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Abstract: Recent studies have indicated that RRM2 plays a crucial part in the tumor immune microenvironment. 
According to the expression of RRM2, we evaluated immune cell infiltration, immunotherapy biomarkers, and the 
expression of immune checkpoint molecules in four lung adenocarcinoma (LUAD) datasets. We employed the Tu-
mor Immune Dysfunction and Exclusion (TIDE) and CIBERSORTx algorithms to examine the patterns of immune cell 
distribution and evaluate the responses to anti-programmed death protein-1/programmed death ligand-1 (PD-1/
PD-L1) therapy in three publicly available LUAD datasets. These findings were corroborated using a validation group 
comprising patients who received treatment with PD-1/PD-L1 inhibitors. Additionally, we conducted experiments us-
ing LUAD cell lines to investigate how RRM2 affects the expression of PD-L1. In comparison to the low RRM2 group, 
the high RRM2 group exhibited a high interferon gamma signature, high T-cell-inflamed signature, high CD274 
expression, high CD8+ T cell levels, low cancer-associated fibroblasts, and low M2 macrophages, according to TIDE 
analysis in the three LUAD datasets. Analysis of the three LUAD datasets using CIBERSORTx confirmed a positive 
correlation between RRM2 and CD8+ T cells, and this finding was validated by immunohistochemistry in a separate 
validation set. In the three LUAD datasets without PD-1/PD-L1 inhibitor treatment, higher RRM2 expression was 
associated with a poorer prognosis. However, in the LUAD dataset treated with PD-1/PD-L1 inhibitors, higher RRM2 
expression was associated with better prognosis. In the three datasets, the high-RRM2 group exhibited higher 
expression of inhibitory immune checkpoint molecules. In a LUAD cell line study, we discovered that RRM2 regu-
lates PD-L1 expression through the ANXA1/AKT pathway. The expression of RRM2 shows promise as a predictive 
biomarker for PD-1/PD-L1 inhibitors in LUAD patients, and it may represent a new target to overcome resistance to 
PD-L1/PD-1 therapies.
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Introduction

Programmed death protein-1/programmed de- 
ath ligand-1 (PD-1/PD-L1) inhibitor blockade is 
an effective therapeutic approach to improve 
prognosis for advanced non-small cell lung can-
cer (NSCLC) [1-3]. While PD-L1 protein expres-
sion levels have been used to predict clinical 
responses to PD-L1/PD-1 inhibitors, NSCLC 
patients with minimal or absent PD-L1 expres-
sion have also demonstrated long-lasting res- 
ponses [4, 5]. Our current understanding of the 
mechanisms underlying tumor immune resis-
tance remains incomplete, emphasizing the 

need for improved predictive biomarkers of 
PD-L1/PD-1 blockades.

Ribonucleotide reductase (RR) is an essential 
enzyme that facilitates deoxyribonucleotide 
synthesis during DNA replication [6]. RR pri- 
marily comprises two homodimeric subunits:  
a large subunit (RRM1) and a small subunit 
(RRM2) [6]. Alterations in RRM2 can potentia- 
lly result in genome instability and increased 
mutation rates, thereby affecting tumor ad- 
vancement [7, 8]. Elevated RRM2 levels have 
been documented in various cancer types [9] 
and are associated with tumor progression and 
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Table 1. Demographic and clinical characteristics of patients
Pancancer Atlas 

(n = 510) Oncosg (n = 169) Cptac (n = 110) Validation  
(n = 343)

Age, median (range) 66 (38-88) 64 (37-84) 62 (35-81) 63 (31-86)
Male sex 236 (46.3%) 75 (44.4%) 72 (65.5%) 211 (61.5%)
TNM 
    Stage I 277 (54.3%) 102 (60.4%) 46 (41.8%) 153 (45.5%)
    Stage II 123 (24.1%) 30 (17.8%) 17 (15.5%) 39 (11.6%)
    Stage III 83 (16.3%) 31 (18.3%) 13 (11.8%) 92 (27.4%)
    Stage IV 27 (5.3%) 4 (2.4%) 0 (0%) 52 (15.5%)
EGFR Mutant 66 (12.9%) 93 (55%) 38 (34.5%) 83 (48.8%)
ALK rearrangement 5 (1%) 6 (3.6%) 0 (0%) 3 (2%)
Smoking history presence N/A 61 (36.1%) 56 (54.9%) 161 (56.7%)
PD-1/PD-L1 inhibitor treatment None None None 63 (18.4%)
N/A: not applicable. In the validation set, records of TNM stage, EGFR mutation, ALK rearrangement, and smoking history were 
available for 336, 170, 147, and 284 individuals, respectively.

