# Original Article NROB1 suppresses ferroptosis through upregulation of NRF2/c-JUN-CBS signaling pathway in lung cancer cells

Xin-Yue Zhang<sup>1\*</sup>, Hao Zhang<sup>1,2\*</sup>, Si-Jing Hu<sup>3\*</sup>, Shun-Yao Liao<sup>3\*</sup>, Da-Chang Tao<sup>1</sup>, Xiao-Lan Tan<sup>1</sup>, Ming Yi<sup>1</sup>, Xiang-You Leng<sup>1</sup>, Zhao-Kun Wang<sup>1</sup>, Jia-Ying Shi<sup>1</sup>, Sheng-Yu Xie<sup>1</sup>, Yuan Yang<sup>1</sup>, Yun-Qiang Liu<sup>1</sup>

<sup>1</sup>Department of Medical Genetics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; <sup>2</sup>Department of Pathology and Infectious Diseases, People's Hospital of Deyang City, Deyang 618000, Sichuan, China; <sup>3</sup>Institute of Gerontology and Center for Geriatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610071, Sichuan, China. \*Equal contributors.

Received July 13, 2023; Accepted October 25, 2023; Epub November 15, 2023; Published November 30, 2023

**Abstract:** Ferroptosis has demonstrated significant potential in treating radiochemotherapy-resistant cancers, but its efficacy can be affected by recently discovered ferroptosis suppressors. In this study, we discovered that NROB1 protects against erastin- or RSL3-induced ferroptosis in lung cancer cells. Transcriptomic analysis revealed that NROB1 significantly interfered with the expression of 12 ferroptosis-related genes, and the expression level of NROB1 positively correlated with that of c-JUN, NRF2, and CBS. We further revealed that NROB1 suppression of ferroptosis depended on the activities of c-JUN, NRF2, and CBS. NROB1 directly promoted the expression of NRF2 and c-JUN and indirectly upregulated CBS expression through enhancing NRF2 and/or c-JUN transcription. Moreover, we showed that NROB1 depletion restrained xenograft tumor growth and facilitated RSL3-induced ferroptosis in the tumors. In conclusion, our findings uncover that NROB1 suppresses ferroptosis by activating the c-JUN/NRF2-CBS signaling pathway in lung cancer cells, providing new evidence for the involvement of NROB1 in drug resistance during cancer therapy.

Keywords: NROB1, ferroptosis, CBS, NRF2, c-JUN, lung cancer, drug resistance

#### Introduction

Lung cancer is the most prevalent malignant cancer worldwide [1]. Despite advancements in surgical techniques, chemotherapeutic agents, molecularly targeted drugs, and immunotherapeutic antibodies, a substantial number of patients succumb due to recurrence and treatment failure. Currently, lung cancer remains the leading global cause of cancer-related death. To a certain extent, drug resistance invariably leads to treatment failure [2]. Consequently, ongoing studies on the mechanisms of drug resistance are pivotal for lung cancer treatment.

Ferroptosis, a newly identified iron-dependent form of regulated cell death (RCD), is characterized by an increased intracellular iron level, accumulation of lipid peroxidation products (such as malondialdehyde (MDA)), reactive oxygen species (ROS), and decreased intracellular levels of glutathione (GSH) [3]. ROS and lipid oxidation are often produced in cancer cells under radiation or chemical treatment. Therefore, ferroptosis has been implicated in numerous types of cancers and has become a research focal point for treating various cancers, including lung cancer [3, 4]. In particular, numerous chemicals have been reported to induce ferroptosis in lung cancer through various targets [5-7]. Simultaneously, several genes, including NFS1 (encoding an iron-sulfur cluster biosynthetic enzyme) [8], SOX2 [9], RBMS1 [10], TP53 [11], P53RRA [12] and LINC00336 [13], have been shown to inhibit ferroptosis in lung cancer. Given the complexity of the regulatory mechanisms of ferroptosis, further investigation into the mechanisms of ferroptosis suppressors is necessary before utilizing ferroptosis-based therapy.

NROB1 (nuclear receptor subfamily 0 group B member 1), also known as DAX1 (dosage-sensitive sex reversal-AHC critical region on the X-chromosome gene 1), is typically expressed in the reproductive and endocrine systems and encodes an unusual orphan nuclear receptor. exhibiting significant evolutionary conservation from fish to mammals [14]. Through interactions with OCT4 [15], SOX2 [16] and NANOG [17], NROB1 participates in the transcriptional network, maintaining the pluripotency of embryonic stem cells. The duplication of NROB1 leads to male-to-female sex reversal [18], and point mutations commonly result in both X-linked congenital adrenal hypoplasia and hypogonadotropic hypogonadism [19]. Notably, NROB1 is often ectopically expressed in many cancers such as Ewing's tumor [20], breast cancer [21]. cervical cancer [22], ovarian carcinoma [23], prostate cancer [24], and lung cancer [25, 26]. Investigations, including ours, have revealed that NROB1 plays roles in maintaining stem cell characteristics and resisting drug effects in lung cancer [25, 26]. However, the detailed mechanism of NROB1-mediated chemical resistance remains unclear.

Cysteine metabolism is a key event pathway in regulating cell ferroptosis [27, 28]. Recently, researchers globally mapped cysteine reactivity in lung cancer cells through chemical proteomics [29]. They found that a rich content of cysteines is amenable to modification and uncovered that NROB1 is involved in the modification through forming a multimeric transcriptional complex for regulating the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-targeted genes. Concurrently, NRF2 is a key regulator for antioxidant response [30] and ferroptosis-resistance [31]. Thus, it merits investigation into whether and how NROB1 is involved in ferroptosis to influence drug resistance. Our present study revealed that NROB1 significantly suppressed erastin- or RSL3-induced ferroptosis in lung cancer cells. NROB1 transcriptionally elevates the expression of c-JUN and NRF2, which further upregulate the activity of cystathionine beta-synthase (CBS) to alleviate cell ferroptosis.

### Materials and methods

# Plasmid construction

Full-length cDNA encoding AM-tagged NROB1, NRF2, and c-JUN were separately synthesized

and cloned into lentiviral vectors: pEZ-Lv201, pEZ-Lv152, and pEZ-Lv151 (GeneCopoeia Inc., Rockville, MD), respectively. Specific shRNAs targeting NROB1 (shNROB1) and NRF2 (sh-NRF2) were synthesized and inserted into vectors psi-LVRU6GP and psi-LVRU6GH (Gene-Copoeia Inc.), respectively. c-JUN-specific sh-RNA (sh c-JUN) was synthesized and inserted into the pGV117 vector (Genechem, Shanghai, China). CBS-specific siRNA (siCBS) was synthesized by RIBOBIO (Guangzhou, China). The mutant NROB1 coding sequence, carrying an eleven-nt mismatch to the shNROB1 sequence. was synthesized and inserted into the pEZ-Lv201 vector to rescue NR0B1 expression. The sequences of the above constructions are listed in Table S1.

Promoter fragments of various lengths from NRF2, c-JUN, and CBS were amplified (primers are listed in <u>Table S2</u>) and cloned into the pGL3-Basic luciferase reporter vector (Promega, Madison, WI).

#### Cell culture and transient transfection

Six lung cancer cell lines, including A549, H1437, H460, H1299, H1975, and H838, were purchased from the Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). All cell lines were authenticated by short tandem repeat (STR) profiling and tested for mycoplasma contamination using a PCR-based method. Cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (Gemini, Woodland, CA) and incubated in a humidified atmosphere with 5%  $CO_2$  at 37°C. Cells were plated 24 hours before transfection and then transiently transfected using ExFect2000 (Vazyme, Nanjing, China) according to the manufacturer's instructions.

### Lentivirus transduction

Lentiviral particles were produced by Gene-Copoeia Inc. For infection, cells were plated in 12-well plates. Once cells reached 30-40% confluency, 2  $\mu$ L of each lentivirus was added to the culture medium and incubated at 37°C for 24 hours. Subsequently, stable cell lines with altered expression levels of NROB1, NRF2, and c-JUN were selected using a selection culture medium containing 2  $\mu$ g/ml puromycin, 400  $\mu$ g/ml hygromycin, or 600  $\mu$ g/ml neomycin.

# Cell viability assay

Cell viability was assessed in a 96-well format using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI). Briefly,  $2 \times 10^{3}$  cells were seeded per well in 96-well plates and allowed to adhere for 24 hours. Following treatment with various concentrations of Erastin or RSL3 (Selleck Chemicals, Houston, TX), CellTiter96<sup>®</sup> Aqueous One Solution (20 µl/well) was added, and cell viability was measured at 490 nm using a Synergy<sup>TM</sup>Mx microplate reader.

# MDA assay

The relative MDA concentration was assessed using an MDA Assay kit (Abcam, Cambridge, UK) per the manufacturer's instructions. Briefly, free MDA in the treated cells reacted with thiobarbituric acid (TBA), generating an MDA-TBA adduct, the concentration of which was determined by quantifying optical density (OD) at 532 nm.

### Iron assay

Intracellular iron levels were measured using an Iron Assay kit (Abcam) according to the manufacturer's instructions. Briefly, samples were collected and washed three times with cold PBS. Samples were then homogenized in 5 volumes of iron assay buffer on ice using a Dounce homogenizer. After centrifugation at 16,000 g for 10 min, the supernatant was collected, and an iron reducer was added to each sample prior to mixing. Following a 30-min incubation, the iron probe was added to each sample and mixed, then incubated for an additional 60 min. The output was immediately measured on a colorimetric microplate reader (Synergy<sup>™</sup>Mx, OD = 593 nm).

# ROS assay

ROS levels were determined using CellROX<sup>®</sup> Oxidative Stress Reagents (Life Technologies, Carlsbad, CA), according to the manufacturer's instructions. Briefly, cells were seeded in sixwell plates and cultured for 24 hours. After a 24-hour incubation with indicated concentrations of RSL3, the culture medium was replaced with 2 ml of culture medium containing 5  $\mu$ M of CellROX<sup>®</sup> Deep Red Reagent, and cells were cultured at 37°C for 30 min. Subsequently, cells were harvested, washed thrice with PBS, and resuspended in 500  $\mu$ l of PBS. The fluorescence intensities of the cells were determined by a colorimetric microplate reader (Synergy<sup>TM</sup>Mx).

# Glutathione assay

Intracellular levels of glutathione were assayed using a Glutathione Assay Kit (Sigma-Aldrich, St. Louis, MO). Harvested cells were first deproteinized with the 5-Sulfosalicylic acid solution and then successively reacted with the working solution containing assay buffer, diluted enzyme, and 5,5-Dithiobis (2-nitrobenzoic acid), as well as the diluted NADPH solution. The output was measured immediately on a colorimetric microplate reader (Synergy<sup>TM</sup>Mx) (OD = 412 nm) using a kinetic model.

# RNA-Seq and transcriptomic analysis

Total RNA was respectively isolated from the NROB1-KD A549 cells and the control cells using TRIzol reagent (Life Technologies, Carlsbad, CA). After measuring the quality and concentration of total RNA using an Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA), RNAs were sequenced in the HiSeq4000 systems (Illumina, San Diego, CA). Triplicate RNA samples from independent groups were prepared for sequencing. The primary bioinformatic analysis was carried out by Genedenovo Biotechnology (Guangzhou, China). Deseq2 algorithm was used for differential gene analysis, and |log2 fold change|  $\geq$  1 and FDR < 0.05 were used as the screening criteria.

In order to examine the correlation between the expression level of *NROB1* and that of *NRF2*, *c-JUN* and *CBS* in the tumor tissues of lung cancer patients, we also downloaded the relevant gene expression profiles of lung adenocarcinoma (n = 677) and lung squamous cell carcinoma (n = 495) from the cBioPortal for Cancer Genomics Database (v5.3.5). Correlation analysis of the genes expression was performed using Spearman's methods.

### Quantitative real-time PCR analysis

Isolated total RNA was reversely transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermofisher Scientific, Waltham, MA). RT-PCR was performed using 2×SYBR Green qPCR Master Mix (Selleck) and detected by the CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA). GAPDH was used as an internal reference. The relative expression levels were normalized using the  $\Delta\Delta$ Ct method. The primers used in RT-PCR are listed in Table S3.

# Western blot analysis

Cells were washed three times with PBS, collected, and lysed with RIPA lysis buffer, including the phosphatase inhibitor cocktail 3 (MCE, HY-K0010). Protein concentrations were determined using the Pierce<sup>™</sup> BCA Protein Assay Kit (Thermofisher Scientific). Equal amounts of proteins were loaded into SDS-PAGE and were detected using corresponding antibodies. Information regarding the antibodies used in this experiment is listed in <u>Table S4</u>.

# Dual-luciferase reporter assay

Constructed luciferase reporter vectors were transfected into the NROB1-KD A549 cells, NROB1-OE H1299 cells, and their respective control cells. After the cells were lysed, luciferase activity in each cell lysate was measured using a dual-luciferase reporter assay system (Promega) following the manufacturer's instructions. Renilla luciferase activity was used as an internal control.

# ChIP-qPCR assay

The ChIP assay was executed using the Tag-ChIP-IT kit (Active Motif, Carlsbad, CA). Briefly, cells cultured to 70-80% confluence were harvested and fixed with 1% freshly prepared formaldehyde. The fixed chromatin was sonicated into fragments ranging from 200 to 1000 bp and then immunoprecipitated using corresponding antibodies. The precipitated DNA was subsequently amplified using specific qPCR primers (<u>Table S5</u>).

# Co-immunoprecipitation (Co-IP)

Considering that c-JUN and NRF2 naturally associate into heterogeneous oligomers [32], we examined the interaction between c-JUN and NRF2 proteins through Co-IP methods. Briefly, cell lysates were first incubated with anti-c-JUN, anti-NRF2, or IgG. Subsequently, the immune complex was enriched and separated with protein A/G magnetic beads. Finally, the Co-IP proteins were detected by Western blotting with anti-c-JUN or anti-NRF2 anti-bodies.

### Mouse xenograft model

Eight-week-old BALB/c male nude mice were purchased from GemPharmatech (Nanjing) and bred under specific-pathogen-free (SPF) conditions in the Laboratory Animal Center, West China Hospital, Sichuan University. All animal studies were conducted in accordance with the National Research Council's Guide for the Care and Use of Laboratory Animals (USA) and were approved by the Experimental Animal Ethics Committee of West China Hospital in Sichuan University (No.: 2019-772).

Nude mice were divided into two groups (n = 5per group, randomly).  $1 \times 10^6$  NROB1-KD cells of A549 and H1437 were subcutaneously injected into the left armpit of each mouse, respectively, while the same number of wildtype cells from A549 and H1437 were injected into the right armpit of each mouse. Tumor size and body weight were measured twice a week, and tumor volumes were calculated as follows: Volume  $(mm^3) = (length \times width^2)/2$ . To investigate the in vivo effect of RSL3, once the tumor volume reached 200 mm<sup>3</sup>, mice were treated with 10 mg/kg RSL3 intratumorally every two or three days for three weeks. After euthanization, tumors were dissected, and the internal MDA and iron levels were measured.

# Statistical analysis

All experiments were completed with at least three replicates, presented as mean  $\pm$  SD. The means of two groups were compared using unpaired Student's t-tests. One-way analysis of variance (ANOVA) was used for comparisons among different groups. All data were analyzed by SPSS 19.0 (IBM, New York). A *P* value < 0.05 was considered statistically significant.

# Results

NROB1 protects against erastin- or RSL3induced ferroptosis in lung cancer cells

To explore the role of NROB1 in lung cancer, we initially selected six lung cancer cell lines. Three of these (A549, H1437, and H460) exhibited

constitutive NROB1 expression, while the other three (H1975, H1299, and H838) did not. Using lentiviral vectors, we established six cell lines that stably overexpressed exogenous NROB1 and three cell lines that down-regulated NROB1 expression (Figure S1). To mitigate potential off-target effects, we restored NROB1 expression in the NROB1-depleted cells by overexpressing a shRNA-resistant NROB1 mutant, which contained an 11-nt mismatch to the shNROB1 sequence (Table S1). NROB1 expression was verified across all cell lines (Figure S1).

These cell lines were treated with various concentrations of RSL3 ((1S, 3R)-RSL3) to inhibit glutathione peroxidase 4 (GPX4) activity and induce ferroptosis [27]. The data revealed that RSL3 reduced cell viability in a dose-dependent manner. Moreover, NROB1-overexpression (NROB1-OE) mitigated this decrease in viability (Figure 1A-F), while down-regulating NROB1 accelerated cell death (Figure 1A-C). Restoring NROB1 expression restricted cell line sensitivity in NROB1-knockdown (NROB1-KD) cells (Figure 1A-C). When treating the cells with another commonly used ferroptosis inducer erastin, which inhibits the system X<sub>c</sub> activity of cystine import [3], NROB1 also protected against erastin-induced cell death (Figure 1G-L). We selected RSL3 to induce ferroptosis in subsequent investigations.

To further confirm NROB1's involvement in ferroptosis, we measured the intracellular levels of iron, ROS, GSH, and MDA (an end product of lipid peroxidation) in lung cancer cells treated with RSL-3. As anticipated, NROB1-OE decreased intracellular levels of iron, MDA, and ROS, and increased intracellular GSH levels (Figure 2A-M). Conversely, NROB1-knockdown (NROB1-KD) increased levels of iron, MDA, and ROS, and decreased GSH levels (Figure 2A-C, 2E-G, 2I-K, 2M). Additionally, rescuing the expression of NROB1 in NROB1-KD cells increased GSH levels and reduced iron, MDA, and ROS levels (Figure 2A-C, 2E-G, 2I-K, 2M). Collectively, these results indicate that NROB1 suppresses ferroptosis by regulating intracellular levels of iron, MDA, ROS, and GSH.

