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Abstract: Acute myeloid leukemia (AML) is a deadly disease and the most common leukemia in adult with clonal 
heterogeneity and abnormity in myeloid lineages, which has been recognized with high morbidity and mortality at-
tributes to the recurrence and resistance to chemotherapy. Numerous literatures have indicated the encouraging 
progress in allogeneic hematopoietic stem cell transplantation (allo-HSCT) and chimeric antigen receptor-trans-
duced T (CAR-T) cells. However, the outcomes of recurrent and refractory AML (r/rAML) patients with current strate-
gies are still unsatisfactory, which largely due to the matching restriction as well as adverse reactions, including 
graft-versus-host disease (GvHD), neurotoxicity and cytokine release syndrome (CRS). State-of-the-art literatures 
have indicated CAR-transduced NK (CAR-NK) cells for the management of diverse hematologic malignancies includ-
ing AML, which are recognized as novel weapons for reinforcing the specificity and cytotoxicity of autogenous and 
allogeneic “off-the-shelf” NK cells dispense with prior sensitization. Therefore, in this review, we mainly focus on 
the latest updates of alternative cell sources, therapeutic targets, CAR-modification and delivery strategies, stan-
dardization and productization, together with prospective and challenges of CAR-NK cell-based cytotherapy, which 
will collectively benefit the further development of novel treatment paradigms for combating AML via both CAR-
dependent and NK cell receptor-dependent signaling cascades in future.
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Introduction

AML is a rare but intractable malignancy with 
multifaceted alterations in the precursors of 
myeloid lineage, which is largely attributed to 
genetic variations and the resultant clonal pro-
liferation and neoplastic changes [1, 2]. AML 
has been reported with an incidence of over 
20,000 cases per year in the United States, 
while the relapse rate of childhood AML takes 

up around 30% [3, 4]. As a clinically heteroge-
neous and biologically complex disorder, AML 
with recurrent genetic alterations in genomic 
landscape has provided novel insights into the 
pathogenesis, clinical manifestations and the 
overall survival as well [5, 6]. For example, AML 
with myelodysplasia-related changes (AML-
MRC) is a well-established subtype of AML, 
which represents a proportion of 25-34% of  
all AML diagnoses and relates with worse out-
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comes compared to the non-MRC AML [7]. We 
also conducted systematic and detailed dissec-
tion of the pathogenesis of AMLs from the per-
spectives of platelet generation and bone mar-
row-derived mesenchymal stem/stromal cells 
(BM-MSCs) in the hematopoietic microenviron-
ment [8, 9]. 

Currently, the conventional treatment options 
for AML patients are largely dependent on 
hypomethylating agents (e.g., Homoharringto- 
nine, Gilteritinib) and intensive chemotherapy 
[10-13]. In recent years, noteworthy break-
throughs in stem cell transplantation, includ- 
ing hematopoietic stem cells (HSCs) and mes-
enchymal stem/stromal cells (MSCs), have 
been demonstrated beneficially for improving 
the survival and outcomes of AML patients 
[10]. However, the deficiency in matched mar-
row donors, in vitro preparation, graft rejection 
and relapse after HSC transplantation (HSCT) 
further hinders the extensive application for 
AML administration [9, 14]. 

Differ from the aforementioned regimens (e.g., 
HSCT, MSC infusion), immunotherapy of diverse 
categories has been continuously developed 
aiming to accomplish effective cancer adminis-
tration, such as monoclonal antibodies (e.g., 
anti-PD-L1, anti-HER-2), cancer vaccines (e.g., 
mRNA vaccine), non-gene-edited immune cells 
(e.g., natural killer cells, macrophages, dendrit-
ic cells), and gene-edited immune cells (e.g., 
CAR-T cells, T cell receptor-engineered T (TCR-
T) cells, CAR-macrophage (CAR-M), and CAR-
neutrophil) [15-20]. For instance, Chen et al 
emphasized the superior anti-tumor response 
of HER2 and CD47 CAR-M therapy against ovar-
ian cancer via macrophage phagocytosis and 
the consequent adaptive immune cross-prim-
ing (e.g., enhancing CD8+ T cell activation, and 
affecting tumor-associated macrophage (TAM) 
phenotype) [21]. Very recently, Chang and the 
colleagues recently reported the application  
of CAR-neutrophils for the transportation of 
tumor-microenvironment responsive nano-dr- 
ugs for glioblastoma chemo-immunotherapy 
[20]. Interestingly, Yu et al took advantage of 
the lentiviral-mediated cell entry by engineer- 
ed receptor-ligand interaction (ENTER) and RNA 
sequencing-based single-cell readout to deliver 
genetic payloads to the indicated antigen-spe-
cific T or B cells (e.g., TCR-T cells) [22]. As to 
CAR-T therapy, Sauer et al introduced the novel 