metastasis [10, 11]. Recent studies have sh- 
own that RRM2 plays a significant role in the 
immune microenvironment. It has been found 
to have a positive regulatory effect on PD-L1 
expression in renal cell carcinoma (RCC) [12]. It 
also influences the immune response in RCC by 
modulating the ANXA1/AKT signaling axis [12]. 
The expression of RRM2 was significantly posi-
tively correlated with immune cell infiltration, 
immune cell biomarkers, and immune check-
point expression in hepatocellular carcinoma 
(HCC) [11]. In vitro and in vivo studies have 
revealed that RRM2 inhibition effectively in- 
duces M1 macrophage polarization while sup-
pressing M2 macrophage polarization in lung 
adenocarcinoma (LUAD) [13]. Our previous 
study revealed that an intrinsic pathway-associ-
ated gene signature, including RRM2, was 
associated with improved prognosis in patients 
who received PD-L1/PD-1 inhibitor therapy in 
LUAD [14].

However, studies investigating the impact of 
RRM2 on the tumor immune microenvironment 
in the field of lung cancer are rare. We evaluat-
ed immune cell infiltration, immune cell bio-
markers, and immune checkpoint expression  
in three public LUAD databases according to 
RRM2 expression using the Tumor Immune 
Dysfunction and Exclusion (TIDE) and CIBER- 
SORTx tools. The results that were consistently 
identified across the three LUAD public data-
bases were further confirmed in the LUAD vali-
dation set using immunohistochemical stain-
ing. Finally, we examined whether RRM2 mRNA 

or protein expression could serve as a predic-
tive biomarker in patients receiving PD-L1/
PD-1 inhibitor therapy.

Materials and methods

Study population

Four LUAD datasets were examined, including 
three public gene expression datasets consist-
ing of 510, 169, and 110 samples and one vali-
dated dataset with 343 samples. Three LUAD-
related mRNA datasets were obtained from  
the cBioportal database (http://cbioportal.org) 
[15]. Table 1 summarizes the demographic and 
clinical features of the four datasets. RRM2 
mRNA data from LUAD patients who received 
PD-L1/PD-1 inhibitor therapy were obtained 
from a previous study [14]. The Institutional 
Review Board of Ajou University School of 
Medicine approved this study (AJOUIRB-KSP- 
2020-396 and 2020-12-28). Informed con- 
sent was waived due to the retrospective study 
design.

TIDE and CIBERSORTx tool

Nine predictive biomarkers for PD-L1/PD-1 
inhibition were identified using the TIDE tool: 
TIDE, interferon gamma gene signature, micro-
satellite instability (MSI), T-cell-inflamed signa-
ture, CD274 (PD-L1), CD8, myeloid-derived  
suppressor cells (MDSC), cancer-associated 
fibroblasts (CAF) and Tumor-associated macro-
phage M2 (TAM_M2) [16]. The CIBERSORTx 
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lowed by separation through sodium dode- 
cyl sulfate-polyacrylamide gel electrophoresis. 
Subsequently, they were transferred onto nitro-
cellulose membranes and probed with specific 
antibodies. Antibodies against RRM2 (clone 
1E1; Abcam), PD-L1 (clone 2B11D11; Pro- 
teintech), AKT (polyclonal; Proteintech), and 
ANXA1 (clone D5V2T; Cell Signaling Techno- 
logy) were used. Protein levels were visualized 
using an Odyssey Infrared Imaging System 
(LI-COR Biosciences). The process was repli-
cated on three separate occasions to ensure 
consistent results.

Statistical analyses

We employed the Mann Whitney U test to exam-
ine the difference between two sets of continu-
ous variables. We used Spearman’s rank cor-
relation coefficient to calculate the correlation 
between two groups. We applied receiver oper-
ating characteristic (ROC) curve analysis to 
determine the cutoff for RRM2. We conducted 
survival analyses by employing both the Kaplan-
Meier estimator and the Cox proportional haz-
ard model. The statistical software programs 
IBM SPSS Statistics for Windows (version 25.0; 
IGM Inc., Armonk, NY, USA) and R version 3.5.3 
(http://www.r-project.org/) were utilized for all 
data analyses. Statistical significance was de- 
termined by considering p values less than 
0.05.