NROB1 regulates the expression of ferroptosisrelated genes

Erastin and RSL3 have been reported to target system  $X_{c}^{-}$  and GPX4 respectively. We investi-

gated the expression levels of system  $X_c^-$  and GPX4 in lung cancer cells with either overexpressed or down-regulated NROB1. Results did not demonstrate an evident effect of NR-OB1 on the protein levels of system  $X_c^-$  and GPX4 (Figure S2), suggesting alternative mechanisms driving NROB1-suppression of ferroptosis in these cells.

Considering NROB1 acts as a transcriptional factor, we performed RNA-seq in NROB1overexpressed and -knockdown A549 cells (Raw sequence data were submitted to GEO Profiles under accession number: GSE226285). We identified that 375 genes were up-regulated and 200 genes were down-regulated in NROB1-OE cells (FDR < 0.05,  $|\log 2$  (fold change)|  $\geq 1$ , Table S6), and 281 genes were up-regulated and 228 genes were down-regulated in NROB1-KD cells (FDR < 0.05,  $|\log 2$  (fold change) $| \ge 1$ , Table S7). Among 478 genes involved in ferroptosis (FerrDb V2, http://www.zhounan.org/ ferrdb/current/), twelves were found to be differently expressed in NROB1-KD or/and NROB1-OE cells (Figure 3A-D; Tables S8, S9). Among them, ATF3, GOT1, c-JUN and CBS regulate cysteine metabolism and thereby affect GSH metabolism [33-36]; NRF2 affects ROS levels by regulating antioxidant gene expression [31]; NCOA4, HSPB1 and HMOX1 are involved in the regulation of intracellular iron levels [37-39]; SAT1 regulates lipid metabolism by controlling lipid peroxidation levels [40]; SLC38A1 enhances L-glutamine absorption, thus affecting glutamine metabolism [41]; and AKR1C2 [42] and CS [43] are involved in lipid peroxidation and lipid metabolism, respectively. Collectively, the differential expression of these genes suggests that NROB1 inhibits ferroptosis by regulating intracellular levels of iron, lipid peroxidation and GSH.

The different expression of *c-JUN* was observed in both NROB1-OE and NROB1-KD cells. c-JUN, the first identified oncogenic transcription factor [44], has been found to transcriptionally upregulate CBS expression, leading to GSH increase and ferroptosis reduction in liver cancer [35]. Additionally, NRF2 also transcriptionally promotes CBS expression to resist ferroptosis in ovarian cancer cells [45]. Here, *c-JUN*, *NRF2*, and *CBS* expression was observed to be significantly decreased in the NROB1-KD cells (**Figure 3B**, **3D**). Moreover, we extracted RNA-seq data from lung cancer patients (n = 1,172) in the





**Figure 1.** NROB1 protects against RSL3- or erastin-induced cell death in lung cancer cells. (A-F) Cell viabilities of different lung cancer cells including A549 (A), H1437 (B), H460 (C), H1299 (D), H1975 (E) and H838 (F) under the treatment with different concentrations of RSL3 (0, 0.5, 1, 5, 10  $\mu$ M). (G-L) Cell viabilities of different lung cancer cells including A549 (G), H1437 (H), H460 (I), H1299 (J), H1975 (K) and H838 (L) under the treatment with different concentrations of erastin (0, 5, 10, 15, 20  $\mu$ M). Vector: overexpression vehicle control, NROB1 OE: NROB1-overexpression, shCtrl: knockdown vehicle control, shNROB1: NROB1-knockdown, shNROB1-res: rescued NROB1-expression after NROB1-knockdown. Data are presented as mean ± SD, n = 3, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.

cBioPortal for Cancer Genomics Database (http://cbioportal.org) to explore the correlation between the expression levels of NROB1 and c-JUN, NRF2 and CBS. We found that the NROB1 expression was activated in the tumors from more than half of the patients (Figure S3A, RNA-Seq by Expectation-Maximization (RSEM) > 0). In these NROB1-activated lung tumors, we observed that the expression level of NROB1 was positively correlated with that of NRF2 (Figure 3E), c-JUN (Figure 3F) and CBS (Figure **3G**) separately, and similarly, the expression level of CBS was also correlated with NRF2 (Figure S3B) and c-JUN (Figure S3C), supporting that NRF2 and c-JUN promote CBS transcription. Thus, we proposed that the four genes of NROB1, c-JUN, NRF2 and CBS may be involved in a cross-talk network in lung cancer cells (Figure 3H), although the mechanisms involved need to be further elucidated. Furthermore, it was confirmed that the expression of *c-JUN*. NRF2 and CBS was regulated by NROB1 (Figure 31-0). Therefore, the three genes of c-JUN, NRF2, and CBS were included in further investigations into the mechanism by which NROB1 antagonizes ferroptosis.

NROB1-mediated ferroptosis resistance depends on the activities of c-JUN, NRF2 and CBS

To further investigate the role of NRF2, c-JUN and CBS in NROB1-driven inhibition of ferroptosis, we evaluated the effect of NRF2 and c-JUN on NR0B1-mediated resistance to RSL3induced ferroptosis. First, we treated NRF2 or c-JUN knockdown lung cancer cells with varying concentrations of RSL3 and observed that down-regulation of NRF2 or c-JUN accelerated cell death, increased the intracellular levels of iron, MDA, and ROS, and reduced intracellular GSH levels (Figures S4 and S5). These findings suggest that both NRF2 and c-JUN contribute to the suppression of ferroptosis in lung cancer cells. In NROB1-KD cells, we discovered that overexpression of NRF2 or c-JUN increased cell survival (Figure 4A, 4B) and decreased the intracellular iron (Figure 4C, 4D) and MDA levels (Figure 4E, 4F). In NROB1-OE cells, knockdown of NRF2 or c-JUN enhanced RSL3-induced cell death (Figure 4G, 4H) and elevated intracellular iron (Figure 4I, 4J) and MDA levels (Figure 4K, 4L). These results suggest that the ferroptosis-resistance mediated by NROB1 is



**Figure 2.** NROB1 restrains RSL3 induced ferroptosis in lung cancer cells. (A-D) Relative MDA levels in the lung cancer cells of A549 (A), H1437 (B), H460 (C), H1299 (D), H1975 (D) and H838 (D) under the treatment with different concentrations of RSL3 (0, 1, 5  $\mu$ M). (E-H) Relative iron levels in the cells of A549 (E), H1437 (F), H460 (G), H1299 (H), H1975 (H) and H838 (H) treated with RSL3. (I-L) Relative ROS levels in the cells of A549 (I), H1437 (J), H460 (K), H1299 (L), H1975 (L) and H838 (L) treated with RSL3. (M) Relative GSH levels in the lung cancer cells treated with RSL3. Data are presented as mean  $\pm$  SD, n = 3, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.





**Figure 3.** Transcriptomic data reveals the ferroptosis-related genes under the NROB1 regulation. (A) Venn Diagram showing the numbers of differentially expressed genes (DEGs) obtained by RNA-Seq in NROB1-OE and -KD A549 cells (FDR < 0.05, |log2 (fold change)|  $\geq$  1), and that reportedly involved in ferroptosis (FerrDb V2). (B) Nine ferroptosis-related DEGs identified in NROB1-KD cells. (C) Four ferroptosis-related DEGs identified in NROB1-OE cells. (D) Heat map showing the different expression of *NROB1* and the 12 ferroptosis-related DEGs. (E-G) The expression level of three ferroptosis-associated DEGs, including *NRF2* (E), *c-JUN* (F) and *CBS* (G), were positively correlated with the *NROB1* expression in lung tumors (based on transcriptomic data from the cBioPortal for Cancer Genomics Database). (H) Cross-talk between the four genes of *NROB1*, *c-JUN*, *NRF2* and *CBS*. Solid arrows show the reported links and dashed arrows indicate the speculated regulatory pathways. (I-K) The expression levels of *NRF2* (I), *c-JUN* (J) and *CBS* (K) were verified by real-time quantitative PCR analysis in different lung cancer cells. Data are presented as mean  $\pm$  SD, n = 3, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001. (L-0) The protein levels of c-JUN, NRF2 and CBS were verified in the cells of A549 (L), H1437 (M), H460 (N), H1299 (O), H1975 (O) and H838 (O) by Western Blot analysis.

associated with the upregulation of the NRF2 and c-JUN.

Subsequently, cells were treated with a CBS inhibitor, AOA hemihydrochloride (AOAA), revealing that AOAA significantly reduced the effect of NROB1 on cell viability while inhibiting the sup-

pressive effect of NROB1 on RSL3-induced cell death (**Figure 5A**, **5B**). Additionally, siRNA was used to reduce CBS expression (<u>Figure S6</u>); similar effects were found to that of AOAA on the RSL3-induced cell death (**Figure 5C**, **5D**). Concurrently, we observed that inhibiting CBS activity with AOAA or siRNA in NROB1-OE cells

NROB1 suppresses ferroptosis in lung cancer



**Figure 4.** NROB1 suppressing ferroptosis depends on the activities of c-JUN and NRF2. (A, B) Cell viabilities of NROB1-KD A549 (A) and H1437 (B) cells under the combined treatments with the overexpression of c-JUN or/and NRF2 and different concentrations of RSL3. (C, D) Relative iron levels in the NROB1-KD A549 (C) and H1437 (D) cells under the combined treatments with the overexpression of c-JUN or/and NRF2 and different concentrations of RSL3. (E, F) Relative MDA levels in the NROB1-KD A549 (E) and H1437 (F) cells under the combined treatments with the overexpression of c-JUN or/and NRF2 and different concentrations of RSL3. (G, H) Cell viabilities of NROB1-OE A549 (G) and H1437 (H) cells under the combined treatments with the downregulation of c-JUN or/and NRF2 and different concentrations of RSL3. (I, J) Relative iron levels in the NROB1-OE A549 (I) and H1437 (J) cells under the combined treatments with the downregulation of c-JUN or/and NRF2 and different concentrations of RSL3. (K, L) Relative MDA levels in the NROB1-OE A549 (K) and H1437 (L) cells under the combined treatments with the downregulation of c-JUN or/and NRF2 and different concentrations of RSL3. (K, L) Relative MDA levels in the NROB1-OE A549 (K) and H1437 (L) cells under the combined treatments with the downregulation of c-JUN or/and NRF2 and different concentrations of RSL3. (K, L) Relative MDA levels in the NROB1-OE A549 (K) and H1437 (L) cells under the combined treatments with the downregulation of c-JUN or/and NRF2 and different concentrations of RSL3. Vector: overexpression vehicle control, shCtrl: knockdown vehicle control. Data are presented as mean  $\pm$  SD, n = 3, \*P < 0.05, \*\*P < 0.01.

distinctly decreased GSH levels (**Figure 5E-H**) and increased iron (**Figure 5I-L**) and MDA levels (**Figure 5M-P**). These findings indicate that inhibiting CBS activity mitigated the suppressive effect of NROB1 on ferroptosis, suggesting that the NROB1-driven ferroptosis-resistance also depends on the upregulation of CBS.

# NROB1 directly promotes the expression of NRF2 and c-JUN but not CBS

We next investigated whether NROB1, functioning as a transcriptional factor, directly promotes CBS expression. Through in silico analysis (http://jaspar.genereg.net) using the animal transcription factors database (HumanTFDB V3.0, http://bioinfo.life.hust.edu.cn/AnimalTF-DB), we predicted three potential NROB1binding elements (NREs) in the CBS promoter region from -2640 bp to +231 bp (Figure 6A). After constructing CBS-driven luciferase expression vectors with various promoter length, we observed that the NROB1 expression upregulated the CBS promoter activity (Figure 6B, 6C). However, the chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis did not detect NROB1 binding to the aforementioned three predicted sites in the CBS promoter in two lung cancer cells (Figure 6D, 6E), suggesting that NROB1 might indirectly enhance CBS transcription.

Given that NRF2 and c-JUN have been reported to transcriptionally upregulate CBS expression [33, 34] and that NROB1 was found to promote the expression of NRF2 and c-JUN in this study, we hypothesized that NROB1 may directly influence the transcription of *c-JUN* and *NRF2*, and that the increased expression of these two genes further enhances CBS transcription. To validate this hypothesis, we predicted three potential NREs in the promoter regions of NRF2 (from -2335 bp to +250 bp, **Figure 6F**) and c-JUN (from -2037 bp to +109 bp, **Figure 6G**). Subsequent luciferase activity assays revealed that NROB1 notably upregulated the promoter activities of NRF2 and c-JUN (**Figure 6H, 6I**). Moreover, the ChIP-qPCR assay demonstrated that NROB1 bound to the promoter regions of NRF2 and c-JUN (**Figure 6J, 6K**), suggesting that NROB1 directly promotes the transcription of NRF2 and c-JUN.

### NROB1 upregulates the CBS expression through enhancing the transcriptional activity of NRF2 and c-JUN

NRF2 and c-JUN have been reported to form heterodimers that act on target genes containing antioxidant response elements (AREs) in the promoter region [32]. In this context, we confirmed that c-JUN and NRF2 formed a complex in lung cancer cells (Figure 7A) and identified three potential ARE sites in the CBS promoter (Figure 7B). We observed that overexpression of c-JUN and/or NRF2 distinctly enhanced CBS promoter activity in NROB1-KD cells (Figure 7C), while down-regulating the expression of c-JUN and/or NRF2 decreased CBS promoter activity in NROB1-OE cells (Figure **7D**). The ChIP-qPCR assay revealed that both c-JUN and NRF2 bound to one of the three predicted ARE sites in the CBS promoter (Figure 7E, 7F), suggesting that the NRF2 and c-JUN dimer directly regulates CBS promoter activity.

Moreover, we discovered that overexpression of NRF2 and/or c-JUN significantly increased CBS expression at the mRNA and protein levels in NROB1-KD cells (**Figure 7G-J**), while in NROB1-OE cells, knockdown of NRF2 and/or c-JUN markedly decreased CBS expression (**Figure 7K-N**). In summary, these findings revealed that NROB1 promoted CBS expression by upregulating the transcriptional activity of NRF2 and c-JUN.





**Figure 5.** NROB1 suppressing ferroptosis depends on the CBS activity. (A, B) The effects of CBS inhibitor AOAA on the cell viabilities of NROB1-OE A549 (A) and H1437 (B) cells under the treatments with RSL3. (C, D) The effects of CBS-KD with siCBS on the cell viabilities of NROB1-OE A549 (C) and H1437 (D) cells under the treatments with RSL3. (E, F) Relative GSH levels in the NROB1-OE A549 (E) and H1437 (F) cells treated with RSL3 and AOAA. (G, H) Relative GSH levels in the NROB1-OE A549 (G) and H1437 (H) cells treated with RSL3 and siCBS. (I, J) Relative iron levels in the NROB1-OE A549 (G) and H1437 (H) cells treated with RSL3 and siCBS. (I, J) Relative iron levels in the NROB1-OE A549 (I) and H1437 (J) cells treated with RSL3 and AOAA. (K, L) Relative iron levels in the NROB1-OE A549 (K) and H1437 (L) cells treated with RSL3 and siCBS. (M, N) Relative MDA levels in the NROB1-OE A549 (M) and H1437 (N) cells treated with RSL3 and AOAA. (O, P) Relative MDA levels in the NROB1-OE A549 (O) and H1437 (P) cells treated with RSL3 and siCBS. Vector: overexpression vehicle control. Data are presented as mean  $\pm$  SD, n = 3, \*P < 0.05, \*\*P < 0.01, \*\*P < 0.001.

# NROB1-KD restrains the tumor growth and facilitates RSL3-induced ferroptosis

To further explore the effect of NROB1 on in vivo tumor growth, we subcutaneously implanted NR0B1-KD lung cancer cells into nude mice. We observed that NROB1-KD significantly inhibited tumor growth of lung cancer cells (Figure **8A**, **8B**), and the size and weight of xenografts were notably reduced in NROB1-KD lung cancer cells (Figure 8C-F). Additionally, when the xenografts reached approximately 200 mm<sup>3</sup>, we treated the tumor-bearing mice with RSL3 and notably observed that RSL3 treatment more effectively restrained tumor growth in mice implanted with NROB1-KD lung cells juxtaposed to the control group implanted with wild type NROB1-expressing cells (Figure 8G, 8H). This finding was further substantiated by the examination of xenograft size and weight (Figure 8I-L). Moreover, we found that levels of MDA and iron were significantly increased in the NROB1-KD xenograft compared to the control (Figure 8M-P). These results suggest that NROB1 depletion restrains tumor growth and facilitates RSL3-induced ferroptosis in vivo.

Furthermore, we examined the expression levels of NROB1, NRF2, c-JUN and CBS in the xeno-

grafts. Consistent with the outcomes of the *in vitro* experiments, we found that the expression of NRF2, c-JUN and CBS was markedly decreased in the xenografts formed by the NROB1-KD lung cancer cells (**Figure 8Q**). In summary, our findings revealed that NROB1 promoted the *in vivo* tumor formation of lung cancer cells and resisted ferroptosis through upregulating the NRF2/c-JUN-CBS signaling activity (**Figure 8R**).