CD70-specific CAR-T cells containing a com-
mon single-chain variable fragment (scFv) for 
targeting most leukemic blasts and virus-spe-
cific T cells (VSTs) in AML patients but still 
required monitoring of VST responses [23]. 
Meanwhile, during the past decades, we and 
the collaborators also reported the clinical 
application of CAR-T cells for conquering nu- 
merous hematologic malignancies, including 
CD7, CD22, CD19, CD64, CD32b CAR-T cells  
for acute lymphoblastic leukemia (ALL) and 
relapsed B ALL, acute myeloid leukemia (AML), 
and chronic lymphocytic leukemia (CLL), res- 
pectively [24-28]. Of note, Kim et al put forward 
the proof-of-concept assumptions for enabling 
CAR-T-based AML immunotherapy via genetic 
inactivation of CD33 in HSCs, which would help 
conquer the major impediment of CAR-T appli-
cation [29]. To overcome the restricted efficacy 
of CAR-T cells against solid tumors, Ma et al 
designed amphiphile CAR-T ligands and en- 
hanced CAR-T activity by vaccine boosting 
through the chimeric receptor [30]. Even th- 
ough, the inherent defects of CAR-T-based regi-
mens are still challenging and further restrict 
the extensive application in clinical practice, 
including donor limitation, variations in cellular 
vitality, uncertain molecular heterogeneity of 
AML, the adverse reactions (e.g., CRS, GvHD, 
and neurotoxicity), off-target effects, and the 
possibility of long-term hematopoiesis inhibi-
tion [16, 31-33]. 

Natural killer (NK) cells are innate immuocytes 
with unique cytotoxicity for the elimination of 
tumor cells and pathogenic microorganisms 
dispense with recognition of peptide antigens 
or prior sensitization [34-38]. NK cells function 
via orchestrating diverse modes of action such 
as direct cytolytic effect, paracrine effects (e.g., 
GM-CSF, IFN-γ), antibody-dependent cell-me- 
diated cytotoxicity (ADCC), and manipulating 
other immune contextures [39-42]. Considering 
the low immunogenicity and the multiple cyto-
toxic effect, more and more investigators have 
turned to develop novel targeted immunothera-
py by delivering CAR-construction into NK cells 
for the preparation of allogeneic CAR-NK cells 
for AML treatment [43-45]. Distinguish from 
the aforementioned “immune enhancement” 
strategies, CAR-NK cell-based immunotherapy 
exempts from the immune-related adverse 
events (irAEs) but displays more beneficial tu- 
mor response-to-toxicity profile via orchestrat-
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Figure 1. CAR-NK-mediated cellular therapy. Allogeneic NK cells and autologous NK cells are isolated from healthy 
donors and AML patients for ex vivo NK cell selection and activation. After CAR engineering, the CAR-NK cells are 
turned to further expansion in vitro and systemic infusion into AML patients.

ing the modes of action, including paracrine 
(e.g., granzyme, perforin, IFN-γ, TNF, GM-CSF), 
antibody-dependent cell mediated cytotoxicity 
(ADCC), pro-apoptotic approaches (e.g., Fas-
FasL, TRAI-TRAIL), direct cytolytic effect, and 
CAR-mediated targeting [46, 47]. In this review, 
we mainly summarized the current advances of 
CAR-NK cells and the immunotherapy for AML 
management from the aspects of cell sources, 
target selection, CAR-modification and delivery, 
standardization and productization, and pro-
spective and challenges. Overall, our data wo- 
uld benefit our understanding towards novel 
CAR-NK cell-based innovative immunotherapy 
and the concomitant cell product development 
for AML administration.

Cell sources for CAR-NK cell manufacturing

Considerable literatures have indicated the 
important role of NK cells in clearing the resid-
ual AML cells after HSCT, together with enhanc-
ing the effect of graft-versus-leukemia (GVL) 
without aggravating GvHD [34, 48]. Longitu- 
dinal studies have indicated the application of 
diverse candidate sources for the preparation 
of non-gene-edited NK cells and the gene-edit-
ed CAR-NK cells for eliminating pathogenic 
microorganisms, malignant tumors and aging 
cells, such as the peripheral blood, perinatal 
tissue (e.g., umbilical cord blood, placenta 
blood, decidual tissue, uterine tissue), stem 

cells (e.g., HSCs, human pluripotent stem cells), 
and NK cell lines (e.g., NK-92, YT) (Figure 1) 
[37, 49, 50]. For example, Chiossone and the 
colleagues reported the in vivo generation of 
mature decidual NK cells from resident hema-
topoietic progenitors, which were crucial for 
placental development, the maternal-fetal vas-
culature during pregnancy, and preeclampsia 
[51-54].