Results

Association between RRM2 expression and 
predictive biomarkers for anti-PD-1/PD-L1 
therapy

We investigated the differences in the pre- 
dicted biomarkers of anti-PD-1/PD-L1 therapy 
based on RRM2 expression in three publicly 
available LUAD datasets (Figure 1). The cutoff 
value of RRM2 mRNA was 890 in the PanCan- 
cer Atlas, -0.04 in the OncoSG dataset, and 
3.09 in the CPTAC dataset. We included only 
parameters with p-values less than 0.1 from all 
three groups shown in Figure 1. Across the 
three datasets, the interferon gamma signa-
ture was significantly higher in the group with 
high RRM2 than in the group with low RRM2 (P 
< 0.001 for the PanCancer Atlas, P = 0.001 for 
the Oncosg dataset, and P = 0.016 for the 
CPTAC dataset). The group with high RRM2 had 
a greater T cell-inflamed signature than the 
group with low RRM2 in the three datasets (P = 

tool was used to identify the CD8 and TAM-M2 
levels in LUAD samples [17].

Immunohistochemistry of PD-L1, RRM2 and 
CD8

A tissue microarray was used to conduct immu-
nochemical staining on the surgically resected 
samples. Biopsy samples were obtained from 
all sections for analysis. Anti-RRM2 (clone 1E1; 
Abcam) and anti-CD8 (clone C8/144B, DAKO) 
antibodies were used for analyses. A VENTANA 
BenchMark ULTRA instrument was used to per-
form the PD-L1 SP263 assay using the Opti- 
View DAB Immunohistochemical Detection Kit 
[18]. RRM2 or PD-L1 staining levels were cate-
gorized into four groups (0, 1, 2, and 3) to deter-
mine their intensity. Additionally, the percent-
age of cytoplasmic or membrane expression 
was assessed. H-scores were used to analyze 
the staining intensities of RRM2 and PD-L1 
[19]. In order to assess CD8 immunostaining, 
the number of membrane-positive cells was 
measured at three different locations, and the 
average value was subsequently calculated.

Cell lines and transfection

The Korean Cell Line Bank provided the A549, 
NCI-H441, and NCI-H650 human LUAD cell 
lines. A549 cells were grown using DMEM, 
while NCI-H441 and NCI-H650 cells were cul-
tured using RPMI 1640 medium. The cells were 
incubated in RPMI 1640 medium at a tempera-
ture of 37°C in a humid environment with 5% 
CO2. The culture medium contained 10% fetal 
bovine serum and 1% penicillin-streptomycin 
as supplements. Prior to experimentation, all 
the cell lines were tested to ensure that there 
was no mycoplasma contamination. The siRNA 
was introduced into the cells through transfec-
tion using Lipofectamine RNAiMAX Reagent 
(Invitrogen), in accordance with the guidelines 
provided by the manufacturer.

The specific siRNA sequences used to target 
RRM2 were as follows: siRNA #1 (5’-CACA- 
AGGCGAUAAUAGCUU-3’ and 5’-AAGCUAUUAU- 
CGCCUUGUG-3’) and siRNA #2 (5’-GAGCUA- 
AGGUAGUAUUGUA-3’ and 5’-UACAAUACUACCU- 
UAGCUC-3’).

Western blotting

The cells were subjected to lysis using RIPA 
lysis buffer (Thermo Fisher Scientific Inc.), fol-
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Figure 1. Differences in TIDE-related biomarkers 
based on RRM2 expression in three publicly avail-
able lung adenocarcinoma (LUAD) datasets. The 
alterations in the levels of TIDE-related biomarkers 
corresponding to RRM2 expression were examined 
in the Pancancer atlas (A), the OncoSG dataset (B) 
and the CPTAC dataset (C). The small dot in the box-
plot represents the mean value. 

