showed the relatively obvious cyto-
logic findings of malignancy such as malignant 
glandular cells or squamous cells that made us 
question about the performance of the AI 
model showing the current limitation of black 
box-like nature of the AI models (Supplementary 
Figure 3B). However, there were also the cases 
that only AI answered correctly while all the 
human pathologists misdiagnosed. The false 
positive cases by the human pathologists 
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showed the reactive bronchial cells, dyskera-
totic squamous cells, or reactive macrophages 
with severe cytologic atypia (Supplementary 
Figure 3C). The false negative cases by the 
human pathologists were malignant dyskera-
totic cells with less obvious cytologic atypia or 
low nuclear cytoplasmic ratio or small malig-
nant blue round cells from small cell carcinoma 
with less obvious cytologic atypia (Supple- 
mentary Figure 3D). These findings can provide 
important insights into how AI can be utilized to 
improve diagnostic accuracy and consistency 
in the pathologists’ interpretation. Some of the 
adenocarcinoma cells can be underdiagnosed 
as reactive bronchial cells or immature meta-
plasia and dyskeratotic squamous cells, one of 
the important diagnostic clues for squamous 
cell carcinoma, can be easily considered as 
dyskeratotic cells from severe inflammation 
and infectious condition.

One of the most promising applications of AI in 
lung cancer diagnosis will be subtyping of lung 
cancers on histologic or cytologic images and 
predicting driver mutations based on the mor-
phologic findings as a screening test before 
confirmative molecular testing. In 2022, Yang 
et al. [25] developed a CNN model for subtyping 
of lung carcinoma biopsy and showed a promis-
ing results on the histologic images. Two stud-
ies by Teramoto et al. that were mentioned ear-
lier also showed a promising results of subtyp-
ing of lung cancer from cytology images 
although the diagnostic accuracy is still rela-
tively low and the dataset size is small to be 
applied in the clinical field and the sample was 
FNAs but not respiratory tract samples [19, 20, 
22]. In addition to these subtyping AI models, AI 
models that can predict mutation such as 
EGFR, KRAS, ALK can be next important tech-
nology for expanding the impact of targeted 
therapy. Recently, Ren et al. [26] introduced a 
DL model to predict targeted gene alterations 
in lung cancer from pleural effusion cell block 
WSIs. The model was trained on ten genes 
related to targeted therapy and four genetic 
mutation statuses (ALK fusion, KRAS mutation, 
EGFR mutation, and no alterations group). The 
genetic mutation prediction results of the DL 
model were reasonable as AUC of 0.869 for 
ALK fusion, 0.804 for KRAS mutation, 0.644 
for EGFR mutation, and 0.774 for no altera-
tions. However, relatively small-sized and un- 
evenly distributed datasets limited the ability to 

generalize the AI’s diagnostic performance 
(e.g., 23 fusions and 335 wild-types for ALK, 
215 mutations and 143 wild-types for EGFR, 
etc.). As this study has demonstrated the feasi-
bility of molecular diagnosis at the cytology 
image level, further research will follow to pro- 
ve the utility of DL for predicting molecular 
diagnosis. 

The strength of our study is that, compared to 
previous studies, excellent performance has 
been demonstrated with high generalizability in 
terms of both dataset quality and DL diagnostic 
accuracy, as we removed biases in data collec-
tion and implemented quality control measures 
for all populations. AI diagnostic algorithms are 
generally designed to identify patterns in data 
rather than understand the underlying biologi-
cal mechanisms of diseases. Therefore, poorly 
managed big data can have a negative impact 
on performance. Some limitations of this study 
should be acknowledged. First, lung cancer 
prediction models at the WSI level have yet to 
be fully explored. While pathologists generally 
make diagnoses by assessing WSIs rather than 
image patches, it is important to develop an 
algorithm that can ensure both WSI-level and 
single image patch-level accuracy to improve 
the accuracy and reliability of AI-based cytopa-
thology techniques. Second, although we used 
a large-scale respiratory cytology image datas-
et representative of Korea, additional external 
validation is required to demonstrate the gen-
eralizability of the AI model. Third, it is neces-
sary to further validate the accuracy of the AI 
model with data from different races and coun-
tries to demonstrate the scalability of the AI 
model.