### Discussion

Ferroptosis can typically be induced by inhibiting cysteine uptake or by inactivating the lipid repair enzyme GPX4. In lung cancer cells, our current study demonstrated that NROB1 suppressed ferroptosis. We observed that NROB1 regulated the transcriptional levels of 12 ferroptosis-related genes. This study primarily focused on the signaling pathway involving the molecules NRF2, c-JUN, and CBS, revealing that NROB1 directly promoted the transcription of *NRF2* and c-JUN. Furthermore, the upregulation of NRF2 and c-JUN subsequently enhanced CBS expression, bolstering ferroptosis resistance. For the first time, this study revealed that the ferroptosis-suppressing capability of



**Figure 6.** NROB1 directly promotes the transcription of NRF2 and c-JUN but not CBS. (A) Schematic of the CBS promoter depicting the location of promoter constructs (full length (FL), P1 and P2) and that of predicted NROB1 binding elements (NRE). (B, C) Luciferase reporter assays showed that the luciferase activity of CBS promoter constructs

(FL and P1) were decreased in NROB1-KD (B) and increased in NROB1-OE cells (C). (D, E) ChIP-PCR assays showed that the predicted NREs in the *CBS* promoter were not detected in the cells of A549 (D) and H1437 (E). (F, G) Schematic of the NRF2 (F) and c-JUN (G) promoters depicting the location of promoter constructs (FL, P1, P2 and P3) and that of predicted NROB1 binding elements (NRE). (H, I) Luciferase reporter assays showed that the promoter luciferase activity of *NRF2* (FL and P1) and c-JUN (FL, P1 and P2) were decreased in NROB1-KD (H) and increased in NROB1-OE cells (I). (J, K) ChIP-PCR assays showed that the predicted NREs in the promoters of *NRF2* (NRE1 and NRE3) and *c-JUN* (NRE2 and NRE3) were verified in the cells of A549 (J) and H1437 (K). Data are presented as mean  $\pm$  SD, n = 3, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001. n.s. means no significant difference.





**Figure 7.** NROB1 upregulates the CBS expression via the enhancement of the NRF2 and c-JUN activities. (A) The complex of NRF2 and c-JUN was verified in A549 cells by Co-IP assay. (B) Schematic of the *CBS* promoter depicting the predicted antioxidant response elements (AREs) in the *CBS* promoter. (C) Luciferase reporter assays showed that the luciferase activity of *CBS* promoter constructs (FL and P1) were increased in NROB1-KD A549 cells with the overexpression of c-JUN or/and NRF2. (D) Luciferase reporter assays showed that the luciferase activity of *CBS* promoter constructs (FL and P1) were decreased in NROB1-OE A549 cells with the downregulation of c-JUN or/and NRF2 (shNRF2, sh c-JUN). (E, F) ChIP-PCR assays showed that one predicted ARE site in the *CBS* promoter (ARE2) was verified in the cells of A549 (E) and H1437 (F). (G, H) The mRNA levels of *CBS* were increased in NROB1-KD A549 (I) and H1437 (J) cells with the overexpression of c-JUN or/and NRF2. (K, L) The mRNA levels of *CBS* were decreased in NROB1-OE A549 (K) and H1437 (L) cells with the downregulation of c-JUN or/and NRF2. (M, N) The CBS protein levels were decreased in NROB1-OE A549 (M) and H1437 (N) cells with the downregulation of c-JUN or/and NRF2. (M, N) The CBS protein levels were decreased in NROB1-OE A549 (M) and H1437 (N) cells with the downregulation of c-JUN or/and NRF2. (M, N) The CBS protein levels were decreased in NROB1-OE A549 (M) and H1437 (N) cells with the downregulation of c-JUN or/and NRF2. Vector: overexpression vehicle control, shCtrl: knockdown vehicle control. Data are presented as mean  $\pm$  SD, n = 3, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001. n.s. means no significant difference.

NROB1 hinges on the NRF2/c-JUN-CBS pathway axis (Figure 8R).

Despite recent advancements, malignant tumors remain challenging to cure, with susceptibility to multidrug resistance (MDR) being a key obstacle [46]. Interestingly, drug-resistant cancer cells, particularly those in a mesenchymal state and prone to metastasis, have been reported to be highly susceptible to ferroptosis [47], indicating that ferroptosis may play a role in the drug responses during cancer therapy. Both RSL3 and erastin have demonstrated an enhancement of the antitumor effects of antitumor drugs, such as temozolomide [48. 49]. cisplatin [50, 51] and vemurafenib [52, 53]. Additionally, some ferroptosis inducers, including salazosulfapyridine [54], sorafenib (SRF) [55] and artemisinin [56] are also heralded for their considerable clinical value in tumor treatment. Nonetheless, ferroptosis inducers may activate a negative feedback loop that inhibits ferroptosis [45]. In this study, we found that RSL3 treatment increased the expression of NROB1, c-JUN, NRF2, and CBS, along with ferroptosis (Figure S7), suggesting that the stress from ferroptosis inducers, similar to some other anti-cancer chemicals [57], may trigger epigenetic reprogramming in cancer cells. Therefore, further investigation into mechanism of how ferroptosis inducers activate ferroptosis suppressors is necessary for developing ferroptosis-based therapies.

Several nuclear receptor families that regulate drug metabolism and transport are gaining recognition for their potential to overcome MDR in malignancies [58]. Most nuclear receptor-tar-





**Figure 8.** NROB1-depletion restrains the tumor growth and facilitates RSL3-induced ferroptosis. (A, B) Representative subcutaneous tumors from mice implanted with NROB1-KD cells of A549 (A) and H1437 (B). (C, D) The xenografts sizes of (A and B). (E, F) The xenografts weight of (A and B). (G, H) Representative subcutaneous tumors from mice implanted with NROB1-KD cells of A549 (G) and H1437 (H) after the treatment with RSL3. (I, J) The xenografts sizes of (G and H). (K, L) The xenografts weight of (G and H). (M, N) Relative MDA level changes in (G and H) xenografts. (O, P) Relative iron level changes in (G and H) xenografts. (Q) The protein levels of NRF2, c-JUN and CBS in (G and H) xenografts. (R) Schematic depiction of the mechanisms underlying inhibition of ferroptosis by NROB1 through NRF2/c-JUN-CBS signaling. Data are presented as mean  $\pm$  SD, n = 3, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001.

geted genes are implicated in the development of tumor drug resistance, and treatments targeting these nuclear receptors may provide new avenues to mitigate, or even prevent, drug resistance. NROB1, as a member of the nuclear receptor superfamily, has been reported to enhance resistance to chemotherapeutic agents such as cisplatin and topotecan [22, 25]. In this study, we identified that NROB1 reduced the sensitivity of lung cancer cells to erastin and RSL3-induced ferroptosis. Our additional study also revealed that NROB1 enhanced the survivability of hepatocellular cancer cells treated with sorafenib (data not shown). These findings suggest that NROB1 may be a target for overcoming MDR in cancer treatment.

CBS, acting as an essential component in the trans-sulfuration pathway, converts homocysteine to cysteine, a crucial precursor for glutathione [36]. CBS-mediated ferroptosis resistance has been found in many cancers, such as liver [36], breast [59] and ovarian [45] cancers, and neuroblastoma [60]. Recently, some factors such as c-JUN, NRF2 [35, 45] and non-coding RNAs [13, 61], have been observed to regulate ferroptosis by controlling CBS activity in cancer cells. Moreover, CBS inhibitors have been identified to facilitate antitumor effects [62]. In the present study, we found that NR-OB1 suppressed ferroptosis through promoting NRF2/c-JUN-mediated CBS expression in lung cancer cells, and the CBS inhibitor AOAA circumvented the NROB1 repression on ferroptosis. Although these findings support future targeted cancer therapies based on pharmacological CBS inhibition, the controversial roles of CBS in human cancers should be considered. In some cancers, such as glioma [63] and hepatocellular carcinoma [64], CBS is demonstrated to suppress tumorigenicity. Therefore, more tumor type-specific investigations of CBS function are necessary prior to CBS-based targeted therapies.

In conclusion, our study unveils a unique role for NROB1 in suppressing ferroptosis in lung cancer cells. NROB1 enhances ferroptosis resistance through promoting CBS expression driven by NRF2/c-JUN upregulation. Our findings provided new insights indicating that NROB1 is involved in drug resistance during cancer therapy.

### Acknowledgements

We thank the staff of the Laboratory Animal Center and the Research Core Facility, West China Hospital, Sichuan University, China, for their assistance in mouse handling and instrument operation. This work was supported by Grants from the National Natural Science Foundation of China (81773159 and 81871-203), and the Sichuan Science and Technology Program (2022NSFSC0679).

### Disclosure of conflict of interest

None.

Address correspondence to: Yuan Yang and Yun-Qiang Liu, Department of Medical Genetics and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. E-mail: yangyuan@scu.edu.cn (YY); yq\_liu@scu.edu.cn (YQL)

### References

- Siegel RL, Miller KD, Wagle NS and Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48.
- [2] Lim ZF and Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12: 134.
- [3] Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022; 185: 2401-2421.
- [4] Zhang C, Liu X, Jin S, Chen Y and Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 2022; 21: 47.
- [5] Freire Boullosa L, Van Loenhout J, Flieswasser T, De Waele J, Hermans C, Lambrechts H, Cuypers B, Laukens K, Bartholomeus E, Siozopoulou V, De Vos WH, Peeters M, Smits ELJ and Deben C. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol 2021; 42: 101949.
- [6] Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huang X, Zhu Q, Zhao Z, Gao Q, Wen C, Liu W, Ma W, Feng J, Sun X, Duan T, Lai-Han Leung E, Xie T, Wu Q and Sui X. Curcumenol triggered ferroptosis in lung cancer cells via IncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater 2021; 13: 23-36.
- [7] Wang L, Fu H, Song L, Wu Z, Yu J, Guo Q, Chen C, Yang X, Zhang J, Wang Q, Duan Y and Yang Y. Overcoming AZD9291 resistance and metastasis of NSCLC via ferroptosis and multitarget interference by nanocatalytic sensitizer plus AHP-DRI-12. Small 2023; 19: e2204133.
- [8] Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017; 551: 639-643.
- [9] Wang X, Chen Y, Wang X, Tian H, Wang Y, Jin J, Shan Z, Liu Y, Cai Z, Tong X, Luan Y, Tan X, Luan

B, Ge X, Ji H, Jiang X and Wang P. Stem cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res 2021; 81: 5217-5229.

- [10] Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, Wang L, Chen D, Fan S, Chen H, Piao HL, Qiao Q, Xu Z, Zhang J, Zhao J, Zhang S, Yin Y, Peng C, Li X, Liu Q, Liu H and Wang Y. RBMS1 regulates lung cancer ferroptosis through translational control of SL-C7A11. J Clin Invest 2021; 131: e152067.
- [11] Bebber CM, Thomas ES, Stroh J, Chen Z, Androulidaki A, Schmitt A, Hohne MN, Stuker L, de Padua Alves C, Khonsari A, Dammert MA, Parmaksiz F, Tumbrink HL, Beleggia F, Sos ML, Riemer J, George J, Brodesser S, Thomas RK, Reinhardt HC and von Karstedt S. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat Commun 2021; 12: 2048.
- [12] Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, Yang R, Xiao D, Cheng Y, Liu S, Zhou H, Cao Y, Yu W, Muegge K, Yu H and Tao Y. A G3BP1-interacting IncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 2018; 78: 3484-3496.
- [13] Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y and Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26: 2329-2343.
- [14] Suntharalingham JP, Buonocore F, Duncan AJ and Achermann JC. DAX-1 (NROB1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab 2015; 29: 607-619.
- [15] Kelly VR, Xu B, Kuick R, Koenig RJ and Hammer GD. Dax1 up-regulates Oct4 expression in mouse embryonic stem cells via LRH-1 and SRA. Mol Endocrinol 2010; 24: 2281-2291.
- [16] Kim J, Chu J, Shen X, Wang J and Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008; 132: 1049-1061.
- [17] Zhang J, Liu G, Ruan Y, Wang J, Zhao K, Wan Y, Liu B, Zheng H, Peng T, Wu W, He P, Hu FQ and Jian R. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat Commun 2014; 5: 5042.
- [18] Swain A, Narvaez V, Burgoyne P, Camerino G and Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998; 391: 761-767.
- [19] Muscatelli F, Strom TM, Walker AP, Zanaria E, Recan D, Meindl A, Bardoni B, Guioli S, Zehet-

ner G, Rabl W, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994; 372: 672-676.

- [20] Garcia-Aragoncillo E, Carrillo J, Lalli E, Agra N, Gomez-Lopez G, Pestana A and Alonso J. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing's tumor cells. Oncogene 2008; 27: 6034-6043.
- [21] Conde I, Alfaro JM, Fraile B, Ruiz A, Paniagua R and Arenas MI. DAX-1 expression in human breast cancer: comparison with estrogen receptors ER-alpha, ER-beta and androgen receptor status. Breast Cancer Res 2004; 6: R140-148.
- [22] Liu XF, Li XY, Zheng PS and Yang WT. DAX1 promotes cervical cancer cell growth and tumorigenicity through activation of Wnt/betacatenin pathway via GSK3beta. Cell Death Dis 2018; 9: 339.
- [23] Abd-Elaziz M, Akahira J, Moriya T, Suzuki T, Yaegashi N and Sasano H. Nuclear receptor DAX-1 in human common epithelial ovarian carcinoma: an independent prognostic factor of clinical outcome. Cancer Sci 2003; 94: 980-985.
- [24] Nakamura Y, Suzuki T, Arai Y and Sasano H. Nuclear receptor DAX1 in human prostate cancer: a novel independent biological modulator. Endocr J 2009; 56: 39-44.
- [25] Oda T, Tian T, Inoue M, Ikeda J, Qiu Y, Okumura M, Aozasa K and Morii E. Tumorigenic role of orphan nuclear receptor NROB1 in lung adenocarcinoma. Am J Pathol 2009; 175: 1235-1245.
- [26] Lu Y, Liu Y, Liao S, Tu W, Shen Y, Yan Y, Tao D, Lu Y, Ma Y, Yang Y and Zhang S. Epigenetic modifications promote the expression of the orphan nuclear receptor NROB1 in human lung adenocarcinoma cells. Oncotarget 2016; 7: 43162-43176.
- [27] Koppula P, Zhuang L and Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021; 12: 599-620.
- [28] Seibt TM, Proneth B and Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 2019; 133: 144-152.
- [29] Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ and Cravatt BF. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 2017; 171: 696-709, e23.

- [30] Sporn MB and Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12: 564-571.
- [31] Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016; 63: 173-184.
- [32] Venugopal R and Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 1998; 17: 3145-3156.
- [33] Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 2020; 27: 662-675.
- [34] Kremer DM, Nelson BS, Lin L, Yarosz EL, Halbrook CJ, Kerk SA, Sajjakulnukit P, Myers A, Thurston G, Hou SW, Carpenter ES, Andren AC, Nwosu ZC, Cusmano N, Wisner S, Mbah NE, Shan M, Das NK, Magnuson B, Little AC, Savani MR, Ramos J, Gao T, Sastra SA, Palermo CF, Badgley MA, Zhang L, Asara JM, McBrayer SK, di Magliano MP, Crawford HC, Shah YM, Olive KP and Lyssiotis CA. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nat Commun 2021; 12: 4860.
- [35] Chen Y, Zhu G, Liu Y, Wu Q, Zhang X, Bian Z, Zhang Y, Pan Q and Sun F. O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cell Signal 2019; 63: 109384.
- [36] Hayano M, Yang WS, Corn CK, Pagano NC and Stockwell BR. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 2016; 23: 270-278.
- [37] Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R and Tang D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016; 12: 1425-1428.
- [38] Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, Wang H, Cao L and Tang D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 2015; 34: 5617-5625.
- [39] Kwon MY, Park E, Lee SJ and Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015; 6: 24393-24403.
- [40] Ou Y, Wang SJ, Li D, Chu B and Gu W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A 2016; 113: E6806-E6812.

- [41] McGivan JD and Bungard Cl. The transport of glutamine into mammalian cells. Front Biosci 2007; 12: 874-882.
- [42] Gagliardi M, Cotella D, Santoro C, Cora D, Barlev NA, Piacentini M and Corazzari M. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis 2019; 10: 902.
- [43] Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd and Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060-1072.
- [44] Vogt PK. Jun, the oncoprotein. Oncogene 2001; 20: 2365-2377.
- [45] Liu N, Lin X and Huang C. Activation of the reverse transsulfuration pathway through NRF2/ CBS confers erastin-induced ferroptosis resistance. Br J Cancer 2020; 122: 279-292.
- [46] Garcia-Mayea Y, Mir C, Masson F, Paciucci R and LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60: 166-180.
- [47] Jiang X, Stockwell BR and Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22: 266-282.
- [48] Yang FC, Wang C, Zhu J, Gai QJ, Mao M, He J, Qin Y, Yao XX, Wang YX, Lu HM, Cao MF, He MM, Wen XM, Leng P, Cai XW, Yao XH, Bian XW and Wang Y. Inhibitory effects of temozolomide on glioma cells is sensitized by RSL3-induced ferroptosis but negatively correlated with expression of ferritin heavy chain 1 and ferritin light chain. Lab Invest 2022; 102: 741-752.
- [49] Chen L, Li X, Liu L, Yu B, Xue Y and Liu Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathioninegamma-lyase function. Oncol Rep 2015; 33: 1465-1474.
- [50] Li M, Chen X, Wang X, Wei X, Wang D, Liu X, Xu L, Batu W, Li Y, Guo B and Zhang L. RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction. Biochem Pharmacol 2021; 192: 114741.
- [51] Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L. Erastin/sorafenib induces cisplatin-resistant nonsmall cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett 2020; 19: 323-333.
- [52] Chang MT, Tsai LC, Nakagawa-Goto K, Lee KH and Shyur LF. Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacol Res 2022; 178: 106148.