0.034 for the PanCancer Atlas, 0.027 for the 
OncoSG dataset, and 0.088 for the CPTAC 
dataset). In the three datasets, we found that 
the group with high RRM2 had a greater level of 
CD274 expression compared to the group with 
low RRM2 (P < 0.001 for the PanCancer Atlas, 
P = 0.08 for the OncoSG dataset, and P = 0.003 
for the CPTAC dataset). The CD8+ T cell level 
was significantly greater in the high RRM2 
group as compared to the low RRM2 group in 
the three different datasets (P = 0.002 for the 
PanCancer Atlas, P = 0.04 for the OncoSG data-
set, and P = 0.049 for the CPTAC dataset). The 
group with high RRM2 showed a significantly 
elevated level of MDSC compared to the group 
with low RRM2 in three different datasets (P < 
0.001 for the PanCancer Atlas, P < 0.001 for 
the OncoSG dataset, and P < 0.001 for the 
CPTAC dataset). Across the three datasets, the 
group with high RRM2 had a reduced level of 
CAF compared to the group with low RRM2 (P = 
0.003 for PanCancer Atlas, P = 0.074 for the 
OncoSG dataset, and P = 0.074 for the CPTAC 
dataset). Across the three datasets, the group 
with high RRM2 had a lower level of TAM-M2 
compared to the group with low RRM2 (P < 
0.001 for the PanCancer Atlas, P = 0.083 for 
the OncoSG dataset, and P = 0.001 for CPTAC 
dataset). However, TIDE and MSI scores did  
not yield consistent results across the three 
datasets.

Relationship among RRM2, PD-L1 and CD8 
expression in validation dataset

Higher RRM2 expression was associated with 
an increase in PD-L1 expression and CD8+ T 
cell numbers, and a decrease in TAM-M2 cells 
in all three public datasets. We revalidated the 
results of CD8+ T cells and TAM-M2 from the 
TIDE analysis using Cibersortx, a tool for analyz-
ing the distribution of immune cells. In the 
PanCancer and CPTAC datasets, there was a 
statistically significant increase in CD8+ T cell 
levels in the high-RRM2 group (P < 0.001 for 
the PanCancer Atlas, and P = 0.003 for the 
CPTAC dataset, as shown in Figure 2A). In the 
OncoSG dataset, there was a trend of higher 
CD8+ T cell levels in the high-RRM2 group; how-
ever, this was not statistically significant (P = 
0.101; Figure 2A). However, there was no cor-
relation between RRM2 and TAM2-M2 across 
the three datasets (P = 0.527 for the PanCancer 
Atlas, P = 0.522 for the OncoSG dataset, and P 
= 0.24 for the CPTAC dataset, as shown in 
Figure 2A). Since only the results of CD8+ T 
cells were found to be significant in the TIDE 
and CiberSortx analyses, we performed valida-
tion using immunohistochemistry on RRM2, 
CD8+ T cells and PD-L1 in the validation set. 
The cutoff value for RRM2 IHC was 55 in the 
validation set. In both the tumor and peritumor-
al regions, the high-RRM2 group exhibited ele-
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Figure 2. Variations in CD8 and TAM-M2 levels based on RRM2 expression in three public lung adenocarcinoma 
(LUAD) datasets using the CIBERSORTx tool. Changes in levels of CD8 and TAM-M2 according to RRM2 expression 
in the Pancancer Atlas, the OncoSG dataset and the CPTAC dataset (A). Differences in PD-L1 and CD8+ T cells were 
determined according to RRM2 expression in the validation dataset using immunohistochemistry. Changes in levels 
of PD-L1 and CD8+ T cells according to RRM2 expression (B). Representative immunohistochemical images illus-
trating the expression of RRM2, PD-L1, and CD8 (magnification ×400 and scale bar is 50 um) (B). The small dot in 
the boxplot is the mean value.

vated levels of CD8+ T cells compared to the 
low-RRM2 groups (P < 0.001 for CD8+ T cells in 
the tumoral region, and P < 0.001 for CD8+ T 
cells in the peritumoral region; Figure 2B). A 
positive correlation was observed between 
higher levels of RRM2 immunohistochemical 
expression and increased levels of tumoral 
PD-L1 (P < 0.001; Figure 2B).