Proverbially, NK cells only occupy a low frequen-
cy in peripheral blood-derived mononuclear 
cells (PBMCs) compared with relative fractions 
(e.g., T lymphocytes, B lymphocytes, and NKT 
cells), which approximately account for 5-20% 
of leukocytes including the CD56brightCD16low/neg 
subpopulation and the CD56dimCD16high coun-
terpart [17, 55]. To fulfill the allogeneic NK cell-
based immunotherapy, a variety of methodolo-
gies have been developed to gain sufficient 
number of activated NK cells in vitro, including 
enrichment by magnetic activated cell sorting 
(MACS), co-stimulation with feeder cells (e.g., 
K562 cell lines without/with IL-2 and/or IL-15 
transfection), monolayer stimulation by cyto-
kine cocktails (e.g., IL-2, IL-7, IL-12, IL-15, IL-18, 
IL-21), antibody coating (e.g., anti-CD3), and 
physicochemical irritations (three-dimensional 
rotation, bioreactor, hypoxia, nanomaterial sti- 
mulation) [16, 17, 55]. For example, we took 
advantage of diverse cytokine cocktails for 
standardized and convenient NK cell cultiva-
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rNKs, respectively [59, 60]. Compared with 
aPB-NKs, both aP-NKs and aUC-NKs revealed 
multifaceted superiorities, including juvenility, 
robust ex vivo proliferation, equivalent activa-
tion, and better oncolytic and killing ability [60]. 
For example, Herrera et al compared the effi-
cacy of CAR-NK cells prepared from different 
sources upon CD19 positive B-cell lymphoma, 
and found that the percentage of CD56+ trans-
fected cells from umbilical cord blood (UCB) 
was higher than that in peripheral blood at 
diverse time points (day 14, 21, 28) after post-
transfection, which indicated the preferable 
lifespan of UCB CAR-NK cells [61]. Moreover, 
considering the large number of placenta per-
fusate and umbilical cord blood, together with 
robust amplification and activation in vitro, pla-
cental blood possesses promising prospects 
for large-scale clinical-grade NK cell and CAR-
NK cell preparation for cancer immunotherapy 
[16, 43, 57]. Additionally, a certain number of 
investigators also employed NK cell lines (e.g., 
NK-92MI cells, YT cells) as cost-effective st- 
rategies for exploiting the CAR-NK cell-based 
immunotherapy in both subcutaneous tumor 
models or 3D organoids and first-in-man clini-
cal trials [62-67].

Of note, current prospective advances have 
also highlighted the alternative options of sta-
ble NK cell generation from stem cells includ- 
ing hematopoietic stem cells (HSCs) and plu-
ripotent stem cells (PSCs) for CAR-NK cell prep-
aration [68-70]. For instance, Li et al elaborat-
ed the historical overview of allogeneic HSC- 
engineered invariant natural killer T (alloHSC-
iNKT) cells with high safety and low immunoge-
nicity for “off-the-shelf” cancer immunotherapy, 
which collectively demonstrated the feasibility 
of stem cell-based solutions for large-scale 
CAR-NK cell preparation and provided the foun-
dation for translational and clinical develop-
ment [71]. Furthermore, Arias et al and Zhu  
et al highlighted the latest renewal of HSCs- 
and engineered human embryonic stem cells 
(hESCs)- or induced pluripotent stem cells 
(iPSCs)-based procedures as reliable “off-the-
shelf” CAR-NK cell therapeutics for tackling 
seemingly incurable oncological malignancies 
and avoiding GvHD and CRS, respectively [68, 
72]. Differ from the aforementioned peripheral 
blood or perinatal blood with donor-dependent 
variability, the homogenous stem cells are ade-
quate for genetic modification at a clonal level 

tion, and eventually obtained 30-fold ampli- 
fication activated NK (aNK) cells and a propor-
tion of cytokine-induced memory-like NK cells 
(CIML-NKs) endowed with prolonged effector 
function and splendid longevity from PBMCs 
[56]. Instead, Somanchi and the colleagues 
compared the efficacy of a commercial kit 
(Miltenyi Biotec, Auburn, CA), EBV-LCL, and 
K562-41BBL-mIL15 aAPCs (artificial antigen-
presenting cells) for ex vivo NK cell expansion, 
and eventually obtained 100-fold, 490-fold, 
and 21,000-fold expansion within 21 days, 
respectively [55]. Fallaciously, due to the small 
amount and the individual variations, the inabil-
ity to enrich resident NK (rNK) cells and propa-
gate activated NK (aNK) cells in vitro has hin-
dered the large-scale preparation of CAR-NK 
cells with high cytotoxicity and cellular vitality 
for optimal clinical outcome [57].

In recent years, considerable attention has 
been paid to assess the feasibility of the “dis-
carded” perinatal blood for allogeneic HSCs 
and CAR-NK cell preparation, including umbili-
cal cord blood and placental blood. Generally, 
NK cells in umbilical cord blood and placental 
blood occupy approximately 5% and 1% of to- 
tal mononuclear cells (MNCs), respectively [16, 
17]. Interestingly, both the PBMC-enriched resi-
dent NK (rPB-NK) cells and the umbilical cord 
blood-enriched resident NK (rUC-NK) cells are 
composed of the CD3-CD56+CD16+ subset 
(>60%) and the CD3-CD56+CD16- subset 
(<40%), whereas less than 40% are CD3-

CD56+CD16+ cells and more than 60% are CD3-

CD56+CD16- cells in placental blood-enriched 
resident NK (rP-NK) cells instead [17]. Despite 
the inferior baseline cytotoxicity of rNKs com-
pared with relative sources (e.g., peripheral 
blood, bone marrow), yet this phenomenon in 
perinatal blood-enriched rNKs can be largely 
overcome after in vitro amplification and activa-
tion [58]. For instance, we recently decoded the 
multidimensional biological and transcriptomic 
signatures of PB-NK cells and UC-NK cells, resi-
dent NK (rNK) cells and activated NK (aNK) 
cells, respectively [59, 60]. With the “3IL” cock-
tail-based stimulation (rhIL-2, rhIL-15, rhIL-18) 
for 14 days, we eventually obtained over 200-
fold total cell (CD3- subset and CD3+ subset) 
expansion, 1800-fold total NK cell (CD3-CD56+) 
expansion, and 4000-fold total activated NK 
cell (CD3-CD56+CD16+) expansion from per- 
inatal blood-derived MNCs or MACS-enriched 
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and thus ideal for developing standardized, 
large-scale, cutting-edge CAR-NK cell products 
and novel therapeutic modalities with the 
proof-of-concept safety and efficiency for AML 
management [16, 72, 73]. 