- [53] Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, Wong DJL, Atefi M, Shirazi R, Wang X, Braas D, Grasso CS, Palaskas N, Ribas A and Graeber TG. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 2018; 33: 890-904, e5.
- [54] Gout PW, Buckley AR, Simms CR and Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 2001; 15: 1633-1640.
- [55] Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B and Galmiche A. Irondependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer 2013; 133: 1732-1742.
- [56] von Hagens C, Walter-Sack I, Goeckenjan M, Osburg J, Storch-Hagenlocher B, Sertel S, Elsasser M, Remppis BA, Edler L, Munzinger J, Efferth T, Schneeweiss A and Strowitzki T. Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat 2017; 164: 359-369.
- [57] Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO and Pessoa C. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 2019; 14: 1164-1176.
- [58] Chen Y, Tang Y, Guo C, Wang J, Boral D and Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83: 1112-1126.
- [59] Erdelyi K, Ditroi T, Johansson HJ, Czikora A, Balog N, Silwal-Pandit L, Ida T, Olasz J, Hajdu D, Matrai Z, Csuka O, Uchida K, Tovari J, Engebraten O, Akaike T, Borresen Dale AL, Kasler M, Lehtio J and Nagy P. Reprogrammed transsulfuration promotes basal-like breast tumor progression via realigning cellular cysteine persulfidation. Proc Natl Acad Sci U S A 2021; 118: e2100050118.
- [60] Floros KV, Chawla AT, Johnson-Berro MO, Khatri R, Stamatouli AM, Boikos SA, Dozmorov MG, Cowart LA and Faber AC. MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN-amplified neuroblastoma. Cell Stress 2022; 6: 21-29.
- [61] Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y, Ma M, Zhang Y, Xia H and Lv K. Hypoxia inducible IncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res 2021; 37: 91-106.
- [62] Zuhra K, Augsburger F, Majtan T and Szabo C. Cystathionine-beta-synthase: molecular regu-

lation and pharmacological inhibition. Biomolecules 2020; 10: 697.

- [63] Takano N, Sarfraz Y, Gilkes DM, Chaturvedi P, Xiang L, Suematsu M, Zagzag D and Semenza GL. Decreased expression of cystathionine beta-synthase promotes glioma tumorigenesis. Mol Cancer Res 2014; 12: 1398-1406.
- [64] Zhou YF, Song SS, Tian MX, Tang Z, Wang H, Fang Y, Qu WF, Jiang XF, Tao CY, Huang R,

Zhou PY, Zhu SG, Zhou J, Fan J, Liu WR and Shi YH. Cystathionine beta-synthase mediated PRRX2/IL-6/STAT3 inactivation suppresses Tregs infiltration and induces apoptosis to inhibit HCC carcinogenesis. J Immunother Cancer 2021; 9: e003031.

| Sequence     | Forward (5' -> 3')                                                                                                                                                                  | Description                                                                                                                                                                                                                                                            | References |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| shNR0B1      | GGGAACTCAGCAAATACTCAGTGAA                                                                                                                                                           |                                                                                                                                                                                                                                                                        | [1]        |
| chNPF2       |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        | [2 3]      |
| 51111112     |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        | [2, 5]     |
| sh c-JUN     | AACCTCAGCAACTTCAACCCA                                                                                                                                                               |                                                                                                                                                                                                                                                                        | [4, 5]     |
| siCBS        | CCAAGUGUGAGUUCUUCAA dTdT                                                                                                                                                            |                                                                                                                                                                                                                                                                        | [6, 7]     |
| NROB1-rescue | ggatocgocaca ATG gogggoggagaaccaccagt ggogggoggagactoct ctacaacat gott tat gagogogaag caa a cgo gogg ggogg ggagaaccac ggogggoggag gagaaccat ggo ggoggaggaggag ggo gga gga gga gga g | The bolded part indicates the promoter<br>and termination codon.<br>The red part indicates the part of<br>NROB1-rescue sequence after the<br>shNROB1 sequence has been modified<br>according to codon degeneracy.<br>The yellow part indicates the AM-Tag<br>sequence. |            |

#### Table S1. The sequences of plasmid constructions

#### References

- [1] Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ and Cravatt BF. Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer. Cell 2017; 171: 696-709, e623.
- [2] Fourtounis J, Wang IM, Mathieu MC, Claveau D, Loo T, Jackson AL, Peters MA, Therien AG, Boie Y and Crackower MA. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene. Respir Res 2012; 13: 92.
- [3] Ni S, Qian Z, Yuan Y, Li D, Zhong Z, Ghorbani F, Zhang X, Zhang F, Zhang Z, Liu Z and Yu B. Schisandrin A restrains osteoclastogenesis by inhibiting reactive oxygen species and activating Nrf2 signalling. Cell Prolif 2020; 53: e12882.
- [4] Zhou C, Martinez E, Di Marcantonio D, Solanki-Patel N, Aghayev T, Peri S, Ferraro F, Skorski T, Scholl C, Frohling S, Balachandran S, Wiest DL and Sykes SM. JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia. Leukemia 2017; 31: 1196-1205.
- [5] Snyder EL, Sandstrom DJ, Law K, Fiore C, Sicinska E, Brito J, Bailey D, Fletcher JA, Loda M, Rodig SJ, Dal Cin P and Fletcher CD. c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol 2009; 218: 292-300.
- [6] Duan X, Pan L, Deng Y, Liu Y, Han X, Fu H, Li Y, Li M and Wang T. Dandelion root extract affects ESCC progression via regulating multiple signal pathways. Food Funct 2021; 12: 9486-9502.
- [7] Yan J, Teng F, Chen W, Ji Y and Gu Z. Cystathionine beta-synthase-derived hydrogen sulfide regulates lipopolysaccharide-induced apoptosis of the BRL rat hepatic cell line in vitro. Exp Ther Med 2012; 4: 832-838.

| Primer name         | Forward (5' -> 3')                                | Description                                      |
|---------------------|---------------------------------------------------|--------------------------------------------------|
| c-JUN FL-F          | ATTTCTCTATCGATAGGTACCGGAATGTAACACAGACCTGAGG       | Amplification primers designed according to      |
| c-JUN P1-F          | ATTTCTCTATCGATAGGTACCAGCGCTTCCTAGAGGCTAC          | NROB1 binding elements (NREs) in the c-JUN       |
| c-JUN P2-F          | ATTTCTCTATCGATAGGTACCCAGTTTCGGGCAATACAAA          | promoter region.                                 |
| c-JUN P3-F          | ATTTCTCTATCGATAGGTACCCGCCGGTGGATGACTTC            |                                                  |
| <i>c-JUN</i> UR     | ACTTAGATCGCAGATCTCGAGCACGGGATGAGGTAATGCT          |                                                  |
| NRF2 FL-F           | ATTTCTCTATCGATAGGTACCTACACATAAATCCTGGGAGTGTC      | Amplification primers designed according to NREs |
| NRF2 P1-F           | ATTTCTCTATCGATAGGTACCTTTTGTGAGTACGTGAAAAAGA       | in the NRF2 promoter region.                     |
| NRF2 P2-F           | ATTTCTCTATCGATAGGTACCAGGGAGGAGCGCCTTAAGT          |                                                  |
| NRF2 UR             | ACTTAGATCGCAGATCTCGAGCGAGGTTTGCACGCTATAA          |                                                  |
| CBS FL-F            | CTGGCCGGTACCGCTAGCCTCGAGCCAGGATGGTCTCAATCTCTTGA   | Amplification primers designed according to the  |
| CBS FL-R            | CAACAGTACCGGATTGCCAAGCTTGGTGTTCCGATGCTGTTTTACTT   | CBS promoter region from -2640bp to +231bp.      |
| CBS-NROB1 P1-F      | AGAACATTTCTCTATCGATAGGTACCTTGGAAAATCTGGATGAGGGAA  | Amplification primers designed according to NREs |
| CBS-NROB1 P1-R      | TTGAGATGCAGATCGCAGATCTCGAGTCCGATGCTGTTTTACTTGGTT  | in the CBS promoter region.                      |
| CBS-NROB1 P2-F      | AGAACATTTCTCTATCGATAGGTACCACAGTCTCGCTCAGTCGCAC    |                                                  |
| CBS-NROB1 P2-R      | TTGAGATGCAGATCGCAGATCTCGAGCAAGATTTTTGGAGATTTTGCCG |                                                  |
| CBS-c-JUN/NRF2 P1-F | AGAACATTTCTCTATCGATAGGTACCTGGAAAATCTGGATGAGGGAAT  | Amplification primers designed according to the  |
| CBS-c-JUN/NRF2 P1-R | TTGAGATGCAGATCGCAGATCTCGAGGGGATTACAGGCACGCAC      | antioxidant response elements (AREs) in the CBS  |
| CBS-c-JUN/NRF2 P2-F | AGAACATTTCTCTATCGATAGGTACCTGTGAGCCTAGCACTTTTGGGAG | promoter region.                                 |
| CBS-c-JUN/NRF2 P2-R | TTGAGATGCAGATCGCAGATCTCGAGGGATTACAGGCACGCAC       |                                                  |

**Table S2.** Primers for amplification of promoter fragments with different lengths of NRF2, c-JUN andCBS

# Table S3. Primers for RT-qPCR

| Primer name | Forward (5' -> 3')   | Reverse (5' -> 3')    |
|-------------|----------------------|-----------------------|
| NROB1       | CATCAAGTGCTTTCTTTCCA | TGAGTATTTGCTGAGTTCCC  |
| c-JUN       | GGGAAGTGAGTTCGCCTGC  | GATGCCTCCCGCACTCTTACT |
| NRF2        | CCCAGCACATCCAGTCAGAA | CGTAGCCGAAGAAACCTCATT |
| CBS         | AAGGAAGCCAAGGAGCCC   | GCCGAACTTCTTCCCAATC   |
| GAPDH       | ACGGATTTGGTCGTATTGGG | CGCTCCTGGAAGATGGTGAT  |

# Table S4. The list of antibodies used in this study

| Antibody name | Catalogue number | Specificity       | Manufacturer              |
|---------------|------------------|-------------------|---------------------------|
| NR0B1         | #13538           | Rabbit monoclonal | Cell Signaling Technology |
| SLC7A11       | 26864-1-AP       | Rabbit Polyclonal | Proteintech               |
| GPX4          | 14432-1-AP       | Rabbit Polyclonal | Proteintech               |
| c-JUN         | #9165            | Rabbit monoclonal | Cell Signaling Technology |
| NRF2          | 16396-1-AP       | Rabbit Polyclonal | Proteintech               |
| CBS           | 14787-1-AP       | Rabbit Polyclonal | Proteintech               |
| lgG           | #3900            | Rabbit monoclonal | Cell Signaling Technology |
| AM-Tag        | #61677           | Rabbit Polyclonal | Active Motif              |

| Primer name     | Forward (5' -> 3')      |
|-----------------|-------------------------|
| c-JUN ChIP F1   | TATTTAGAACACCAACTCCCTG  |
| c-JUN ChIP R1   | AGATCCAGTTGCTTCCTCAA    |
| c-JUN ChIP F2   | TACTACTGCGTGACTTTATGCGA |
| c-JUN ChIP R2   | GCACACACACTCCATCCG      |
| c-JUN ChIP F3   | TGGGACTTCACAGAGCCACCTT  |
| c-JUN ChIP R3   | TGAGAATCCAAGTACGCTGCCA  |
| NRF2 ChIP F1    | CATAAAACATACGCACTGCAGAT |
| NRF2 ChIP R1    | AAATGCTGTGGAATCAACGA    |
| NRF2 ChIP F2    | GGGCTTCTCCGTTTGCCTTTG   |
| NRF2 ChIP R2    | GAACGCCCTCCTCTGAACTCCC  |
| NRF2 ChIP F3    | GGCTTTGCGAAGTCATCCAT    |
| NRF2 ChIP R3    | TGGGCTTTCAAGAGAGCTCAA   |
| CBS-NRE ChIP F1 | GCGTAGTGCTCCAGTTCTC     |
| CBS-NRE ChIP R1 | GAAACCTCGCCTCTACTA      |
| CBS-NRE ChIP F2 | TCTTTACCGTCCCTACCG      |
| CBS-NRE ChIP R2 | CCTCCCTCAGAGCCTTC       |
| CBS-NRE ChIP F3 | GTCGTGGCGAGTTTGAGA      |
| CBS-NRE ChIP R3 | TGGTGTTCCGATGCTGTT      |
| CBS-ARE ChIP F1 | AGGTTGCAGTGAGCTGAAAT    |
| CBS-ARE ChIP R1 | TTTTGAGACAGAATCTTTCTCTG |
| CBS-ARE ChIP F2 | ACCTGATGTTAGGGGTTCGA    |
| CBS-ARE ChIP R2 | TTTAGTAGAGACGGGGTTTCATC |
| CBS-ARE ChIP F3 | AATGCCACCTTCCAGAGCCT    |
| CBS-ARE ChIP R3 | GGCAGGAACTGACACGAAGAAC  |

 Table S5. The list of primers used for ChIP-PCR



**Figure S1.** Construction of cellular models with different expression levels of NROB1. Six lung cancer cell lines including A549, H1437, H460, H1975, H1299 and H838 were selected to generate the cellular models with stable exogenous overexpression (OE) of NROB1 and the models with down-regulated NROB1 (shNROB1). Additionally, the models with rescued NROB1 expression (shNROB1-res) were also constructed by overexpressing shRNA-resistant NROB1 mutant carrying an 11-nt mismatch to the shNROB1 sequence. A-D. Western blotting showed the protein levels of NROB1 in different cell models. E-J. The relative protein levels of NROB1 (versus GAPDH) in the NROB1-overexpression cell models. K-M. The relative protein levels of NROB1 in the NROB1-knock down and -rescue cell models. The protein levels of GAPDH were used as an internal control and the relative NROB1 protein levels (versus GAPDH) were calculated using Image J software. Data are presented as mean  $\pm$  SD, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.



Figure S2. The protein levels of GPX4 and system X<sub>c</sub> in lung cancer cells with different expression levels of NROB1.

|                   |           | · ,       |                     |           |           |
|-------------------|-----------|-----------|---------------------|-----------|-----------|
| up-regulated DEGs | log2(FC)  | FDR       | down-regulated DEGs | log2(FC)  | FDR       |
| AADAC             | 1.9123245 | 5.83E-06  | ACADVL              | -1.088053 | 0.0361912 |
| ABCC2             | 1.4832397 | 0.0409922 | ACER2               | -10.35902 | 0.0120548 |
| ABL2              | 2.5413591 | 7.09E-05  | AC01                | -1.134176 | 0.0486923 |
| ADM               | 2.2433735 | 0.0001531 | ACOX2               | -9.829723 | 0.019206  |
| ADPRHL1           | 3.3429897 | 0.0040965 | ACVR1               | -10.73697 | 0.0074047 |
| AFAP1             | 2.3345404 | 0.0014215 | ADCY7               | -10.35168 | 0.0319842 |
| AHDC1             | 9.7256503 | 0.0262899 | ADGRB2              | -9.329423 | 0.0046403 |
| AHRR              | 1.88168   | 0.0141755 | ADGRG2              | -9.941537 | 0.035031  |
| AJUBA             | 1.1860335 | 0.0459394 | AGPAT1              | -11.07236 | 0.0006658 |
| ALPK2             | 2.6731203 | 1.03E-09  | AKR1B1              | -1.133529 | 0.0426305 |
| AMD1              | 1.6414371 | 0.0389477 | APBB3               | -10.44087 | 0.0116927 |
| AMOTL2            | 1.8746922 | 6.41E-07  | ARAP1               | -10.35168 | 0.0221113 |
| ANKRD1            | 4.024687  | 6.77E-13  | ARF3                | -11.21067 | 0.0494418 |
| ANKRD40           | 3.5878918 | 0.0430756 | ARHGEF2             | -10.46148 | 0.0199225 |
| AP2B1             | 9.8765169 | 0.0003502 | ARHGEF37            | -9.451211 | 0.017437  |
| AP2S1             | 11.951285 | 0.0097783 | ARL4D               | -2.079168 | 0.0480236 |
| APOL2             | 9.6794801 | 0.026314  | ARRDC3              | -1.250854 | 0.0171249 |
| ARHGAP11A         | 1.2561074 | 0.0427939 | ASUN                | -11.28193 | 0.0133355 |
| ARID2             | 9.3663222 | 0.0400812 | BACH1               | -9.965784 | 0.0292015 |
| ATXN7L2           | 6.3966048 | 0.0040637 | BICD1               | -5.411814 | 0.0077291 |
| B3GALT5           | 1.5412146 | 0.0345323 | BIRC3               | -1.236014 | 0.0152097 |
| BCAR1             | 5.8302233 | 0.0047207 | BRD8                | -1.547609 | 0.0223731 |
| BCAR3             | 2.5620361 | 0.0311031 | BRSK1               | -10.12498 | 0.029274  |
| BCL2L11           | 8.3808218 | 0.0485002 | BTAF1               | -9.531381 | 0.027102  |
| BCLAF1            | 1.6984601 | 0.0078157 | BTG2                | -1.560426 | 0.017437  |
| BCOR              | 10.264443 | 0.0262734 | BTRC                | -11.11634 | 0.0011823 |
| BDNF              | 1.8673435 | 0.0128883 | C11orf54            | -10.76763 | 0.002058  |
| BPTF              | 1.5462241 | 0.0019616 | C16orf89            | -1.452363 | 0.0494525 |
| BRD2              | 1.4977559 | 0.0045629 | CACNA1G             | -8.423466 | 0.0198543 |
| C20orf194         | 10.355351 | 0.0046819 | CALM3               | -13.97925 | 0.0002197 |
| CAPN15            | 2.1779751 | 0.0012614 | CAST                | -11.03617 | 4.36E-08  |
| CCAR1             | 5.2918614 | 0.0103163 | CBLB                | -10.60424 | 5.88E-09  |
| CCND1             | 1.3413465 | 0.0112397 | CCDC144A            | -8.791163 | 0.0023512 |
| CCNT1             | 2.0455969 | 0.0160173 | CCDC66              | -7.370687 | 0.019206  |
| CCPG1             | 10.37359  | 0.0122779 | CCDC88A             | -10.44432 | 0.0017084 |
| CD164             | 2.5530094 | 0.0011296 | CCND3               | -10.54432 | 0.0046897 |
| CD3EAP            | 1.7573318 | 0.0211451 | CCPG1               | -1.359124 | 0.0210363 |
| CDC42EP3          | 1.2650313 | 0.0178822 | CDH16               | -4.343803 | 0.0494525 |

| Table S6. | Different expression | genes(DEGs) | in NROB1 | OE cells |
|-----------|----------------------|-------------|----------|----------|