Prognostic role of RRM2 expression

We examined how RRM2 mRNA expression 
could predict outcomes using publicly available 
datasets. We conducted survival analysis only 
on the PanCancer Atlas and OncoSG datasets 
because the CPTAC dataset did not contain sur-
vival data. The cutoff value of RRM2 mRNA was 
890 in the PanCancer Atlas and -0.04 in the 
OncoSG dataset. In both datasets, there was a 
statistically significant decrease in survival rate 
when RRM2 mRNA expression was high (P = 
0.001 for the PanCancer Atlas as shown in 
Figure 3A, and P = 0.02 for the OncoSG datas-
et as shown in Figure 3B). In the multivariate 
analyses, RRM2 mRNA expression was a sta- 
tistically significant independent prognostic 
factor in the PanCancer Atlas dataset (P = 
0.012, Supplementary Table 1); However, it was 
borderline significant in the OncoSG dataset  

(P = 0.057, Supplementary Table 2). Survival 
analysis was performed using the validation 
set. In the validation set, the cutoff value for 
RRM2 IHC was 55 in cases without PD-L1/PD-1 
treatment. In the validation set, among patients 
who did not receive PD-L1/PD-1 therapy, high 
RRM2 expression was associated with a signifi-
cantly worse prognosis (P < 0.001, Figure 3C). 
Multivariate analyses revealed that RRM2 ex- 
pression was a significant independent prog-
nostic factor in patients who did not received 
PD-L1/PD-1 therapy, with a statistically signifi-
cant p value of < 0.001 (Supplementary Table 
3). In the validation set, the cut-off for RRM2 
mRNA was 2168, and the cut-off for RRM2 IHC 
was 90 in cases with PD-L1/PD-1 treatment. 
However, in the validation set, there was a sta-
tistically significant improvement in the progno-
sis associated with high RRM2 mRNA or immu-
nohistochemical expression among patients 
who received PD-L1/PD-1 therapy (P = 0.02, 
mRNA dataset, Figure 3D; P = 0.027, immuno-
histochemical dataset, Figure 3E). In patients 
who received PD-L1/PD-1 therapy, multivariate 
analyses showed that RRM2 expression was  
an independent prognostic factor in the mRNA 
dataset with a statistically significant p value of 
0.021 (Supplementary Table 4). However, it was 
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Figure 3. Survival analyses according to RRM2 expression. A. Overall survival (OS) according to RRM2 expression 
in the PanCancer cohort without PD-L1/PD-1 treatment. B. OS according to RRM2 expression in the OncoSG cohort 
without PD-L1/PD-1 treatment. C. OS according to RRM2 expression in validation immunohistochemical cohort 
without PD-L1/PD-1 treatment. D. Progression-free survival (PFS) according to RRM2 expression in validation mRNA 
cohort with PD-L1/PD-1 treatment. E. PFS according to RRM2 expression in validation immunohistochemical cohort 
with PD-L1/PD-1 treatment.

of borderline significance in the immunohisto-
chemical dataset with a p value of 0.089 
(Supplementary Table 5).

Relationship among RRM2 and immune 
checkpoints in three public datasets

In three public datasets and one validation  
set, RRM2 expression was positively correlated 
with PD-L1 and CD8+ T cells. Therefore, assum-
ing that the immune microenvironment in the 
high-RRM2 group was dysregulated, we ana-
lyzed the correlation between RRM2 and other 
immune checkpoints. In the Pancancer Atlas 
dataset, RRM2 expression was significantly 
positively correlated with PD-1, PD-L2, and 
LAG3 expression (Figure 4). In the OncoSG 
dataset, there was a significant positive asso-
ciation between RRM2 expression and immune 

Inhibition of RRM2 downregulate of PD-L1 
through ANXA1/AKT pathway

We confirmed a positive correlation between 
RRM2 and PD-L1 at both the mRNA and im- 
munohistochemical levels and therefore inves-
tigated whether the same result was observed 
at the cell line level. NCI-H441 cells showed  
the highest expression of both PD-L1 and 
RRM2 among the three LUAD cell lines, indi- 
cating a positive correlation between PD-L1 
and RRM2 (Figure 5A). A previous study has 
indicated that the ANXA1/AKT pathway is 
involved in the upregulation of PD-L1 expres-
sion by RRM2 in renal cancer [12]. In our study, 
RRM2 knockdown also reduced the levels of 
PD-L1, AKT, and ANXA1 in NCI-H441 cells 
(Figure 5B).

Figure 4. Correlation analysis between RRM2 and other immune check-
point targets in three public lung adenocarcinoma (LUAD) datasets. 

checkpoint molecules PD-1, 
CTLA4, TIGIT, and LAG3 (Fi- 
gure 4). In the CPTAC dataset, 
a significant positive correla-
tion was found between RRM2 
expression and the immune 
checkpoint markers PD-1, PD- 
L2, CTLA4, LAG3, and TIM3 
(Figure 4).
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Figure 5. Loss of RRM2 decreases PD-L1 expression in the lung adenocarcinoma (LUAD) cell line. A. Protein levels 
of PD-L1 and RRM2 in various LUAD cell lines. B. Control and RRM2-knockdown in NCI-H441 cell line.