Therapeutic targets for CAR-NK cells

Autogenous and allogeneic NK cells are ad- 
vantaged options for cancer immunotherapy 
dispense with prior sensitization or manipula-
tion of other immune contextures, whereas the 
“tumor escape” and the resultant exemption 
from immunological surveillance attributes to 
the heterogeneity of cancer cells with genetic 
or epigenetic variations largely impact the cyto-
toxicity of NK cells via interdicting the corre-
sponding activating receptors (Figure 2) [17, 
39-42, 74, 75]. To conquer the boundedness of 
NK cells, pioneering investigators have consid-
ered the costimulatory molecules and tumor-
associated antigens (TAAs) as the first-line de- 
cision for cancer immunotherapy [76, 77].

Therewith, a variety of CAR structures in CAR-T 
cells have been attempted for direct trans- 
fer into CAR-NK cells, including CD19, CD20, 
CD22, BCMA, CD28, and CD33 [25, 78, 79]. Of 
them, CD33, a myeloid differentiation antigen, 
is broadly expressed on AML blasts and during 
all stages of physiological myeloid differentia-
tion, and in particular, strongly expressed in 
nucleophosphmin-1 (NPM1)-mutated AML cells 
[80, 81]. For instance, Dong and the colleagues 

reported the delivery of a neoepitope-specific 
CAR into cytokine-induced memory-like (CIML) 
NK cells, which revealed potent activity against 
NPM1 mutated AML both in vitro and in vivo 
[82]. Christodoulou et al verified that CD123 
CAR-NKs with interleukin (IL)-15 expression 
revealed enhanced persistence and a highly 
activated and proliferative signature of anti-
AML activity in vitro and in vivo over the non-
transduced NK cells and 4-1BB.ζ CAR-NK cells 
[43]. Instead, Du et al demonstrated that CAR-
NK cells with ectopic NKG2D and IL-15 co-
expression revealed enhanced tumor control in 
vivo and prolonged survival of xenograft KG-1 
AML mice [83]. Interestingly, our group for the 
first time reported the preclinical feasibility of 
CD64 as a novel potential target for AML man-
agement dispense with ablation of HSCs [27]. 
Overall, as shown in Table 1, a variety of CAR-
transduced therapeutic targets have been 
extensively explored in both preclinical and 
clinical investigations, which will facilitate the 
robust development of the complementary and 
potentially “off-the-shelf” CAR-NK cell-based 
immunotherapy for AML treatment.

CAR-modification and clinical trials

Genetically modified CAR-NK cells have accel-
erated the application of cancer immunothera-
py for AML management, which largely attri-
butes to the major histocompatibility complex 
(MHC) mismatch and multitudinous modes of 

Figure 2. CAR-NK cell-based cytotherapy for AML. CAR-NK cells are adequate to conquer AML blasts via both CAR-
dependent and CAR-independent manners.
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Table 1. Therapeutic targets of CAR-structures for AML

Targets Cell sources Study 
stage Reference

CD13, TIM3 CAR-Ts Preclinical Ref. [127]
CD123 CAR-NKs Preclinical Ref. [43]
CD33, CD123 CAR-Ts Clinical Ref. [80, 81, 128]
NKG2D CAR-NKs Preclinical Ref. [2, 83]
CD27, CD70 CAR-Ts Preclinical Ref. [88]
CD19, CD33, CD123 CAR-NKs, CAR-Ts Preclinical Ref. [84, 129]
NPM1c CAR-Ts Preclinical Ref. [77]
CD19, CD20, CD93, PD-1 CAR-Ts Clinical Ref. [90]
CD7 CAR-Ts Preclinical Ref. [130]
TIM3, CLL-1, CD38 CAR-Ts Preclinical Ref. [2]
CD64 CAR-Ts Preclinical Ref. [27]

action, including both the CAR-dependent and 
the CAR-independent patterns [84]. Differ from 
CAR-T cells with high-efficiency CAR delivery, 
the preparation of CAR-NK cells with consider-
able CAR expression is challenging because 
the standard techniques for efficiently and 
genetically engineering the parental NK cells 
are still largely obscure [84]. For the purpose, 
talented investigators are devoted themselves 
to developing novel alternative strategies. On 
the one hand, Soldierer and the colleagues 
modified the CAR constructs in recognizing tar-
get antigens for AML (e.g., CD19, CD33, and 
CD123) to facilitate efficient detection of CAR 
NK cell products with high purity (>95%) based 
on CD34 microbead-assisted selection [84]. 
On the other hand, diverse novel technologies 
have been employed for improving the delivery 
efficiency of CAR-structure into NK cells, in- 
cluding CRIPSR/Cas9 (clustered regularly in- 
terspaced short palindromic repeats/CRISPR-
associated nuclease 9), TALENs (transcription 
activator-like effector nucleases), virus (e.g., 
lentivirus, adenovirus, retrovirus), electropora-
tion, PiggyBack system, and lipid nanoparticles 
(LNPs) [85-87]. For instance, Du and the col-
leagues took advantage of the PiggyBack sys-
tem for NKG2D CAR delivery into NK cells for 
treating relapsed or refractory AML [83]. Very 
recently, Leick et al reported a CD27-based 
enhanced CAR for targeting CD70 in AML by uti-
lized the orthogonal approaches for the design 
of transmembrane-modified regions to allevi-
ate cleavage of the extracellular portion [88]. 
Of note, for generating transient anti-fibrotic 
CAR-T cells in vivo for cardiac injury treatment, 
Rurik et al even delivered the modified mRNA 