| CDK12   | 1.2925343 | 0.0460089 | CDH17           | -1.540985 | 0.0087952 |
|---------|-----------|-----------|-----------------|-----------|-----------|
| CDK6    | 3.0413408 | 0.0082926 | CDK5RAP3        | -12.07682 | 1.82E-06  |
| CDKN1A  | 8.427662  | 0.0208231 | CDKN1B          | -1.526021 | 0.0040576 |
| CENPO   | 2.9191689 | 0.0492223 | CELF1           | -7.279997 | 2.45E-09  |
| CEP68   | 9.7976615 | 0.0311031 | CHD4            | -10.37359 | 0.0047605 |
| CHD8    | 6.5534078 | 0.0067781 | CIRBP           | -11.28579 | 0.0120548 |
| CHML    | 2.112099  | 3.72E-05  | CKLF            | -11.00609 | 2.19E-09  |
| CHPF    | 10.116344 | 0.0055547 | Cluh            | -7.651052 | 0.0025188 |
| CHST3   | 1.5050038 | 0.0123362 | <b>CNTNAP3B</b> | -1.902422 | 6.10E-05  |
| Cic     | 10.67948  | 0.0012072 | COL12A1         | -9.70275  | 0.021453  |
| CKLF    | 10.92679  | 1.55E-08  | CP              | -2.22632  | 0.0348026 |
| CLCF1   | 1.393981  | 0.0464753 | CPLANE1         | -8.544321 | 0.0490582 |
| CLK2    | 1.7900485 | 0.0311031 | CYGB            | -3.162391 | 0.0096705 |
| CNTRL   | 9.212699  | 0.0389477 | CYLD            | -10.57302 | 0.0012379 |
| COA7    | 1.6799042 | 0.0030566 | DAGLB           | -11.02929 | 0.0275203 |
| CPD     | 8.2447602 | 0.0082916 | DDIT4           | -1.32888  | 0.0018239 |
| CPEB4   | 7.6677029 | 0.0378821 | DDX17           | -11.96338 | 0.0050554 |
| CPS1    | 8.7813597 | 0.026222  | DID01           | -11.68241 | 6.18E-08  |
| CPSF7   | 1.5201318 | 0.0063305 | DOC2A           | -10.63783 | 0.0033842 |
| CRAMP1L | 2.7288719 | 0.001527  | DOK4            | -11.00843 | 0.020141  |
| CS      | 2.5729756 | 0.0100684 | EHBP1           | -11.99671 | 0.0002197 |
| CSNK1G1 | 3.2103326 | 0.0102367 | FAM167A         | -11.0634  | 0.007698  |
| CSNK1G3 | 10.778625 | 0.000203  | FAM214B         | -1.93138  | 0.0249503 |
| CSRNP1  | 2.2087471 | 1.00E-05  | FARSB           | -10.5216  | 0.0275203 |
| CSRNP2  | 9.0588937 | 0.0167722 | FCGBP           | -1.624808 | 0.0348257 |
| CTGF    | 3.2686778 | 7.85E-17  | FGD6            | -1.533733 | 0.0291297 |
| CTPS1   | 1.594844  | 0.0004246 | FICD            | -10.09891 | 0.0284439 |
| CTSD    | 11.565102 | 0.0243355 | FLNA            | -1.122022 | 0.0269815 |
| CUX1    | 4.3156418 | 0.0043884 | FOXN2           | -1.711249 | 0.0053392 |
| CWC25   | 2.0814072 | 0.0250217 | FRMD4B          | -9.557145 | 0.0019616 |
| CYR61   | 1.9019456 | 0.0006447 | <b>GGA3</b>     | -10.2127  | 0.0116806 |
| DCAF1   | 3.5363936 | 0.0031049 | GIGYF2          | -10.58246 | 5.26E-05  |
| DDB1    | 7.0768156 | 0.0066991 | GOLGA4          | -11.10547 | 0.0024692 |
| DDX11   | 8.6677029 | 0.009229  | GRB7            | -9.803055 | 0.0279348 |
| DDX3X   | 1.2394729 | 0.0418729 | GVOW1           | -10.63481 | 0.0167722 |
| DDX5    | 1.1133573 | 0.0454875 | H3F3B           | -14.96909 | 5.29E-06  |
| DENND1B | 6.9541963 | 0.0001425 | HOXB5           | -1.563037 | 0.0257867 |
| DID01   | 1.275745  | 0.0194421 | ID1             | -1.221078 | 0.0313653 |
| DI02    | 6.5616551 | 2.47E-06  | ILF3            | -10.94885 | 0.0229234 |
| DKK1    | 1.7180897 | 0.0054163 | INKA2           | -9.137845 | 0.0029602 |
| DLAT    | 9.9512847 | 0.0031049 | INPP1           | -12.11959 | 0.0011432 |
| DMTF1   | 10.518325 | 0.0004386 | IRF2BP2         | -1.124534 | 0.0480236 |
| DNAJB1  | 1.2773835 | 0.0115266 | ISYNA1          | -11.74539 | 3.90E-05  |
| DNM1    | 10.936638 | 0.0119545 | KATNBL1         | -10.85331 | 0.0212913 |
| DNTTIP2 | 1.8878829 | 0.0008097 | KCNC4           | -6.78136  | 0.0389477 |
| DOCK10  | 9.0768156 | 0.0480236 | KCTD7           | -5.289507 | 0.0307637 |
| DYNC1H1 | 2.0667578 | 2.50E-05  | KIAA0232        | -1.223616 | 0.0424385 |
| DZIP1   | 8.6677029 | 0.0277956 | KIAA1109        | -8.936638 | 0.0421419 |
| E2F6    | 2.0348928 | 0.0125069 | KIF13B          | -1.770438 | 0.0283755 |

| EEF1D     | 2.5407197 | 0.0233929 | KMT2E   | -10.14211 | 0.0074641 |
|-----------|-----------|-----------|---------|-----------|-----------|
| EFNB2     | 2.4366734 | 0.0150881 | KTN1    | -8.906891 | 0.0438275 |
| EFTUD2    | 9.212699  | 0.0262899 | L1CAM   | -9.67948  | 0.0014023 |
| EGFR      | 8.5824556 | 0.0275722 | LAMB3   | -1.255727 | 0.037897  |
| EGR1      | 2.2953088 | 0.0053361 | LAMC2   | -10.65284 | 0.0078668 |
| EGR3      | 6.8454901 | 1.81E-06  | LGALS9  | -9.99906  | 0.0360186 |
| EIF3C     | 1.7798556 | 0.0004465 | LGALSL  | -10.75377 | 3.39E-05  |
| EIF4G1    | 10.291554 | 0.0026329 | LGR6    | -9.601152 | 0.0120632 |
| EIF5      | 10.224806 | 7.09E-05  | LIMS1   | -10.90689 | 0.0344114 |
| ELF4      | 10.86367  | 1.89E-06  | LPCAT4  | -3.336575 | 0.0005041 |
| ELK4      | 8.0126245 | 0.0410349 | LTBP2   | -8.022368 | 0.000277  |
| ENC1      | 3.0454241 | 4.45E-07  | LTBP3   | -1.281123 | 0.0348026 |
| EPC1      | 1.7068411 | 0.0093348 | MAMLD1  | -10.04075 | 0.03077   |
| EPC2      | 2.5902439 | 0.0008398 | MAP1B   | -13.00258 | 0.0001583 |
| ERP29     | 12.585589 | 1.71E-08  | MGA     | -5.902878 | 0.0307637 |
| ETS2      | 1.5179517 | 0.0018239 | MIB1    | -9.70275  | 0.0001094 |
| F2RL1     | 1.3475527 | 0.0054163 | MICAL1  | -9.655829 | 0.0198543 |
| FAM118A   | 10.501837 | 0.0006658 | MPP5    | -10.53138 | 5.54E-06  |
| FAM133B   | 1.3478533 | 0.045299  | MYH9    | -10.835   | 0.0011432 |
| FAM13B    | 2.0649697 | 0.0036602 | N4BP2L2 | -8.409391 | 0.0285354 |
| FAM208B   | 1.5488932 | 0.0302113 | NCOR2   | -13.44648 | 1.50E-39  |
| FAM222A   | 3.7504279 | 0.0041606 | NDUFS2  | -2.925999 | 0.0359574 |
| FAM53C    | 1.9379813 | 1.05E-05  | NFAT5   | -1.312387 | 0.0406511 |
| FGFR1     | 3.8303925 | 0.0332299 | NKIRAS2 | -11.77451 | 3.77E-05  |
| FJX1      | 1.8694436 | 0.0093348 | NLRX1   | -10.24872 | 0.0436393 |
| FLCN      | 1.6330085 | 0.0054899 | NOL4L   | -1.715076 | 0.0027063 |
| FLNA      | 1.7342336 | 0.0050344 | NOM03   | -11.95855 | 0.0004318 |
| FNIP1     | 1.1460658 | 0.0402283 | NR1H3   | -10.23282 | 0.0310239 |
| FOSB      | 3.9061618 | 0.0178052 | NRF1    | -11.15482 | 5.91E-06  |
| FOSL1     | 1.7656423 | 0.0083512 | NTRK3   | -12.3526  | 9.94E-09  |
| FOXJ3     | 2.0504533 | 0.0013152 | NUDT12  | -9.220781 | 0.0132622 |
| FTSJ3     | 10.287712 | 0.0421419 | NUMB    | -2.587295 | 0.0452774 |
| FUS       | 2.0397518 | 0.0490949 | NUP98   | -10.17159 | 0.0102514 |
| GALNT10   | 1.5276702 | 0.0159254 | OPRL1   | -9.60733  | 0.0136979 |
| GJA1      | 11.270295 | 0.0353752 | OR1F12  | -1.963058 | 0.0354208 |
| GNPDA1    | 2.6155841 | 0.0307637 | OTUD7A  | -7.78136  | 0.0125069 |
| GOLIM4    | 10.649855 | 0.0026567 | PACSIN3 | -11.76487 | 0.017437  |
| GPR135    | 1.1890764 | 0.010396  | PARP6   | -12.31345 | 0.0064755 |
| GREM1     | 3.6315629 | 0.0019838 | PGM3    | -11.48516 | 0.0198543 |
| GRWD1     | 1.3174967 | 0.0135214 | PHC2    | -9.906891 | 0.0092518 |
| GTF2I     | 9.8713919 | 0.0466566 | PHF21A  | -1.853611 | 0.0077291 |
| GVQW1     | 4.0669502 | 3.70E-08  | PHGDH   | -10.77588 | 0.0047577 |
| HACD2     | 11.32568  | 0.0025973 | PIK3R1  | -10.14636 | 0.0078157 |
| HBEGF     | 2.0010892 | 0.0348026 | PIM1    | -2.062873 | 0.0002953 |
| HELZ2     | 1.3242428 | 0.0275203 | PLAU    | -1.129859 | 0.0414895 |
| HEXIM1    | 1.5844061 | 0.0041595 | PLCL2   | -9.260528 | 0.0383407 |
| HMGCS1    | 1.7990964 | 0.0041595 | PLD1    | -1.635993 | 0.0378744 |
| HMOX1     | 1.1594323 | 0.0450701 | PLEC    | -12.28675 | 1.29E-05  |
| HNRNPA2B1 | 1.2813793 | 0.0112236 | PLXNB2  | -1.863693 | 0.0163911 |

| HNRNPC  | 1.3070268 | 0.0210588 | PPARA     | -8.813781 | 0.0348371 |
|---------|-----------|-----------|-----------|-----------|-----------|
| HNRNPLL | 10.384424 | 0.026439  | PPARD     | -8.965784 | 0.0475145 |
| HSPA2   | 1.6549428 | 0.0036781 | PRRC2C    | -8.791163 | 7.55E-10  |
| HSPA8   | 1.2251783 | 0.0257639 | PTPDC1    | -8.748193 | 0.0278428 |
| IARS    | 2.3202157 | 0.000251  | PUF60     | -10.92432 | 0.0278451 |
| IBA57   | 1.8932903 | 0.0389477 | PUM2      | -10.33688 | 0.0070256 |
| ID2     | 1.2503617 | 0.0291297 | QRICH1    | -3.686303 | 0.0375052 |
| IFF02   | 1.4576112 | 0.0348257 | RASGEF1A  | -5.745954 | 0.0212913 |
| IGF1R   | 11.177835 | 2.56E-05  | RBL2      | -10.69986 | 0.0212631 |
| IL11    | 2.3051719 | 0.0096705 | RBM33     | -11.24674 | 0.0045808 |
| ILF3    | 9.7085091 | 0.0166085 | SAT1      | -2.805283 | 4.15E-10  |
| INTS2   | 7.693487  | 0.0126373 | SCNN1A    | -9.625709 | 0.0208391 |
| IQGAP2  | 9.6073303 | 0.0369947 | SCYL1     | -1.710121 | 0.0115616 |
| IRF7    | 2.0823778 | 0.0379365 | SEMA4B    | -1.368215 | 0.0084515 |
| JMJD6   | 8.8559067 | 0.0125069 | SEMA4C    | -10.55075 | 5.44E-05  |
| JUN     | 2.5471105 | 2.19E-09  | SERPINA6  | -10.43045 | 0.0256734 |
| KANSL1  | 12.084587 | 1.03E-09  | SESN1     | -2.43385  | 0.0347955 |
| KBTBD8  | 8.8968369 | 0.0178822 | SETD1A    | -9.736966 | 0.0260611 |
| KCNAB2  | 5.9726927 | 0.0260611 | SH3BP2    | -2.405069 | 0.0109538 |
| KCNQ5   | 8.212699  | 0.0349969 | SHROOM3   | -10.19229 | 3.18E-08  |
| KDM6A   | 10.444325 | 0.0078668 | SIX4      | -5.193772 | 0.0347924 |
| KLC1    | 2.6690268 | 0.0004465 | SLC23A2   | -2.06953  | 3.18E-08  |
| KMT2C   | 8.129283  | 0.0378744 | SLC25A29  | -2.191951 | 0.0089973 |
| KRT80   | 1.4115631 | 0.0125069 | SLC25A39  | -2.817168 | 0.0045808 |
| KSR2    | 4.3865811 | 0.0152991 | SLC7A2    | -3.890402 | 0.0198987 |
| LATS1   | 10.017736 | 0.0066884 | SMARCA4   | -9.50515  | 0.0025971 |
| LATS2   | 1.9036423 | 7.36E-05  | SNX5      | -13.31864 | 0.0001064 |
| LBH     | 1.8499705 | 0.0005041 | SOD2      | -1.378569 | 0.0347924 |
| LIMCH1  | 8.821774  | 2.92E-17  | SPRY1     | -10.0634  | 0.045299  |
| LMCD1   | 1.7911629 | 0.0466566 | SRGAP2    | -1.986203 | 0.0466566 |
| LPCAT1  | 1.1006851 | 0.0487954 | SYNE3     | -8.619609 | 0.0215311 |
| LRIF1   | 1.7632179 | 0.0086644 | SYT17     | -2.934112 | 0.0402283 |
| LRRC58  | 1.2164386 | 0.0400812 | TBC1D3L   | -11.96458 | 1.48E-06  |
| LYPLA1  | 11.523235 | 2.96E-06  | TEP1      | -9.74259  | 3.78E-05  |
| MAFK    | 1.827625  | 1.68E-05  | TGFB1I1   | -11.29155 | 0.0391502 |
| MALT1   | 3.020534  | 0.001211  | TGIF1     | -5.264623 | 0.0450701 |
| MAP3K14 | 1.8359771 | 4.26E-05  | ТКТ       | -1.155679 | 0.0310237 |
| MAPKAP1 | 10.582456 | 0.0198987 | TMBIM6    | -1.630056 | 0.0181374 |
| MAPKBP1 | 1.8688773 | 0.0164677 | TMCO4     | -10.5411  | 0.000639  |
| MARK3   | 10.081262 | 0.0132622 | TMEM169   | -9.731319 | 0.0113662 |
| MBD5    | 8.6558288 | 0.0450701 | TMEM219   | -12.44519 | 0.007434  |
| MDN1    | 1.9483158 | 0.0116927 | TMEM265   | -11.55395 | 0.0047251 |
| MECP2   | 10.931722 | 9.11E-09  | TMEM63B   | -10.5216  | 0.0002114 |
| MEF2D   | 4.1879252 | 0.0063305 | TNFAIP2   | -1.378607 | 0.0012057 |
| MEPCE   | 1.4166581 | 0.0141755 | TNFRSF10B | -1.292186 | 0.0249033 |
| MGA     | 2.0896944 | 0.0077291 | TROAP     | -10.05438 | 0.0071909 |
| MGAT5   | 10.260528 | 0.0042591 | TTC39A    | -9.931722 | 0.0210363 |
| Mitf    | 10.491853 | 7.00E-06  | TTC39C    | -9.901873 | 0.0410349 |
| MLLT10  | 9.7868141 | 0.0015227 | UNKL      | -10.39874 | 0.0005097 |