Discussion

In the present study, a positive correlation 
between RRM2 expression and CD8+ T cells 
was observed in all four datasets. Furthermore, 
in experiments targeting various types of can-
cers, including head and neck squamous cell 
carcinoma, kidney renal clear cell carcinoma, 
and kidney renal papillary cell carcinoma, a  
statistically significant positive correlation bet- 
ween RRM2 expression and CD8+ T cells was 
also observed [9]. Cytotoxic CD8+ T cells, which 
play a crucial role in the immune response 
against cancer, are the most potent effectors of 
the adaptive immune system and a fundamen-
tal component of cancer immunotherapy [20]. 
The objective of immune-checkpoint inhibitors 
is to hinder the activity of immune receptors 
that suppress the immune system and revital-
ize nonfunctioning T cells, such as CD8+ T cells 
[21]. Continued exposure of CD8+ T cells to 
tumor neoantigens can lead to the prolonged 
presence of immune checkpoint molecules 
[21, 22]. This state is commonly known as 
CD8+ T-cell exhaustion and is characterized by 
a decrease in proliferative capacity, reduced 
production of effector cytokines, and cytotoxic-
ity [21, 22]. In this state, T cells are unable to 
attack cancer cells effectively, leading to tu- 
mor progression. The population of exhausted 
PD-1+CD8+ T cells is heterogeneous and can 
be categorized into subsets based on their 

PD-1 expression levels, namely PD-1 low and 
PD-1 high subsets. The PD-1 low subset exhib-
its a better response to anti-PD-L1 blockade 
compared to the PD-1 high subset [23]. A recent 
study in patients with melanoma revealed that 
the exhausted CD8+ T cell subset with a termi-
nal exhaustion transcriptional signature does 
not respond well to anti-PD-1/PD-L1 blockade 
[24]. However, within this subset, those with 
high levels of the TCF-7 transcription factor, 
which is associated with a stem-like CD8+ T 
cell state, showed a better response to anti-
PD-1/PD-L1 blockade [24]. In our experiments, 
we observed that the high-RRM2 group showed 
increased expression of various immune check-
point molecules across the three public datas-
ets. These results indicated an increased pres-
ence of exhausted CD8+ T cells in the high- 
RRM2 group. Considering that the high-RRM2 
group exhibited a favorable response to anti-
PD-1/PD-L1 blockade, this suggests that the 
high-RRM2 group is likely to have a higher pro-
portion of exhausted CD8+ T cells that respond 
well to anti-PD-1/PD-L1 blockade.

In patients who did not receive anti-PD-1/
PD-L1 blockade, higher expression of RRM2 
was associated with a poorer prognosis. How- 
ever, in patients who received anti-PD-1/PD-L1 
blockade, the opposite result was observed. 
Patients with high expression of RRM2 are ex- 
pected to have a poorer prognosis due to the 
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higher expression of immune checkpoints and 
their immune-suppressed state. However, in 
cases where patients receive anti-PD-1/PD-L1 
blockade treatment, the higher expression of 
immune checkpoints suggests that they may 
respond better to anti-PD-1/PD-L1 blockade, 
leading to an improvement in prognosis.

The high-RRM2 group demonstrated an elevat-
ed level of the interferon gamma gene signa-
ture in three publicly available LUAD datasets. 
Interferon gamma plays a crucial role in re- 
gulating the PD-L1/PD-1 pathway. The group 
with a high interferon gamma gene signature 
showed a favorable response to PD-L1/PD-1 
blockade in melanoma, head and neck squa-
mous cell carcinoma and gastric carcinoma 
[25]. Secretion of interferon gamma by CD8+ 
lymphocytes upregulates PD-L1 expression in 
ovarian cancer cells, leading to tumor progres-
sion [26]. A positive correlation was observed 
between interferon-gamma levels and PD-L1 
expression in both human and murine glioma 
[27]. Interferon gamma regulates PD-L1 expres-
sion by activating the PD-L1 promoter through 
the JAK1/JAK2-STAT1/STAT2/STAT3-IRF1 axis 
in melanoma cell lines [28].