into T cell-targeted lipid 
nanoparticles (LNPs), which 
thus provided novel thera-
peutic platforms for further 
developing in vivo CAR-NK 
cells to treat multisystem di- 
sorders including the refrac-
tory and recurrent AML (r/r 
AML) [89]. 

Generally, the CAR-structure 
is composed of three key 
components, including the 
extracellular domain for anti-
gen recognition, the trans-
membrane domain, and the 
intracellular domain [17]. To 

date, the CAR-structure has developed for five 
generations, including the first-generation with 
an intracellular signal component CD3ζ, the 
second-generation with a single costimulatory 
molecule (e.g., 4-1BB, CD28), the third-genera-
tion with diverse co-stimulatory domains, the 
fourth-generation with cytokine production-in- 
ducing effect (e.g., IL-12, IL-18), and the fifth-
generation with suicide genes for avoiding 
hyper-cytotoxicity or incorrect insertions of CAR 
into TRAC gene for inactivation of TCRα and 
TCRβ [16, 90]. Simultaneously, current advanc-
es have also suggested the re-designment of 
CAR-NK cells with enhanced cytotoxicity and 
INF-γ secretion for facilitating the antitumor 
efficacy via modifying NK cell signaling-associ-
ated domains (e.g., DAP-10, 2B4, DAP-12) [91].

As to CAR-NK cell-based immunotherapy for 
AML administration, there are only 9 interven-
tional clinical trials with 297 enrolled cases 
have been registered according to the Cli- 
nicalTrials.gov (https://www.clinicaltrials.gov/) 
database under the administration of National 
Institute of Health (NIH), and most of the trials 
are launched by China with the recruiting status 
(Figure 3, up to January 9th, 2023). The majority 
of the trials is in the Phase I and Phase I/II stag-
es for evaluating the safety and efficacy of  
CAR-NK cell-based cytotherapy by targeting 
CD33/CLL1 (NCT05215015, NCT02944162, 
NCT05008575), CD123 (NCT05574608), NK- 
G2D (NCT05247957), and CD70 (NCT0509- 
2451) (Table 2). The parameters for evaluating 
CAR-NK cell-based outcomes mainly including 
incidence of dose limiting toxicity (DLT), overall 
survival (OS), progression free survival (PFS), 
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Table 2. CAR-NK cell-based clinical trials for AML administration
NCT No. Status Targets Phases Enrollment Locations
NCT05215015 Recruiting CD33/CLL1 Early Phase 1 18 China
NCT05574608 Recruiting CD123 Early Phase 1 12 China
NCT02944162 Unknown CD33 Phase 1, 2 10 China
NCT04623944 Recruiting NKX101 Phase 1 90 USA
NCT05247957 Terminated NKG2D Not Applicable 9 China
NCT05008575 Recruiting CD33 Phase 1 27 China
NCT05601466 Recruiting QN-023a Phase 1 18 China
NCT05665075 Recruiting QN-023a Phase 1 19 China
NCT05092451 Recruiting CAR-70/IL15 Phase 1, 2 94 USA

Figure 3. The worldwide distribution of CAR-NK cell-based trials for AML administration. According to the ClinicalTri-
als.gov website (https://clinicaltrials.gov/), a total number of 9 trials has been registered worldwide (up to Feb. 28th, 
2023).

minimal residual disease (MRD), complete 
response (CR), objective response rate (ORR), 
duration of overall response (DOR), the phar-
macokinetics (PK) and plasma concentration  
of CAR-NK cells, cytokine release, adverse 
events (AEs) according to CTCAE (version 5.0), 
percentage of subjects receiving HSCT, the 
area under the concentration time-curve (AUC), 
the immunogenicity features and host immune 
response. Nevertheless, the rare tumor-specif-
ic cell-surface antigens also restricts the broad-
ness and specificity of CAR-NK cell application 
in clinical trials [21, 46, 92].

CAR-NK cell-mediated immunology in AML

NK cells in AML patients are often dysfunction-
al compared to the counterparts in healthy 
donors [93]. It is evident that the incapacita- 
tion of NK cells during tumor progression is not 
only manifested in the relative resistance of 
AML blasts to NK cell targeting, but also in the 
regulation of NK cell function in the AML 
immune microenvironment. 