| MMS22L   | 9.3143944 | 0.0216676 | USP4    | -9.886713 | 0.0089973 |
|----------|-----------|-----------|---------|-----------|-----------|
| MRM2     | 2.4507299 | 0.0487954 | UTY     | -1.813781 | 0.0108394 |
| MRPL27   | 2.1662188 | 0.0108394 | VMP1    | -2.225988 | 0.0020699 |
| MRPS23   | 3.9490161 | 1.06E-06  | VPS13A  | -10.89178 | 0.0002984 |
| MTCL1    | 1.3919988 | 0.0311031 | WBP2    | -12.10219 | 0.0071958 |
| MTHFD1L  | 10.481799 | 0.0269815 | WSB1    | -1.950524 | 0.0005184 |
| MT-ND6   | 1.0786568 | 0.0317723 | ZBTB43  | -9.994353 | 2.16E-05  |
| MX1      | 2.9126438 | 0.0014018 | ZDHHC7  | -9.68825  | 0.0235054 |
| MYC      | 2.2598307 | 0.0001064 | ZMYND8  | -10.37359 | 0.0256672 |
| MYLK2    | 4.3846639 | 0.0485002 | ZNF207  | -9.582456 | 0.000583  |
| NAB1     | 2.4704111 | 0.0439724 | ZNF33A  | -1.78736  | 0.0480236 |
| NAB2     | 3.6326764 | 0.0003213 | ZNF385A | -11.29539 | 0.0485002 |
| NABP1    | 1.679728  | 5.44E-05  | ZNF638  | -11.17991 | 0.000583  |
| NAV1     | 4.9954845 | 0.0291297 | ZNF714  | -2.431339 | 0.0233922 |
| NCAPH    | 10.003752 | 0.0096705 | ZSCAN2  | -9.876517 | 0.0048573 |
| NCL      | 1.8410192 | 0.0004318 |         |           |           |
| NCOA5    | 2.1432445 | 0.002208  |         |           |           |
| NCOR2    | 2.1480134 | 2.34E-05  |         |           |           |
| NFAT5    | 11.498517 | 5.59E-10  |         |           |           |
| NFRKB    | 9.3951771 | 0.0212631 |         |           |           |
| NHS      | 2.0012221 | 4.40E-05  |         |           |           |
| NIN      | 4.3434078 | 0.0249033 |         |           |           |
| NOM01    | 8.8998604 | 2.48E-13  |         |           |           |
| NOM02    | 10.840253 | 1.75E-05  |         |           |           |
| NOVA2    | 9.0588937 | 0.0022899 |         |           |           |
| NPEPPSL1 | 8.9753703 | 0.0291297 |         |           |           |
| NR4A1    | 2.6713502 | 2.45E-09  |         |           |           |
| NR4A3    | 5.7964666 | 4.56E-16  |         |           |           |
| NRP1     | 3.7839065 | 0.0449245 |         |           |           |
| NT5DC1   | 9.464886  | 0.0439299 |         |           |           |
| NUP98    | 2.0312138 | 0.0184785 |         |           |           |
| NVL      | 6.4195389 | 0.0101543 |         |           |           |
| OSGIN1   | 2.8317618 | 5.54E-06  |         |           |           |
| P2RY11   | 2.6206135 | 0.0040637 |         |           |           |
| PABPC4   | 1.9585172 | 0.0057253 |         |           |           |
| PAK4     | 1.6979913 | 0.0184785 |         |           |           |
| PANK1    | 9.9753703 | 0.0230925 |         |           |           |
| PARG     | 2.4293116 | 0.0006185 |         |           |           |
| PARP6    | 1.2344653 | 0.0427951 |         |           |           |
| PARVA    | 10.279997 | 0.0311031 |         |           |           |
| Pbx1     | 10.464886 | 0.0049052 |         |           |           |
| PCNX4    | 1.680667  | 0.0150518 |         |           |           |
| PDCD11   | 1.2551639 | 0.0275203 |         |           |           |
| PDE4D    | 1.6637885 | 0.049183  |         |           |           |
| PDXK     | 2.6589631 | 0.0307637 |         |           |           |
| PFKFB3   | 4.892504  | 0.0011296 |         |           |           |
| PFKP     | 2.0832165 | 0.0012621 |         |           |           |
| PIP5KL1  | 3.974909  | 0.0018378 |         |           |           |
| PLAGL1   | 9.9168747 | 6.22E-05  |         |           |           |

| PLK4        | 10.528128 | 0.0258607 |
|-------------|-----------|-----------|
| PLOD2       | 1.3443676 | 0.0402283 |
| PLXNA2      | 7.8662486 | 0.0106488 |
| PMEPA1      | 2.3581817 | 0.0194421 |
| PML         | 2.427454  | 0.0125069 |
| POGZ        | 2.6420579 | 0.0206791 |
| Pol         | 2.1355571 | 0.0001291 |
| PPAN-P2RY11 | 3.0261128 | 0.0050344 |
| PPP1R10     | 2.4827158 | 1.68E-07  |
| PPP1R15A    | 1.3651061 | 0.0447683 |
| PPP1R7      | 6.3477444 | 0.0081343 |
| PPRC1       | 4.6776898 | 4.25E-07  |
| PREX1       | 10.204571 | 0.0050554 |
| PRICKLE2    | 1.6151559 | 0.0020699 |
| PRKCE       | 11.12067  | 1.86E-10  |
| PRRC2C      | 1.2292993 | 0.0269815 |
| PSMD2       | 9.3365066 | 0.0052857 |
| PTGS2       | 10.076816 | 0.0314913 |
| PTPN3       | 5.6780719 | 0.0249503 |
| PTPRA       | 5.3797722 | 0.0111853 |
| Ptrf        | 1.3158723 | 0.019206  |
| PTRH2       | 2.4028481 | 0.0100987 |
| PVR         | 1.3136783 | 0.006535  |
| QRICH1      | 1.7990513 | 0.0389477 |
| QSER1       | 12.19332  | 0.0212913 |
| RALGAPB     | 9.9848931 | 0.0398634 |
| RAPGEF2     | 5.0195907 | 0.0349052 |
| RARA        | 1.4586481 | 0.0448659 |
| RBM12       | 2.1961205 | 0.0014018 |
| RBM39       | 1.2003495 | 0.0421419 |
| RBM6        | 2.6063679 | 0.0096066 |
| RBPMS       | 9.7199592 | 0.0368251 |
| RHOB        | 1.6110271 | 0.0064368 |
| RND3        | 2.4450622 | 0.0014005 |
| RNF41       | 9.6438562 | 0.0014018 |
| RRP8        | 1.7619275 | 0.0050312 |
| RTRAF       | 11.748193 | 0.0275203 |
| SAMD4A      | 1.9107327 | 0.0013222 |
| SCO2        | 8.0140205 | 0.0389477 |
| SERTAD1     | 2.4845399 | 8.85E-06  |
| SF3B1       | 3.0823224 | 4.58E-05  |
| SFPQ        | 1.4143226 | 0.0338318 |
| SGK1        | 2.4961682 | 5.11E-05  |
| SHANK3      | 9.6196086 | 0.0030519 |
| SHROOM3     | 10.531381 | 0.0007393 |
| SIM2        | 1.512313  | 0.0135827 |
| SIN3A       | 9.6438562 | 0.023802  |
| SKIL        | 2.0183785 | 0.0015166 |
| SLC12A4     | 8.8968369 | 0.045299  |

| SLC2A3    | 1.4075372 | 0.0120632 |
|-----------|-----------|-----------|
| SLC30A1   | 1.4319401 | 0.0047605 |
| SLC30A9   | 9.4374053 | 0.0012176 |
| SLC38A1   | 9.3516754 | 0.0466566 |
| SLC43A1   | 9.5313815 | 0.0495486 |
| SLC7A6    | 2.2859555 | 0.0002327 |
| Smad7     | 2.5867038 | 0.0132622 |
| SMARCA4   | 9.0945176 | 0.0070256 |
| Smc1a     | 8.8662486 | 0.0003196 |
| SMCR8     | 1.221291  | 0.0160385 |
| SMG1      | 8.792248  | 0.0071958 |
| SMIM15    | 11.039605 | 4.71E-14  |
| SMN1      | 11.426964 | 0.007916  |
| SNAI2     | 2.8519617 | 0.0037647 |
| SNRNP200  | 12.067882 | 1.05E-18  |
| SOX4      | 1.2709053 | 0.0088081 |
| SPATA6    | 8.8349977 | 0.025563  |
| SRCAP     | 1.5308668 | 0.020555  |
| SREK1     | 1.8916692 | 0.020555  |
| SRGAP3    | 8.9168747 | 0.0450847 |
| SRRM2     | 1.4683777 | 0.0379092 |
| SRSF1     | 2.0059144 | 0.0009579 |
| SRSF4     | 1.4592857 | 0.0269815 |
| SRSF6     | 2.9166003 | 4.55E-05  |
| SRSF7     | 2.2421318 | 9.80E-05  |
| SRXN1     | 1.2790644 | 0.0212913 |
| STAG2     | 9.137845  | 0.0086644 |
| STC2      | 2.0838606 | 0.0125069 |
| STK10     | 8.8030548 | 0.0104796 |
| STON2     | 9.9366379 | 0.0030519 |
| SUPT6H    | 1.840872  | 0.0030519 |
| SYDE2     | 1.9702165 | 0.0353752 |
| SYNM      | 1.8323947 | 0.0001291 |
| SYPL1     | 5.89458   | 0.0007102 |
| TBL1XR1   | 8.1649069 | 0.0377858 |
| TBX3      | 2.1311449 | 5.54E-06  |
| TCF4      | 8.9366379 | 0.0368005 |
| TDG       | 11.978949 | 5.33E-09  |
| TENT5A    | 10.423466 | 0.0133355 |
| TGFB1I1   | 12.262486 | 1.51E-07  |
| TGFBI     | 1.879129  | 0.0110704 |
| THBS1     | 3.1073533 | 0.0004383 |
| TLE4      | 4.582308  | 0.0495486 |
| Tlk2      | 7.4076926 | 0.0178052 |
| TMEM219   | 12.779309 | 4.16E-06  |
| TNFRSF12A | 2.5241946 | 0.0064897 |
| TNS3      | 12.302068 | 4.69E-05  |
| TNS4      | 2.0699603 | 5.35E-05  |
| TP53I11   | 11.563514 | 6.03E-07  |

| TRAPPC119.93663790.04859TRAPPC910.5507470.0262734TRIM211.27733490.0494525TRIM251.11262440.0353752TRN1110.863670.0011267TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.8671270.019206ZNF2353.10633830.0378744ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF4511.87890820.0007479ZNF4692.58896444                                                                                                    | TR | APPC10 | 8.88671 | .27 | 0.002706 | 63 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|---------|-----|----------|----|
| TRAPPC910.5507470.0262734TRIM211.27733490.0494525TRIM251.11262440.0353752TRN1110.863670.0011267TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.8671270.019206ZNF2353.10633830.0378744ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.                                                                                                    | TR | APPC11 | 9.93663 | 879 | 0.04859  | 9  |
| TRIM211.27733490.0494525TRIM251.11262440.0353752TRNT110.863670.0011267TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZCHAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2838.43740530.0163911ZNF2853.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.1463570                                                                                                    | TR | APPC9  | 10.5507 | 47  | 0.026273 | 34 |
| TRIM251.11262440.0353752TRNT110.863670.0011267TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.1463570                                                                                                    | TR | IM21   | 1.27733 | 49  | 0.049452 | 25 |
| TRNT110.863670.0011267TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.04495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.04065111XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF48010.146357 <td< td=""><td>TR</td><td>IM25</td><td>1.11262</td><td>244</td><td>0.035375</td><td>52</td></td<> | TR | IM25   | 1.11262 | 244 | 0.035375 | 52 |
| TSC22D22.11635420.0001064TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0435037WWP210.7397810.0435037WWP210.7397810.0435037WWR1110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2353.10633830.0378744ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF141.5601520.0378744ZNF48058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                | TR | NT1    | 10.863  | 67  | 0.001126 | 67 |
| TSPAN142.16305092.20E-06TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0445486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF238.43740530.0163911ZNF2838.43740530.0163911ZNF3511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF141.5601520.0378744ZNF48010.1463570.006246ZNF48010.1463570.006246ZNF48010.1463570.006246ZNF74510.7313195.83E-06                                                                                                                          | TS | C22D2  | 2.11635 | 42  | 0.000106 | 64 |
| TUFT13.32014591.55E-08UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF2838.43740530.0163911ZNF2838.43740530.0163911ZNF3511.87890820.0007479ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7441.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                            | TS | PAN14  | 2.16305 | 09  | 2.20E-0  | 6  |
| UBAP2L10.7085090.0049239UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                    | TU | FT1    | 3.32014 | 59  | 1.55E-08 | 8  |
| UPF3B10.0269840.0113865URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                   | UB | AP2L   | 10.7085 | 09  | 0.004923 | 39 |
| URB21.47184970.0127937USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.04065111XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2838.43740530.0163911ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7141.5601520.0378744ZNF8058.74819290.308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                          | UP | F3B    | 10.0269 | 84  | 0.011386 | 65 |
| USP361.23065410.0480236USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WiZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF2838.43740530.0163911ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                        | UR | B2     | 1.47184 | 97  | 0.012793 | 37 |
| USP382.01168180.0275203UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                        | US | P36    | 1.23065 | 541 | 0.048023 | 36 |
| UTY1.63098540.035919VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                       | US | P38    | 2.01168 | 18  | 0.027520 | )3 |
| VGLL38.4648860.0019366VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWP210.7397810.0435037WWTR110.5855890.0028325XPO48.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF353.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                   | UT | Y      | 1.63098 | 354 | 0.03591  | 9  |
| VPS531.637680.0430756WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF2838.43740530.0163911ZNF2838.43740530.0163911ZNF2833.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                               | VG | LL3    | 8.46488 | 86  | 0.001936 | 66 |
| WDR111.8980971.59E-09WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3513.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                              | VP | S53    | 1.6376  | 8   | 0.043075 | 56 |
| WDR31.92659020.0379092WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3513.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                   | W  | DR1    | 11.8980 | 97  | 1.59E-09 | Э  |
| WDR418.77038860.0495486WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3513.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                               | W  | DR3    | 1.92659 | 02  | 0.037909 | 92 |
| WDR431.31220170.0246224WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                              | W  | DR41   | 8.77038 | 86  | 0.049548 | 36 |
| WIZ5.45505324.25E-07WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3513.10633830.0378744ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF358.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W  | DR43   | 1.31220 | )17 | 0.024622 | 24 |
| WWP210.7397810.0435037WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF4553.10633830.0378744ZNF4592.58896444.77E-06ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WI | Z      | 5.45505 | 32  | 4.25E-0  | 7  |
| WWTR110.5855890.0028325XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W١ | VP2    | 10.7397 | 81  | 0.043503 | 37 |
| XP048.70274990.0406511XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3512.31745710.0002984ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF3058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W١ | VTR1   | 10.5855 | 89  | 0.002832 | 25 |
| XRCC29.54432050.0003864ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF3510.1463570.006246ZNF141.5601520.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XP | 04     | 8.70274 | 99  | 0.040651 | L1 |
| ZBTB372.49663570.017101ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF3312.31745710.0002984ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF141.5601520.0378744ZNF48010.1463570.0006246ZNF7141.5601520.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XR | CC2    | 9.54432 | 205 | 0.000386 | 54 |
| ZC3HAV12.34326562.37E-09ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZB | TB37   | 2.49663 | 857 | 0.01710  | 1  |
| ZFPM12.12691210.0480236ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ZC | 3HAV1  | 2.34326 | 56  | 2.37E-09 | Э  |
| ZFY10.5117535.83E-06ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZF | PM1    | 2.12691 | .21 | 0.048023 | 36 |
| ZNF108.88671270.019206ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZF | Y      | 10.5117 | 53  | 5.83E-0  | 6  |
| ZNF22711.1695076.41E-06ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZN | F10    | 8.88671 | .27 | 0.01920  | 6  |
| ZNF280C10.1799090.0002197ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZN | F227   | 11.1695 | 607 | 6.41E-06 | 6  |
| ZNF2838.43740530.0163911ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZN | F280C  | 10.1799 | 09  | 0.000219 | 97 |
| ZNF3312.31745710.0002984ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ZN | F283   | 8.43740 | 53  | 0.016391 | L1 |
| ZNF353.10633830.0378744ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZN | F331   | 2.31745 | 71  | 0.000298 | 34 |
| ZNF4268.47843260.0151786ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZN | F35    | 3.10633 | 83  | 0.037874 | 4  |
| ZNF4511.87890820.0007479ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ZN | F426   | 8.47843 | 26  | 0.015178 | 86 |
| ZNF4692.58896444.77E-06ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZN | F451   | 1.87890 | 82  | 0.000747 | '9 |
| ZNF48010.1463570.0006246ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZN | F469   | 2.58896 | 644 | 4.77E-00 | 6  |
| ZNF7141.5601520.0378744ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ZN | F480   | 10.1463 | 57  | 0.000624 | 16 |
| ZNF8058.74819290.0308477ZSCAN2510.7313195.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZN | F714   | 1.5601  | 52  | 0.037874 | 4  |
| ZSCAN25 10.731319 5.83E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ZN | F805   | 8.74819 | 29  | 0.030847 | 77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZS | CAN25  | 10.7313 | 19  | 5.83E-0  | 6  |