Macrophages play important roles in the im- 
mune system and are typically classified into 
two main phenotypes: pro-inflammatory M1 
and anti-inflammatory M2 [29]. M1 macro-
phages enhance antitumor inflammatory res- 
ponses by promoting tumor phagocytosis [30]. 
In contrast, M2 macrophages contribute to tu- 
mor progression through immune suppression, 
angiogenesis, and neovascularization [30]. In 
certain types of cancers, increased infiltration 
of M2 macrophages is frequently associated 
with the development of drug resistance to the 
PD-1/PD-L1 blockade [31, 32]. Additionally, the 
response to anti-PD-1 immunotherapy in glio-
blastoma can be improved by suppressing M2 
macrophages via anti-CSF-1R blockade [33]. In 
the present study, although it was not signifi-
cant in the CiberSortx results, TIDE analysis 
showed a significantly lower frequency of M2 
macrophages in the high-RRM2 group. Since  
a low level of M2 macrophages is associated 
with a favorable response to PD-1/PD-L1 block-
ade, the low level of M2 macrophages in the 
high-RRM2 group could potentially impact the 
responsiveness to PD-1/PD-L1 blockade.

In three public LUAD datasets, the high-RRM2 
group exhibited low CAF levels. CAFs, a cell pop-
ulation found within the tumor microenviron-
ment, play a crucial role in promoting tumori-
genic characteristics by initiating extracellular 
matrix remodeling or releasing cytokines [34]. 
It has been reported that CAFs play a signifi-
cant role in PD-1/PD-L1 blockade. In advanced 
NSCLC, previous researchers discovered that 
CAFs secreted TGF-β1, which utilized the c-Jun 
N-terminal kinase/activator protein 1 (JNK/
AP1) signaling pathway to stimulate the expres-
sion of Ln-γ2 in cancer cells [35]. This mecha-
nism results in the formation of a protective 
barrier that restricts T cell infiltration into the 
cancerous region. In metastatic urothelial can-
cer, TGF-β plays a role in shaping the tumor 
microenvironment by restricting T cell infiltra-
tion, consequently suppressing the immune 
response against tumors [36]. CAFs secrete 
WNT2, which hinders the differentiation of den-
dritic cells and consequently diminishes the 
generation of effector T cells [37].

Xiong et al. showed that RRM2 enhances the 
expression of PD-L1 in renal cancer cells [12]. 
RRM2 upregulates PD-L1 expression via the 
ANXA1/AKT signaling axis [12]. Furthermore, in 
a renal cell carcinoma mouse model, the co-
inhibition of RRM2 and PD-1 resulted in greater 
suppression of tumor growth than single in- 
hibition alone [12]. Our findings also indicate a 
positive association between the expression 
levels of PD-L1 and RRM2 in cell line experi-
ments. We confirmed that RRM2 knockdown  
in the LUAD cell lines resulted in decreased 
expression of the PD-L1/ANXA1/AKT pathway. 
PD-L1 expression is regulated by the PI3K/
AKT/mTOR pathway. Inhibitors targeting the 
PI3K/AKT/mTOR pathway lead to a decrease in 
PD-L1 expression [38], whereas activation of 
the AKT/mTOR pathway resulted in the upregu-
lation of PD-L1 expression [39]. ANXA1 acti-
vates the PI3K/AKT signaling pathway in can-
cer cells by interacting with the formyl peptide 
receptors (FPRs), FPR1 and FPR2 [40, 41]. 
ANXA1 activates AKT signaling, leading to poor 
response to trastuzumab-based treatment in 
breast cancer [41]. 

The RRM2 inhibitor, 4-hydroxysalicylanilide 
(HDS), is currently undergoing phase I clinical 
trials for multiple myeloma (ClinicalTrials.gov: 
NCT03670173). HDS extended survival in a 
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xenograft model of multiple myeloma and ex- 
hibited synergistic antimyeloma activity when 
combined with melphalan and bortezomib [42]. 
In a mouse model of lung squamous cell carci-
noma, the novel RRM2 inhibitor, GW8510, has 
the ability to overcome gemcitabine resistance 
in cancer cells by inducing autophagy through 
the downregulation of RRM2 [43]. In a mouse 
model of triple-negative breast cancer, the AN- 
XA1 inhibitor Boc1 demonstrated the ability 
decrease tumor size and inhibit Treg cell func-
tion [44]. Several targeted inhibitors of PI3K, 
AKT, and mTOR are currently being developed 
and investigated in preclinical studies and early 
phase clinical trials for NSCLC [45]. In a phase 
2 clinical trial for breast cancer, the combina-
tion of the PD-L1 inhibitor atezolizumab and 
AKT inhibitor ipatasertib increased the number 
of Granzyme B+CD8+ T cells [45]. Therefore, 
the simultaneous inhibition of PD-L1, RRM2, 
ANXA1, and AKT could be a promising strategy 
to overcome resistance to PD-1/PD-L1 block-
ade in LUAD.