For the past decades, the concomitant molecu-
lar mechanisms including soluble factors, cell-
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Figure 4. NK cells and the regulatory cell populations in the AML microenvironment. The interaction network of NK 
cells, the regulatory cell populations (MDSCs, Treg cells), and AML blasts in the AML microenvironment.

to-cell interactions, and other regulatory ele-
ments in the AML microenvironment have been 
extensively described (Figure 4). For instance, 
some investigators have reported the frequent 
downregulation of activated NK cell receptors 
in AML (e.g., NKG2D, DNAM-1, and the NCRs), 
which positively correlates to the leukemia bur-
den in the patients [94-96]. Soluble NKG2D 
ligands (NKG2DL) shedded by the tumor cells 
and tumor surface NKG2D could trigger the 
NKG2D reduction in NK cells [97, 98]. The 
NKG2D receptor can also be downregulated by 
hypoxia and cytokines (e.g., TGF-β) [99]. The 
antigen CD155 expressed on AML blasts and 
MDSCs contributes to the downregulation of 
DNAM-1 on NK cell surface and renders tumor 
cells resistant to NK cell targeting [100]. 
Expression of NCRs is reduced in an effect reli-
ant on NK and blast cell contact, which allows 
leukemic blasts to avoid NK cell recognition 
[94].

A series of hypotheses have been identified for 
the explanation of the escape of myeloid malig-
nancies from NK cell recognition. For instance, 
NKG2A expression is commonly upregulated by 
increased levels of IFN-γ and IL-10 in AML blast, 

which thus results in the upregulation of HLA-E 
(NKG2A ligand) on tumor cells [94, 101]. Be- 
sides, AML Blast cells release diverse soluble 
agonists for the upregulation of the aryl hydro-
carbon receptor (AHR) in NK cells, which facili-
tate microRNA29b expression and leads to 
incomplete maturation and poor cytotoxicity 
[101]. Upregulation of the immunosuppressive 
cell surface glycoprotein CD200 expression on 
AML blasts or LSCs can help tumor cells escape 
from NK cell-mediated lysis by interaction with 
CD200R on NK cell surface [102]. A population 
of hypo-functional NK cells with KIR expression 
frequently arise in AML patients, which partially 
explains the absence of respective ligands in 
their complement of self HLA molecules [103].

Of note, AML blasts are also adequate to hinder 
NK cell activity by recruiting diverse immuno-
suppressive cells. For example, soluble NKG2- 
DL promotes the expansion of myeloid-derived 
suppressor cells (MDSCs) and skews macro-
phages to the more immune suppressive alter-
native phenotype via activation of STAT3 [104]. 
Tumor-induced MDSCs contribute to the inhibi-
tion of NK cells by producing a range of sub-
stances, including TGF-β, IL-10, reactive oxygen 
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species (ROS), and arginase [105]. Instead, 
regulatory T cell (Treg) expansion is supported 
by blast cell production of indoleamine 2,3- 
dioxygenase (IDO) [106]. These inhibitory cell 
subsets inhibit NK cell activity via a variety of 
mechanisms, including membrane-bound TGFβ 
release and restriction of IL-2 bioavailability 
[107]. Meanwhile, hypoxia is associated with 
various inhibitory NK cellular effects, including 
the decreased activation receptor expression 
and impaired IFN-γ production [108].

Standardization and productization

Cell-based therapy, including stem cell the- 
rapy and cellular immunotherapy, is “live drug”-
based medical therapeutics, which largely de- 
pends on cellular vitality and clinical therapeu-
tic scheme. For instance, we and Zhang et veri-
fied the variations in the outcomes of mice with 
acute graft-versus-host disease (aGvHD) and 
acute liver failure (ALF) after MSC transplanta-
tion due to the heterogeneity caused by donor 
sources and continuous passages, respectively 
[109, 110]. Similarly, as to CAR-NK cell prepara-
tion and the subsequent cellular immunothera-
py, establishment of the guidelines and stan-
dardizations is the prerequisite for further 
clinical application and large-scale industrial-
ization of new drug application (NDA). 

To fulfill the objective of large-scale and clini- 
cal-grade CAR-NK cells for adoptive immuno-
therapy as well as novel therapeutic products 
of AML, there’re several core issues should be 
adequately concerned. Firstly, a public cell 
bank of “seeds” is the cornerstone for the fol-
low-up standardized NK cell preparation for 
oncological surveillance. Of the aforemen-
tioned cell sources, perinatal blood and stem 
cells display higher feasibility over those from 
the adult tissues (e.g., bone marrow, peripheral 
blood) as seed cells for heterogeneous and 
standard CAR-NK cell generation [16, 17]. As  
to seed cells from perinatal blood, the general 
requirements should encompass the aspects 
of quality control (QA) and quality assurance 
(QC), including informed consent and immune 
characteristics from healthy donors, blood col-
lection under sterile conditions, dynamic moni-
toring during cold chain transport, sterility and 
virus testing (e.g., hepatitis B virus, cytomega-
lovirus, syphilis), living cell number in total 
mononuclear cells (TNCs) or resident NK (rNK) 
cells or hematopoietic stem cells (HSCs), cellu-

lar vitality (e.g., proliferation, apoptosis, senes-
cence), labeling requirements, and cryopreser-
vation. As to those from stem cells, a series of 
consensus and general requirements for stem 
cells have been released [16, 17, 111, 112]. 
For example, the Chinese Society for Stem Cell 
Research (CSSCR) published the first general 
guidelines for stem cell research and produc-
tion in China entitled “General requirements for 
stem cells”, which detailed described the clas-
sification, ethical requirements, quality require-
ments, QC requirements, detection control re- 
quirements, and waste disposal requirements 
of stem cells [111]. Meanwhile, we and other 
investigators have also put forward various 
guidelines of diverse stem cell-based applica-
tion and investigational new drug (IND) such as 
human pluripotent stem cells (hPSCs), HSCs 
and MSCs, which help assure the feasibility 
and consistency of the safety and quality of  
the stem cell seeds for CAR-NK cell induction 
[112-115]. 