| up-regulated DEGs | log2(FC)  | FDR       | down-regulated DEGs | log2(FC)  | FDR       |
|-------------------|-----------|-----------|---------------------|-----------|-----------|
| ABCA1             | 1.6633554 | 0.0471534 | ABCC8               | -6.98868  | 0.0481039 |
| ABCC5             | 1.6884063 | 0.0384787 | ADCK4               | -11.28386 | 2.07E-05  |
| ABCG1             | 7.7515441 | 0.0022526 | ADGRL2              | -10.14211 | 0.0001315 |
| ACLY              | 2.4572195 | 0.0010134 | ADM                 | -2.25646  | 0.0005596 |
| ACO1              | 11.675075 | 5.29E-09  | AFAP1               | -1.58841  | 0.0044531 |
| ACSL3             | 11.355351 | 0.0305418 | AHR                 | -2.15710  | 2.69E-05  |
| ACTN4             | 1.4965102 | 0.018092  | AJUBA               | -2.25704  | 2.29E-06  |
| ADAM19            | 2.3318549 | 1.58E-08  | AKNA                | -4.00000  | 0.0470276 |
| ADAMTS15          | 8.9657843 | 0.0023738 | ALKBH3              | -2.68885  | 0.0192165 |
| ADAMTS7           | 2.697172  | 0.0088252 | AMOTL2              | -1.68558  | 0.0027348 |
| ADCY1             | 8.5824556 | 0.022853  | ANKRD1              | -4.28736  | 1.36E-06  |
| AKAP1             | 1.8531227 | 0.0112246 | ANKRD33B            | -1.20652  | 0.0441217 |
| AKR1C2            | 2.1822664 | 0.0010134 | ANKRD40             | -1.96871  | 0.0150368 |
| ANKFY1            | 9.4580648 | 0.0244277 | ARHGEF18            | -10.72849 | 0.0002264 |
| AN010             | 9.7369656 | 0.0262467 | ARMT1               | -9.22078  | 0.0470276 |
| APC               | 10.179909 | 0.0016594 | ARRB2               | -1.55487  | 0.047478  |
| APOL1             | 3.5897635 | 0.0003856 | ARRDC4              | -2.97147  | 0.0351475 |
| APOOL             | 9.8559067 | 0.0105534 | ARX                 | -4.64725  | 0.0139563 |
| ARHGEF10          | 8.8968369 | 0.0083916 | ASNS                | -1.59858  | 0.0038688 |
| ARHGEF4           | 3.8712667 | 0.0492625 | ASPH                | -1.59895  | 0.0059896 |
| ARL4C             | 1.4100736 | 0.0160643 | ATF3                | -2.86031  | 4.67E-06  |
| ASS1              | 2.109987  | 0.0274854 | ATOH8               | -2.43324  | 0.0340705 |
| AXIN2             | 2.6287736 | 0.0309527 | ATP11C              | -10.63178 | 0.0025161 |
| BAAT              | 1.8115093 | 0.0402734 | ATXN2               | -1.81523  | 0.0238066 |
| BAHCC1            | 10.553949 | 4.26E-11  | BAG6                | -12.18405 | 2.12E-16  |
| BBS2              | 9.9561341 | 0.0066587 | BAZ2B               | -7.93664  | 1.35E-05  |
| BCL2L11           | 1.9616299 | 0.0098439 | BBS10               | -9.53138  | 0.0044531 |
| BEAN1             | 2.8124348 | 0.0052242 | BCAT1               | -1.91433  | 0.0040756 |
| BLMH              | 12.701306 | 5.51E-13  | BMF                 | -8.77039  | 0.0149935 |
| BMF               | 11.695518 | 2.15E-08  | BZW2                | -2.89891  | 0.0152373 |
| BMP1              | 1.4003561 | 0.0248372 | C19orf25            | -10.05438 | 0.0093683 |
| BOK               | 9.0223678 | 0.0001163 | C2CD2               | -9.43741  | 0.0284906 |
| BRMS1L            | 11.694068 | 6.95E-08  | CARS                | -1.45503  | 0.0316948 |
| C1R               | 3.1716585 | 0.0354875 | CBS                 | -1.43487  | 0.0404306 |
| C1S               | 10.655829 | 0.0007013 | CCDC144A            | -9.53138  | 0.031804  |
| СЗ                | 1.8139548 | 0.0028847 | CCDC88C             | -9.10329  | 0.0351475 |
| CALM3             | 12.037318 | 0.0110852 | CDC42EP1            | -1.65886  | 0.0009404 |
| CARD11            | 10.098909 | 3.36E-05  | CDKN2AIP            | -2.00757  | 0.0290116 |
| CAST              | 10.232821 | 0.0310945 | CEACAM6             | -1.73092  | 0.0059896 |
| Cbx1              | 12.318166 | 0.0040385 | CENPK               | -10.32942 | 0.0261335 |
| CCBL2             | 10.946419 | 0.0003264 | CEP44               | -9.23681  | 0.0052118 |
| CCNG1             | 13.113091 | 0.0085254 | CHD4                | -9.63178  | 0.0164593 |
| CDC42BPG          | 9.5507468 | 0.0263303 | CHIC1               | -1.85062  | 0.0496104 |
| CDH6              | 9.9218409 | 0.0037987 | Cic                 | -9.72565  | 0.006487  |
| CDK12             | 9.7085091 | 1.41E-07  | CIZ1                | -11.73273 | 7.62E-09  |
| CFB               | 4.2371073 | 0.0139826 | CLASP1              | -8.42347  | 0.0227622 |
| CHTF8             | 11.712814 | 0.0044531 | CLBA1               | -10.32942 | 0.0178552 |

Table S7. Different expression genes(DEGs) in NROB1 KD cells

| CLDN2    | 1.7040551 | 0.0021707 | CLDN1    | -2.05943  | 5.41E-05  |
|----------|-----------|-----------|----------|-----------|-----------|
| CNP      | 1.7931853 | 0.0004524 | CLIP1    | -8.87652  | 0.0209754 |
| CNTNAP3B | 11.32568  | 0.006505  | CNKSR2   | -7.92679  | 0.0460815 |
| COBLL1   | 7.3219281 | 0.0471534 | CNKSR3   | -1.59841  | 0.0479658 |
| COL1A1   | 2.0577835 | 0.0082874 | CNOT6    | -11.11634 | 6.40E-13  |
| COL22A1  | 8.9848931 | 0.0050269 | CPEB4    | -1.65436  | 0.0132205 |
| Col24a1  | 5.4607426 | 0.0092684 | CREB5    | -1.88670  | 0.0056236 |
| COL4A1   | 1.2212988 | 0.0280627 | CTGF     | -1.65090  | 0.0032447 |
| COL5A1   | 2.2323898 | 3.36E-05  | CTNND1   | -9.58246  | 0.0344413 |
| COL6A2   | 1.662394  | 0.042937  | CTPS1    | -1.62976  | 0.0088252 |
| COQ2     | 12.447772 | 0.002828  | CYR61    | -2.72711  | 1.35E-07  |
| CSE1L    | 12.485158 | 1.14E-10  | DAGLB    | -1.42701  | 0.028205  |
| CTIF     | 8.8559067 | 0.0128484 | DLC1     | -2.76407  | 3.98E-07  |
| CTSB     | 9.5824556 | 0.0059571 | DNAH17   | -7.90689  | 0.0009947 |
| CYB5RL   | 8.212699  | 0.030621  | DNAJA3   | -1.52710  | 0.0252084 |
| DCLK2    | 8.9366379 | 0.0411005 | DOCK11   | -9.22882  | 0.0018767 |
| DID01    | 9.8030548 | 0.0081633 | DUS2     | -9.70851  | 0.0474584 |
| DLGAP5   | 9.5761694 | 0.0074199 | DUSP1    | -1.57707  | 0.0032971 |
| DNAH17   | 9.0223678 | 3.91E-06  | DUSP8    | -10.09891 | 0.0188638 |
| DNAJA1   | 1.4651894 | 0.0197691 | EHMT2    | -9.74819  | 0.0486046 |
| DNAJC21  | 9.5183253 | 0.0494054 | EIF3A    | -1.37275  | 0.0471534 |
| DNMT3A   | 9.2207814 | 0.0141039 | ELAC2    | -10.88162 | 0.0134605 |
| DOCK10   | 9.4443247 | 0.0184326 | EML4     | -1.77620  | 4.78E-05  |
| DOCK7    | 9.6134825 | 2.34E-05  | EPB41L2  | -9.81911  | 0.003354  |
| DPYSL5   | 2.2232655 | 0.0351475 | ERCC1    | -11.86754 | 0.0147738 |
| ECE1     | 9.7703886 | 0.0248388 | ETNK1    | -1.50386  | 0.0174126 |
| EEF1A2   | 10.285402 | 0.0036258 | ETS1     | -1.65412  | 0.0105303 |
| EGFR     | 11.924318 | 2.15E-08  | FAM129A  | -1.74561  | 0.0033031 |
| EIF2S1   | 11.065641 | 0.0033871 | FGF2     | -1.80843  | 0.0025161 |
| EIF3A    | 12.388914 | 6.50E-08  | FLNB     | -14.82658 | 3.20E-79  |
| EPHB2    | 1.2287227 | 0.0449721 | FOSL1    | -1.86733  | 0.0162543 |
| ERVK-6   | 7.4374053 | 0.0496395 | FRMD3    | -3.10404  | 3.23E-09  |
| EZH1     | 9.8137812 | 0.0088252 | FRMD6    | -1.43957  | 0.0373564 |
| FAT1     | 1.3817755 | 0.0486046 | FUT1     | -8.69116  | 0.0402734 |
| FBH1     | 9.1715938 | 0.0115923 | GADD45A  | -2.20581  | 1.35E-05  |
| FBX018   | 9.2045711 | 0.0149935 | GADD45B  | -2.38047  | 0.000501  |
| FBX06    | 10.501837 | 0.0121119 | GARS     | -1.25197  | 0.0201544 |
| FLNC     | 9.112005  | 4.31E-05  | GFRA1    | -2.28011  | 0.0003781 |
| FLOT2    | 1.2848053 | 0.0434748 | GGT1     | -10.17159 | 0.0143256 |
| FMN1     | 8.5313815 | 9.22E-05  | GOT1     | -1.83036  | 0.0005574 |
| FRMD4A   | 9.4443247 | 0.034663  | GPRC5A   | -1.82700  | 0.0008562 |
| FSTL1    | 1.9700214 | 1.25E-05  | GRIK2    | -8.79225  | 0.014684  |
| FSTL4    | 2.8073549 | 0.0032971 | GSE1     | -3.95977  | 0.031804  |
| FZD5     | 1.3056318 | 0.0470746 | HECTD1   | -11.09011 | 1.17E-15  |
| GALNT12  | 2.1577447 | 0.0464552 | HERC2    | -7.64386  | 0.0429911 |
| GIT2     | 9.4234661 | 0.0018767 | HIPK3    | -11.15693 | 1.38E-15  |
| GLIPR1   | 1.7279205 | 0.0395099 | HIVEP2   | -2.69883  | 0.0039419 |
| GNE      | 9.1206699 | 0.004982  | HKDC1    | -1.55847  | 0.0006245 |
| GNG2     | 2.7129487 | 0.0448874 | HNRNPUL1 | -11.83091 | 1.13E-29  |

| GOLGA1   | 7.9848931 | 0.0022526 | HTR1D    | -10.72565 | 0.00031   |
|----------|-----------|-----------|----------|-----------|-----------|
| GOLGA4   | 11.648358 | 0.0001016 | IDE      | -10.86882 | 0.0016339 |
| GOLGA80  | 6.9503129 | 0.0242188 | IGF2R    | -7.92679  | 0.0009255 |
| GRAMD1A  | 2.0765957 | 0.031804  | IKBKB    | -9.02237  | 0.023112  |
| GRAMD1B  | 5.6475745 | 0.0085254 | IKZF4    | -8.92679  | 0.0059896 |
| GRB10    | 9.5183253 | 0.043713  | ITPRIPL2 | -10.78136 | 0.0011578 |
| GVQW1    | 3.560715  | 0.0021773 | JUN      | -1.26058  | 0.017777  |
| HAS2     | 3.1474483 | 0.0050375 | KDSR     | -11.43914 | 0.0008562 |
| HERC1    | 8.6438562 | 0.0101999 | KIAA0226 | -9.21270  | 0.0318564 |
| HIVEP2   | 9.7369656 | 1.57E-06  | KIF1A    | -9.25267  | 0.0027498 |
| HMGCS1   | 10.30302  | 0.0373155 | KMT2C    | -7.84549  | 0.0010134 |
| HNRNPA1  | 11.85331  | 0.022853  | KMT2E    | -9.50515  | 0.031393  |
| HPGD     | 1.288846  | 0.0115923 | KRT80    | -2.53347  | 3.91E-08  |
| HSPA12A  | 1.6424594 | 0.0013995 | KTN1     | -12.23282 | 2.77E-19  |
| HSPA1A   | 3.4288352 | 6.26E-05  | LARS     | -12.70923 | 3.45E-05  |
| HSPA1B   | 2.8612827 | 0.0022487 | LCORL    | -8.43741  | 0.0448874 |
| HSPA8    | 3.1834512 | 7.42E-06  | LGALSL   | -8.88671  | 0.0205215 |
| HSPB1    | 1.4477838 | 0.0044995 | LHX8     | -3.52874  | 0.0416783 |
| IFI27    | 8.2455527 | 0.0390166 | LIMCH1   | -3.87177  | 0.014684  |
| IFI44    | 5.4326181 | 0.0197603 | LITAF    | -1.51720  | 0.0081633 |
| IFI44L   | 8.3264295 | 0.0480585 | LRPAP1   | -9.97537  | 0.0120643 |
| IFI6     | 6.9233042 | 0.0055877 | LTBP3    | -5.48583  | 0.0383706 |
| IFIT1    | 6.1325336 | 0.0036352 | MALL     | -11.69986 | 0.0055851 |
| IFIT3    | 4.2345057 | 0.0439942 | MAP1LC3B | -1.51962  | 0.0036352 |
| IFITM3   | 4.9581018 | 0.0127653 | MAPT     | -8.05889  | 0.0494054 |
| IGFBP7   | 2.0639001 | 0.0002247 | MARS     | -1.37164  | 0.0100275 |
| IL6ST    | 8.1963972 | 0.0042661 | MEF2D    | -1.57340  | 0.0085275 |
| IQCE     | 9.3808218 | 0.0464638 | MFF      | -11.38262 | 0.0009255 |
| IRF7     | 12.144233 | 3.66E-05  | MFI2     | -12.59805 | 0.0009034 |
| ISG15    | 5.3885605 | 0.0060563 | MIA2     | -1.70701  | 0.0093578 |
| ITGA11   | 9.0588937 | 0.0001056 | MID1IP1  | -8.95613  | 6.38E-10  |
| ITSN1    | 10.550747 | 0.0393035 | MIER1    | -3.28831  | 0.0086628 |
| KANK2    | 10.41996  | 1.35E-05  | MITF     | -1.54888  | 0.0197691 |
| KCNJ6    | 2.0619277 | 0.0470276 | MKI67    | -1.93959  | 0.017722  |
| KCNMA1   | 3.2822139 | 0.0001608 | MMAA     | -8.46489  | 0.0045279 |
| KDELC2   | 1.7789209 | 0.0203916 | MTSS1L   | -1.70034  | 0.0031789 |
| KLHL5    | 10.295386 | 0.0002126 | MVP      | -11.87907 | 0.0037987 |
| KREMEN1  | 10.544321 | 0.0022044 | MYADM    | -2.84075  | 0.0281643 |
| KRT19    | 1.4039763 | 0.0193973 | MYC      | -1.45153  | 0.0188638 |
| L1RE1    | 1.9488273 | 0.0087121 | MYH9     | -11.89178 | 6.89E-05  |
| LGALS3BP | 2.3650076 | 0.0266593 | NARS     | -2.63923  | 0.0383706 |
| LHFPL2   | 11.676545 | 0.000549  | NEDD9    | -2.40823  | 0.0440651 |
| LIMS1    | 2.1121288 | 0.0107217 | NFAT5    | -10.24079 | 1.12E-06  |
| LING01   | 9.1632303 | 0.0150368 | NFE2L2   | -1.27754  | 0.0416783 |
| LIPH     | 9.0223678 | 0.0278662 | NFIB     | -1.42014  | 0.0109541 |
| LLGL2    | 10.524868 | 0.0192165 | NFIC     | -11.86496 | 1.92E-06  |
| LPCAT1   | 1.849071  | 0.018092  | NOP2     | -1.56844  | 0.0141035 |
| LPIN2    | 11.063395 | 0.0006447 | NOP56    | -13.25267 | 7.39E-17  |
| LRP1     | 1.6759999 | 0.0019873 | NTNG2    | -9.51833  | 3.01E-06  |