Conclusion

The DL based diagnoses have shown promising 
results in distinguishing between lung cancer 
and benign cells in respiratory tract cytology, 
potentially assisting pathologists to balance 
sensitivity and specificity and reducing interob-
server variability. 
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Supplementary Figure 1. Overview of the open AI Dataset PROJECT.
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Supplementary Table 1. Baseline characteristics of the enrolled patients
Total (N = 1,273)

Age, years 65.6 ± 12.6
Gender
    Male 884 (69.4)
    Female 389 (30.6)
Histopathologic diagnosis
    Malignancy 716 (56.2)
    Benign lesions 557 (43.8)
Cytology preparation
    Conventional smear 346 (27.2)
    Liquid based cytology 927 (72.8)
Stain method
    H&E stain 252 (19.8)
    PAP stain 1,021 (80.2)
Data are presented as number (percentage) or means ± standard deviations. H&E, hematoxylin and eosin; PAP, Papanicolaou.

Supplementary Table 2. Diagnostic performance in preliminary test results of AI models
H&E stain PAP stain

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
VGG19 0.000 1.000 0.937 0.914 0.879 0.897
ResNet50 0.806 0.987 0.975 0.932 0.933 0.932
ResNext50 0.976 0.889 0.970 0.393 0.922 0.904
InceptionV3 0.861 0.994 0.986 0.935 0.914 0.925
DenseNet121 0.889 0.993 0.986 0.956 0.944 0.950
EfficientNetB7 0.694 0.993 0.974 0.893 0.952 0.921
AI, artificial intelligence; H&E, hematoxylin and eosin; PAP, Papanicolaou.
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Supplementary Figure 2. Representative examples of AI prediction on cytology image patch from respiratory speci-
men. (A) True positive cases, (B) False negative cases, (C) False positive cases, and (D) True negative cases. Ab-
breviation: AI, artificial intelligence.
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Supplementary Figure 3. Representative examples of human misdiagnosis in cytology image patches from respi-
ratory specimens. A. False positive cases that all human pathologists made a correct diagnosis, but the AI model 
produced an incorrect result. B. False negative cases that all human pathologists made a correct diagnosis, but the 
AI model produced an incorrect result. C. False positive cases that all human pathologists made an incorrect diag-
nosis, but the AI model produced a correct diagnosis. D. False negative cases that all human pathologists made an 
incorrect diagnosis, but the AI model produced a correct diagnosis. Abbreviation: AI, artificial intelligence.
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Supplementary Table 3. Previous studies applying AI models to cytology images
Author, year Classification Dataset Model Diagnostic performance
Teramoto, 2017 [19] 3-class:

(ADC/SqCC/SCLC)
298 image patches from 
76 cases

Custom CNN architecture Accuracy: 71.1%

Teramoto, 2019 [20] Binary:
(Benign/Malignant)

621 image patches from 
46 cases

VGG16 Sensitivity: 89.3%
Specificity: 83.3%
Accuracy: 79.2%

Teramoto, 2020 [21] Binary:
(Benign/Malignant)

793 image patches from 
60 cases

Combination of
progressive growing
GAN and
VGG16 architecture

Sensitivity: 85.4%
Specificity: 85.3%
Accuracy: 85.3%

Gonzalez, 2020 [22] Binary:
(SCLC/LCNEC)

464,378 image patches 
from 40 cases

InceptionV3 For Diff-Quik
Sensitivity: 100% Specificity: 87.5%
AUC: 100%
For PAP
Sensitivity: 100%
Specificity: 85.7%
AUC: 100%
For H&E
Sensitivity: 100%
Specificity: 87.5%
AUC: 87.5%

Teramoto, 2021 [23] Binary:
(Benign/Malignant)

322 image patches from 
322 cases

MIL and several CNN architectures 
as backbone

Accuracy: 91.6%

Tsukamoto, 2022 
[24]

3-class:
(ADC/SqCC/SCLC)

298 image patches from 
55 cases

AlexNet
GoogLeNet/InceptionV3
VGG-16
ResNet-50

AlexNet
Accuracy: 73.7%
GoogLeNet/InceptionV3
Accuracy: 66.8%
VGG16
Accuracy: 76.8%
ResNet50
Accuracy: 74.0%

AI, artificial intelligence; ADC, adenocarcinoma; SqCC, squamous cell carcinoma; SCLC, small cell lung cancer; LCNEC, large cell neuroendocrine carcinoma; WSI, whole 
slide image; FNA, fine needle aspiration; CNN, convolutional neural network; GAN, generative adversarial network; AUC, area under the receiver operating characteristic 
curve; PAP, Papanicolaou; H&E, hematoxylin and eosin; MIL, multiple instance learning.