Secondly, all intermediate manufacturing stag-
es for large-scale ex vivo CAR-NK cell prepara-
tion should under GMP conditions and follows 
standard specifications, including seed cell 
thawing, GMP-grade cytokines (e.g., rhIL-2, rhIL-
15), serum-free medium (e.g., X-VIVO medium, 
AIMV medium, SCGM medium), CAR-delivery 
reagents, CAR-NK cell enrichment, and the rel-
evant pharmaceutic excipients [17, 116]. For 
example, Spanholtz and the colleagues verified 
the generation of GMP-grade NK cells with high 
purity and potency, and thus met the basic 
benchmarks for allogeneic CAR-NK cell-based 
cell products [117, 118]. Simultaneously, stan-
dard operating procedures (SOPs) and the 
molecular mechanisms for explaining CAR-NK 
cell function are also urgently needed for large-
scale cell product development, such as the 
purity, specific subpopulations for specific indi-
cations, cellular vitality, cytokine release, man-
ufacturing control, oncolytic activity towards 
AML cells, and transcriptomic characteristics. 
For example, we and other investigators indi-
cated a variety of non-gene-edited NK cell sub-
sets or gene-edited CAR-NK cells for AML ad- 
ministration, including the NKG2C+ memory-
like NK cells and the CD94/NKG2C+FcεRIγ- 
long-lived subset [16, 17, 119, 120]. 

Thirdly, for further IND development, CAR-NK 
cells should fulfill the principles, including the 
guidance, quality management, regulations, 
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processes, pre-IND meeting, and IND applica-
tion for obtaining the permission for launching 
clinical trials [21, 113]. Therefore, all proce-
dures in the intermediate stages during indus-
trialization and IND application must follow the 
successive guidelines for drug development, 
such as the basic research stage, pharmacy 
stage, pharmacology stage, toxicology stage, 
IND application stage, and clinical trials stage 
[16, 113, 121]. For instance, we and the col-
laborator took advantage of diverse biological 
tests and single-cell RNA sequencing technolo-
gy for the decoding of the multifaceted biologi-
cal and transcriptomic profiling of adoptive NK 
cells and CAR-NK cells, which would collectively 
facilitate the further development of the stan-
dardization and productization for the safety 
and efficacy assessment of CAR-NK cell-based 
regimens and cell products.

Fourthly, in the context of the intractable clonal 
heterogeneity and tumor microenvironment 
(TME) complexity, the next-generation of com-
prehensive regimens for ultimately once and 
for all conquering the inflexible AML should 
orchestrate the traditional remedies and the 
novel cancer immunotherapies, including sur-
gery, chemoradiotherapy, immune checkpoint 
inhibitors, transplantation of non-gene-edited 
immune cells or gene-edited CAR-T cell and 
CAR-NK cells [16, 122-124]. Meanwhile, the 
potential complications during CAR-T cell-based 
immunotherapy should also be systematically 
tested and eluded during CAR-NK cell-based 
treatment algorithms for AML, such as aGvHD, 
CRS, immune-related adverse events (irAEs), 
and immune effector cell-associated neurotox-
icity syndrome (ICANS) [40]. Of note, Bacha- 
nova et al found that the efficacy of the infused 
haploidentical NK cells against AML was weak-
en by recipient Treg (regulatory T cells), which 
highlighted the feasibility of complete clear-
ance rate of refractory AML by depleting the 
Treg with IL-2-diphtheria fusion protein (IL2DT) 
in host [17, 125].

Prospective and challenges

For decades, immunotherapy has highlighted 
the feasibility of efficient administration of 
diverse hematologic malignancies, and in par-
ticular, the great success of CAR-T cell-based 
regimens have strikingly upgraded the level  
of cancer immunotherapy [84]. However, the 

intractable untoward effects of CAR-T cells 
(e.g., GvHD, CRS, neurotoxicity) continually 
frustrate cancer patients, which commonly 
result in high recurrence and mortality rates. 
Therewith, more and more researchers turn to 
genetically modified NK cells as alternative  
and “off-the-shelf” CAR immune effector cells, 
which are adequate to across HLA barriers 
without causing the aforementioned untoward 
effects [84]. In details, CAR-NK cells are ade-
quate to recognize and eliminate AML cells with 
high specificity and cytotoxicity on the basis of 
the surface antigens exclusively expressed on 
cancer cells. CAR-NK cells are less toxic than 
CAR-T cells and minimally cause CRS or ICANS, 
which are the most common and serious side 
effects associated with CAR-T cell therapy 
[126]. CAR-NK cells reveal a lower risk of off-
target effects as CAR-T cell therapy because 
CAR-NK cells exempt from major histocompati-
bility complex (MHC) matching [2]. AML cells 
can suppress the immune system, making 
them resistant to conventional therapies [16]. 
CAR-NK cells have efficiently ameliorated this 
immunosuppressive effect and thus enhance 
the killing effect upon AML cells. Differ from 
CAR-T cells, CAR-NK cells have gotten rid of the 
matching restrictions, which thus eliminate the 
need for individualized preparation for AML 
patients [90, 126]. Overall, CAR-NK cells have 
possessed significant advantages (e.g., high 
specificity, cytotoxicity, and resistance to immu-
nosuppression), which collectively make them 
as a promising option for AML treatment, in 
particular, in patients who endure the toxicity of 
CAR-T cell therapy (Table 3).