| LRRC4B   | 9.7199592 | 0.0087121 | NUAK2    | -1.29280  | 0.0129483 |
|----------|-----------|-----------|----------|-----------|-----------|
| LRRN2    | 9.9218409 | 0.0009404 | PAWR     | -1.20060  | 0.0227174 |
| LTBP2    | 1.929791  | 0.0016284 | PCLO     | -2.11905  | 0.0243026 |
| LTBP3    | 7.1996723 | 0.004191  | PDE3A    | -3.32278  | 1.00E-06  |
| MAGED1   | 1.4942177 | 0.023112  | PDE5A    | -8.42347  | 0.00541   |
| MAP2K5   | 10.103288 | 0.0193973 | PFAS     | -9.17159  | 0.0048169 |
| МАРКАРКЗ | 11.369961 | 1.12E-06  | PHLDB2   | -11.74679 | 1.79E-16  |
| MAPRE2   | 9.9218409 | 0.0336268 | PIP5K1A  | -1.53589  | 0.0025451 |
| MAST4    | 8.4918531 | 0.0096077 | PLCXD3   | -8.60733  | 0.0038994 |
| MEGF8    | 1.9530757 | 6.46E-05  | PPFIBP2  | -2.30168  | 8.28E-05  |
| MEGF9    | 1.4750196 | 0.0263303 | PPM1B    | -1.33129  | 0.0462937 |
| MGRN1    | 10.409391 | 0.0033871 | PPP1R15A | -2.47944  | 1.10E-07  |
| MIB2     | 9.7142455 | 0.0032126 | PRKAG2   | -2.60720  | 0.0056294 |
| MLH3     | 10.01309  | 1.00E-06  | PRKCG    | -9.01309  | 0.0488502 |
| MPRIP    | 11.807087 | 2.87E-05  | PRKCH    | -6.32193  | 0.0023738 |
| MT1F     | 2.4099769 | 0.023112  | PTP4A1   | -1.18813  | 0.0308522 |
| MT1X     | 2.4977913 | 0.0027065 | PVR      | -1.29875  | 0.0128351 |
| MT2A     | 1.4432246 | 0.0278944 | PXDC1    | -10.23681 | 0.0278762 |
| MX1      | 9.3341935 | 0.0008562 | QSER1    | -9.64985  | 0.0231688 |
| MYD88    | 1.745821  | 0.030828  | RAB39B   | -3.72367  | 1.05E-06  |
| MYH10    | 1.495049  | 0.0344413 | RCAN1    | -2.01037  | 0.0015842 |
| MYL6     | 1.7733149 | 0.0055877 | RND3     | -1.64021  | 0.0010588 |
| MYLK     | 2.3345557 | 0.0172238 | RPS2     | -3.79510  | 8.21E-06  |
| NAV1     | 2.8909283 | 0.0022339 | RPS6KC1  | -9.31439  | 0.0068068 |
| NCOA4    | 1.7367433 | 0.0446901 | RSF1     | -9.09452  | 0.0091414 |
| NID1     | 2.5611051 | 0.0001412 | RSL1D1   | -1.32718  | 0.0263303 |
| NKD1     | 4.2065622 | 6.40E-13  | RUSC2    | -1.36767  | 0.0036258 |
| NOTCH3   | 2.2727659 | 0.00023   | SAMD4A   | -1.81222  | 0.0147241 |
| NPTX1    | 2.5507985 | 3.42E-06  | SARG     | -8.04075  | 0.0492085 |
| NPTXR    | 1.4944974 | 0.0231688 | SEC31A   | -11.34614 | 1.67E-07  |
| NSD2     | 9.3068212 | 3.30E-05  | SERTAD2  | -1.28396  | 0.029542  |
| NT5E     | 1.6503201 | 0.0038688 | SESN3    | -1.80215  | 0.0203916 |
| NVL      | 4.8181617 | 0.0405115 | SETD5    | -1.35653  | 0.0460815 |
| OAS1     | 5.12747   | 0.0344413 | SIRT7    | -8.39518  | 0.0126829 |
| OAS2     | 9.9815673 | 0.0017993 | SLC16A7  | -2.00405  | 0.0009113 |
| OAS3     | 3.1235106 | 0.014844  | SLC1A3   | -11.34245 | 1.14E-10  |
| OGT      | 13.156399 | 3.67E-33  | SLC1A4   | -1.72593  | 0.0231292 |
| OLFML2A  | 1.5821747 | 0.0404306 | SLC38A1  | -1.29166  | 0.0351475 |
| OLFML3   | 3.0611894 | 0.0021929 | SLC38A10 | -10.90689 | 0.0273638 |
| PARP9    | 3.169925  | 0.0280627 | SLC38A2  | -1.62845  | 0.0445297 |
| PCF11    | 10.433933 | 0.0019873 | SLC6A15  | -2.37676  | 0.013522  |
| PCMTD1   | 10.824428 | 3.52E-06  | SLC7A2   | -10.27612 | 0.003011  |
| PCNA     | 1.2877271 | 0.0075894 | SMAD3    | -11.15903 | 0.0240636 |
| PEX26    | 8.9848931 | 0.0059571 | SMARCA4  | -8.96578  | 0.0114284 |
| PHF19    | 9.4851584 | 0.0073381 | SMG9     | -1.56336  | 0.0197691 |
| PHKA1    | 11.07904  | 4.22E-09  | SNAPC1   | -1.81747  | 0.0019652 |
| PIK3CA   | 7.9848931 | 0.0091756 | SNTB1    | -1.93847  | 0.0389914 |
| PITPNM1  | 9.6558288 | 0.001453  | SNX10    | -9.66178  | 0.0257073 |
| PLEC     | 1.4087424 | 0.0126153 | SPX      | -2.09910  | 0.0283624 |

| PLEKHA6  | 2.8210299 | 0.0099546 | SRGAP2  | -7.65821  | 0.0295141 |
|----------|-----------|-----------|---------|-----------|-----------|
| PLEKHG5  | 9.5571446 | 0.0085254 | Srsf3   | -1.90009  | 0.0004914 |
| PLXNA2   | 9.989631  | 0.0092978 | SSRP1   | -11.28000 | 0.0141039 |
| PLXND1   | 1.832487  | 0.0019542 | STC2    | -2.22734  | 4.23E-06  |
| PMEPA1   | 3.0617477 | 4.17E-07  | STK32C  | -9.72565  | 0.0448874 |
| PML      | 2.6482191 | 0.0263303 | SVEP1   | -3.84410  | 7.56E-05  |
| PODXL    | 2.1974807 | 9.64E-07  | SYBU    | -6.00817  | 0.0019873 |
| POLE3    | 12.41996  | 2.15E-08  | SYNE1   | -1.31652  | 0.0182762 |
| PPARA    | 8.4234661 | 0.0480585 | SYNRG   | -10.34799 | 4.22E-09  |
| PPP1CB   | 9.9705853 | 0.0359289 | TAX1BP1 | -10.03159 | 0.0010134 |
| PSMD2    | 10.824428 | 0.0205519 | TBL1XR1 | -9.30682  | 0.0141039 |
| PTPRN    | 9.6011517 | 0.0033329 | TCEA1   | -1.18982  | 0.0470276 |
| RAB15    | 10.821774 | 0.0098439 | TESK1   | -11.20661 | 0.0121437 |
| RABL6    | 9.0037521 | 0.0464638 | TFE3    | -1.28190  | 0.0494054 |
| RASA4    | 9.9801396 | 2.69E-05  | TGIF1   | -12.76763 | 0.000697  |
| RASSF10  | 2.0886777 | 0.0020424 | TMEM144 | -9.11201  | 0.0227174 |
| RASSF5   | 9.3663222 | 0.0108896 | TNRC6C  | -8.46489  | 0.0012788 |
| RGS11    | 9.5887146 | 0.0288185 | TRIB3   | -2.16316  | 0.0001608 |
| RGS3     | 9.3735902 | 0.0434748 | TSC22D3 | -1.67471  | 0.0315468 |
| RIDA     | 11.010761 | 0.0318008 | TUFT1   | -1.40768  | 0.0110038 |
| RNFT2    | 11.421714 | 0.0104372 | TUSC3   | -12.09121 | 1.37E-05  |
| RPS3A    | 2.0365033 | 0.0184711 | TXNIP   | -2.86507  | 0.0460815 |
| RPS9     | 12.218765 | 0.0315065 | UBTD2   | -11.56510 | 0.0035664 |
| RPUSD1   | 9.8030548 | 0.0251114 | USP1    | -10.16742 | 0.0388375 |
| RRBP1    | 2.8629927 | 0.0197691 | USP53   | -1.59353  | 0.0194335 |
| RSP03    | 1.2924993 | 0.0383706 | VGLL3   | -8.43741  | 0.0013063 |
| RTN4RL1  | 2.5364557 | 0.0086628 | WDR1    | -3.99906  | 0.0182089 |
| S1PR3    | 1.4120651 | 0.0149935 | XPOT    | -1.25625  | 0.0284906 |
| SBN02    | 9.5635141 | 0.0016594 | ZC3H11A | -3.78840  | 0.022853  |
| SDC1     | 1.3712414 | 0.00541   | ZNF18   | -10.13785 | 0.0252084 |
| SEMA4D   | 10.040746 | 0.0423868 | ZNF331  | -10.09011 | 0.0121119 |
| SERPINE2 | 1.3393212 | 0.0344413 | ZNF460  | -1.35999  | 0.0101999 |
| SHROOM3  | 9.129283  | 0.0149935 | ZNF772  | -8.71425  | 0.0092684 |
| SIPA1L1  | 7.5698556 | 0.0473576 | ZSWIM8  | -5.04439  | 0.0495645 |
| SIRT7    | 8.2288187 | 0.0172326 |         |           |           |
| SLC16A3  | 2.0526611 | 0.0070337 |         |           |           |
| SLC25A22 | 10.30302  | 0.0492328 |         |           |           |
| SLC2A14  | 6.4178525 | 0.0101999 |         |           |           |
| SMARCE1  | 1.5518196 | 0.0363708 |         |           |           |
| SNRPA1   | 11.602699 | 0.0054966 |         |           |           |
| SORCS2   | 3.1557947 | 0.0131471 |         |           |           |
| SPECC1   | 1.3418349 | 0.03219   |         |           |           |
| SPINK13  | 11.085694 | 0.0165066 |         |           |           |
| SPOCK1   | 2.0767572 | 0.0016337 |         |           |           |
| SPP1     | 1.274402  | 0.011326  |         |           |           |
| SRSF1    | 1.5290243 | 0.0460815 |         |           |           |
| STARD8   | 9.8816238 | 0.0229337 |         |           |           |
| STC1     | 2.5400273 | 0.0035664 |         |           |           |
| STRIP2   | 2.3003949 | 0.0405849 |         |           |           |

| TAGLN1.95218920.0090975TARBP11.84390840.0068763TGFBI14.7133511.49E-21TGFBR12.22548556.57E-05TGM21.31503650.0368041THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.009849UBN25.56478460.0471534VANGL11.4177640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365 | SYT13    | 2.9902917 | 8.07E-14  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|--|
| TARBP11.84390840.0068763TGFBI14.7133511.49E-21TGFBR12.22548556.57E-05TGM21.31503650.0368041THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMSB4X1.14235250.04450565TNS2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                              | TAGLN    | 1.9521892 | 0.0090975 |  |
| TGFBI14.7133511.49E-21TGFBR12.22548556.57E-05TGM21.31503650.0368041THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBN25.56478460.0471534VANGL11.41717640.039939VCAN1.41396030.0032971WWP29.87139190.0446365                        | TARBP1   | 1.8439084 | 0.0068763 |  |
| TGFBR12.22548556.57E-05TGM21.31503650.0368041THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399393VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                         | TGFBI    | 14.713351 | 1.49E-21  |  |
| TGM21.31503650.0368041THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.044191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBN25.56478460.0471534VANGL11.41717640.0399393VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                         | TGFBR1   | 2.2254855 | 6.57E-05  |  |
| THBD2.11196840.0014902THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                         | TGM2     | 1.3150365 | 0.0368041 |  |
| THOC29.81378120.0056013TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                               | THBD     | 2.1119684 | 0.0014902 |  |
| TIAM29.17990910.0051523TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                       | THOC2    | 9.8137812 | 0.0056013 |  |
| TLK29.50514990.0096077TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                              | TIAM2    | 9.1799091 | 0.0051523 |  |
| TM4SF1811.5918340.0012488TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                            | TLK2     | 9.5051499 | 0.0096077 |  |
| TMEM120A11.3826240.0036258TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                     | TM4SF18  | 11.591834 | 0.0012488 |  |
| TMEM63B8.91687470.0450565TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                               | TMEM120A | 11.382624 | 0.0036258 |  |
| TMSB4X1.14235250.0445585TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                        | TMEM63B  | 8.9168747 | 0.0450565 |  |
| TNC2.35779810.0320711TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                | TMSB4X   | 1.1423525 | 0.0445585 |  |
| TNFSF1011.6588070.0203916TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                     | TNC      | 2.3577981 | 0.0320711 |  |
| TNS12.34889510.0023738TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                              | TNFSF10  | 11.658807 | 0.0203916 |  |
| TNS41.3746940.0039419TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                    | TNS1     | 2.3488951 | 0.0023738 |  |
| TP53I31.29652120.0496104TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                         | TNS4     | 1.374694  | 0.0039419 |  |
| TP53INP11.98209830.0043674TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                 | TP53I3   | 1.2965212 | 0.0496104 |  |
| TRAK110.2167460.0105303TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                           | TP53INP1 | 1.9820983 | 0.0043674 |  |
| TREX111.6926160.0134605TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRAK1    | 10.216746 | 0.0105303 |  |
| TRIM241.27388130.0383706TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TREX1    | 11.692616 | 0.0134605 |  |
| TSPAN141.489510.0167166TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRIM24   | 1.2738813 | 0.0383706 |  |
| TSPAN181.89773890.0418273TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TSPAN14  | 1.48951   | 0.0167166 |  |
| TTC31.62248590.004191TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TSPAN18  | 1.8977389 | 0.0418273 |  |
| TTYH31.32343710.0189582TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TTC3     | 1.6224859 | 0.004191  |  |
| TUBB4B1.39893740.0239691UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TTYH3    | 1.3234371 | 0.0189582 |  |
| UBE2V112.688250.0009849UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TUBB4B   | 1.3989374 | 0.0239691 |  |
| UBN25.56478460.0471534VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UBE2V1   | 12.68825  | 0.0009849 |  |
| VANGL11.41717640.0399939VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UBN2     | 5.5647846 | 0.0471534 |  |
| VCAN1.41396030.0032971WWP29.87139190.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VANGL1   | 1.4171764 | 0.0399939 |  |
| WWP2 9.8713919 0.0446365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VCAN     | 1.4139603 | 0.0032971 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WWP2     | 9.8713919 | 0.0446365 |  |
| XDH 2.3533233 0.0308522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XDH      | 2.3533233 | 0.0308522 |  |
| ZC3HAV1 2.5912351 1.35E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZC3HAV1  | 2.5912351 | 1.35E-07  |  |
| ZMAT3 1.8898629 0.0009517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZMAT3    | 1.8898629 | 0.0009517 |  |
| ZNF184 9.5507468 0.0076722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZNF184   | 9.5507468 | 0.0076722 |  |
| ZNF678 8.3663222 0.0050269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZNF678   | 8.3663222 | 0.0050269 |  |

| Symbol  | Description                                           | Function                              |
|---------|-------------------------------------------------------|---------------------------------------|
| ATF3    | Activating transcription factor 3                     | Inhibit SLC7A11 expression            |
| GOT1    | Glutamic-oxaloacetic transaminase 1                   | Increase aKG production               |
| CBS     | Cystathionine beta-synthase                           | Convert homocysteine to cystathionine |
| SLC38A1 | Solute carrier family 38 member 1                     | Increase L-glutamine uptake           |
| NRF2    | Nuclear factor, erythroid 2-like 2                    | Induce antioxidant gene expression    |
| c-JUN   | Jun proto-oncogene, AP-1 transcription factor subunit | Induce transcription of CBS           |
| AKR1C2  | Aldo-keto reductase family 1 member C2                | Catalyze NADPH-dependent reductions   |
| NCOA4   | Nuclear receptor coactivator 4                        | Mediate ferritinophagy                |
| HSPB1   | Heat shock protein family B (small) member 1          | Inhibit iron uptake                   |

Table S8. Enriched ferroptosis-related genes in NROB1-KD cells

Table S9. Enriched ferroptosis-related genes in NROB1-OE cells

| Symbol | Description                                           | Function                                     |
|--------|-------------------------------------------------------|----------------------------------------------|
| SAT1   | Spermidine/spermine N1-acetyltransferase 1            | Increase ALOX15 expression                   |
| CS     | Citrate synthase                                      | Increase mitochondrial fatty acid metabolism |
| c-JUN  | Jun proto-oncogene, AP-1 transcription factor subunit | Induce transcription of CBS                  |
| HMOX1  | Heme oxygenase 1                                      | Mediate heme catabolism                      |



**Figure S3.** Ectopic expression of NROB1 in lung cancers and correlation analysis between the expression of *CBS* and that of *NRF2*, *c-JUN*. (A) NROB1 is activated in 760 out of 1172 lung cancers (RSEM > 0). (B, C) The *CBS* expression level was positively correlated with that of *NRF2* (B) and *c-JUN* (C).

NROB1 suppresses ferroptosis in lung cancer



**Figure S4.** NRF2 knockdown enhances ferroptosis in lung cancer cells. (A, B) The protein expression level of NRF2 was decreased in NRF2-KD A549 cells. (C, D) The protein expression level of NRF2 was decreased in NRF2-KD H1437 cells. (E, F) Cell viabilities of A549 (E) and H1437 (F) under the treatment with different concentrations of RSL3 (0, 0.5, 1, 5, 10  $\mu$ M). (G, H) Relative MDA levels in the lung cancer cells of A549 (G) and H1437 (H) under the treatment with different concentrations of RSL3 (0, 1, 5  $\mu$ M). (I, J) Relative iron levels in the cells of A549 (I) and

H1437 (J) treated with RSL3. (K, L) Relative ROS levels in the cells of A549 (K) and H1437 (L) treated with RSL3. (M) Relative GSH levels in the lung cancer cells treated with RSL3. Data are presented as mean  $\pm$  SD, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.001.



**Figure S5.** c-JUN knockdown enhances ferroptosis in lung cancer cells. (A, B) The protein expression level of c-JUN was decreased in c-JUN-KD A549 cells. (C, D) The protein expression level of c-JUN was decreased in c-JUN-KD H1437 cells. (E, F) Cell viabilities of A549 (E) and H1437 (F) under the treatment with different concentrations of RSL3 (0, 0.5, 1, 5, 10  $\mu$ M). (G, H) Relative MDA levels in the lung cancer cells of A549 (G) and H1437 (H) under the treatment with different concentrations of RSL3 (0, 0.5, 1, 5, 10  $\mu$ M). (G, H) Relative MDA levels in the lung cancer cells of A549 (G) and H1437 (H) under the treatment with different concentrations of RSL3 (0, 1, 5  $\mu$ M). (I, J) Relative iron levels in the cells of A549 (I) and H1437 (J) treated with RSL3. (K, L) Relative ROS levels in the cells of A549 (K) and H1437 (L) treated with RSL3. (M) Relative GSH levels in the lung cancer cells treated with RSL3. Data are presented as mean  $\pm$  SD, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.



**Figure S6.** The expression levels of CBS in lung cancer cells with si-CBS or AOAA treatment. A. The expression levels of CBS in lung cancer cells under treatment with si-CBS or AOAA in the cells of A549. B. The expression levels of CBS in lung cancer cells under treatment with si-CBS or AOAA in the cells of H1437. Data are presented as mean  $\pm$  SD, \*P < 0.05, \*\*P < 0.01, \*\*P < 0.001.



**Figure S7.** RSL3 activates the NR0B1 expression in lung cancer cells. A. Relative mRNA levels of *NR0B1*, *NRF2*, *c-JUN* and *CBS* in A549 and H1437 cells treated with RSL3 (0, 1, 5  $\mu$ M). B. Protein levels of NR0B1, NRF2, c-JUN and CBS in A549 and H1437 cells treated with RSL3 (0, 1, 5  $\mu$ M). Data are presented as mean ± SD, \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.