Differ from the advantages of genetically modi-
fied T cells (e.g., TCR-T cells, CAR-T cells), the 
high-efficiency and cost-effective procedures 
as well as the standardization for suitable  
CAR-NK cell products preparation is still chal-
lenging [84]. Of note, Soldierer et al recently 
reported the optimal lentiviral delivery into pri-
mary human NK cells by comparing viral entry 
enhancers and lentiviral pseudotypes, and 
modifying the internal promoters for lentiviral 
CAR construct [84]. With the aid of CD34 mic- 
robead-assisted enrichment, CAR-NK cell prod-
ucts with over 95% purity could be prepared  
for potential clinical usage or preclinical test- 
ing the cytotoxicity of CAR-NK cells upon pri-
mary AML blasts and AML cell lines [84]. 
Nevertheless, the more efficient alternative 
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Table 3. Comparison of CAR-T cells and CAR-NK cells in cancer immunotherapy
Parameter CAR-T cells CAR-NK cells
Cell sources Mostly autologous T cells for avoiding GVHD PBMCs, UC-MNCs, p-MNCs, NK cell lines, iPSCs, 

hESCs, HSCs
Transduction efficiency Higher Lower
In vitro expansion Better Worse
In vivo persistence Better Worse, limited in-vivo survival without cytokines [127]
Safety GVHD, CRS and neurotoxicity [127] No
Killing capacity Kill tumor cells carrying TAA in a MHC-indepen-

dent manner, slow killing response
Kill tumor cells regardless of their MHC status, rapid 
killing response

technologies and platforms for overcoming  
the shortcomings in delivering CAR construct 
including the liposome nanoparticles (LNP)  
and CRISPR/Cas9-based genetic engineering 
approaches are urgently needed to eradicate r/
rAML [126].

State-of-the-art literatures have indicated the 
promising effect of CAR-NK cells in pioneering 
clinical trials. Interestingly, Valeri et al found 
that the impact of downregulation or loss of 
CAR upon CAR-NK cell-based cytotherapy was 
minimal, which was distinguish from the CAR-T 
cell therapy for oncotherapy [126]. Of note, 
considering the lessons from CAR-T cell treat-
ment, the potential emergence of CAR-NK cell-
related therapeutic resistance should also be 
envisioned [126]. Additionally, the influence of 
tumor microenvironment (TME) upon CAR-NK 
cell-based cancer immunotherapy and the 
resultant “tumor escape” during AML should 
also be paid attention to [16]. Meanwhile, there 
are still several challenges need to be over-
come for CAR-NK therapy to become a stan-
dard treatment for AML [126]. One of the main 
challenges is identifying the optimal target  
antigen for CAR-NK cells in AML [4, 81]. Unlike 
solid tumors, AML cells express a wide range of 
antigens, and not all of them are suitable for 
targeting with CAR-NK cells [32]. Furthermore, 
the heterogeneity of AML cells can also pose a 
challenge, as not all AML cells express the 
same antigens [2].

Cellular viability is the prerequisite for CAR-NK 
cell-based cancer immunotherapy and stem 
cell-based regenerative medicine [16, 110]. 
Despite the exploratory research of diverse 
sources for CAR-NK cell preparation, yet the 
inherent defect in in vivo persistence largely 
hinders the large-scale application of CAR-NK 
cells in clinical practice [17]. For the purpose, 

Du et al recently took advantage of the piggy-
back system for the co-expression CAR-NKG2D 
and IL-15, which could further augment the 
anti-AML activity and in vivo persistence of 
PB-NK cells [17]. Simultaneously, we recently 
reported the application of cytokine cocktail-
based cell programming strategy for high-effi-
ciency generation of NK cells from periphe- 
ral blood and perinatal blood (umbilical cord 
blood, placental blood) within 14 days [56, 59, 
60]. Of note, human pluripotent stem cells (e.g., 
hiPSCs, hESCs) with self-renewal and multi-lin-
eage differentiation capacity have been recog-
nized as advantageous sources for hemato- 
poietic stem cell (HSC) preparation and the 
subsequent CAR-NK cell generation [43, 68].

Overall, adoptive CAR-NK cell-based cancer 
immunotherapy has become a revolutionary 
new pillar and extensively expanded the thera-
peutic landscape in metastatic solid tumors 
and hematological malignancies including re- 
fractory and recurrent AML (r/rAML). To fulfill 
the clinical demands and new drug applica- 
tion, it’s of great importance to systematic  
and detailed dissection of the biofunction and 
underlying molecular mechanisms from the 
aspects of cell sources, target selection, CAR-
modification and delivery, therapeutic applica-
tion in clinical trials, together with the standard-
ization and productization of CAR-NK products. 
In the near future, the comprehensive treat-
ment options for efficiently conquering AML are 
hopeful by combining traditional remedies with 
the novel CAR-NK cell-based immunotherapy.
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