Our study has several limitations. First, we vali-
dated whether RRM2 expression could predict 
the response of patients treated with PD-1/
PD-L1 blockade therapy. However, the number 
of patients treated with PD-1/PD-L1 blockade 
therapy was limited to 63, indicating the need 
for validation in a larger cohort of patients. 
Second, we discovered that RRM2 regulated 
PD-L1 expression through the ANXA1/AKT pa- 
thway. However, the primary function of RRM2 
is DNA replication and research on its involve-
ment in immunological pathways remains limit-
ed. Therefore, extensive functional studies are 
required to understand the mechanisms by 
which RRM2 regulates the PD-L1/PD-1 path- 
way.

We discovered that RRM2 mRNA or protein 
expression could predict the response to PD-1/
PD-L1 blockade therapy in four independent 
LUAD datasets. RRM2 expression was positive-
ly correlated with CD8+ T cell infiltration and 
the expression of immune checkpoints. Our 
findings also revealed that the ANXA1/AKT 
pathway was involved in the regulation of PD- 
L1 expression by RRM2. In addition to its role 
as a predictive biomarker, RRM2 may emerge 
as a novel target for overcoming PD-L1/PD-1 
resistance.
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Supplementary Table 2. Univariate and multivariate analyses of overall survival for Oncosg cohort 
without PD-L1/PD-1 treatment

Covariate
Univariate Multivariate

HR 95% CI P-value† HR 95% CI P-value†
Age (≥65 y vs. <65 y) 1.544 0.837-2.850 0.165
Sex (male vs. female) 1.786 0.969-3.291 0.063
Stage (III-IV vs. I-II) 2.768 1.480-5.177 0.001 2.538 1.352-4.764 0.004
Smoking history (+ vs. -) 1.730 0.940-3.184 0.078
RRM2 (high vs. low) 2.092 1.110-3.943 0.023 1.865 0.982-4.764 0.057
Abbreviations: CI, confidence interval; HR, hazard ratio. †The Cox proportional-hazard test.

Supplementary Table 1. Univariate and multivariate analyses of overall survival for PanCancer Atlas 
cohort without PD-L1/PD-1 treatment

Covariate
Univariate Multivariate

HR 95% CI P-value† HR 95% CI P-value†
Age (≥65 y vs. <65 y) 1.015 0.756-1.363 0.920
Sex (male vs. female) 0.947 0.707-1.268 0.714
Stage (III-IV vs. I-II) 2.687 1.972-3.663 <0.001 2.519 1.841-3.445 <0.001
RRM2 (high vs. low) 1.650 1.224-2.226 0.001 1.476 1.090-1.999 0.012
Abbreviations: CI, confidence interval; HR, hazard ratio. †The Cox proportional-hazard test.

Supplementary Table 3. Univariate and multivariate analyses of overall survival for IHC cohort with-
out PD-L1/PD-1 treatment

Covariate
Univariate Multivariate

HR 95% CI P-value† HR 95% CI P-value†
Age (≥65 y vs. <65 y) 1.122 0.740-1.700 0.588
Sex (male vs. female) 1.865 1.183-2.941 0.007 1.902 0.946-3.826 0.071
Stage (III-IV vs. I-II) 2.952 1.944-4.484 <0.001 2.082 1.310-3.310 0.002
Smoking history (+ vs. -) 1.580 1.004-2.486 0.048 0.755 0.383-1.491 0.419
RRM2 (high vs. low) 6.493 3.911-10.77 <0.001 6.353 3.635-11.10 <0.001
Abbreviations: CI, confidence interval; HR, hazard ratio. †The Cox proportional-hazard test.

Supplementary Table 4. Univariate and multivariate analyses of progression-free survival for mRNA 
cohort with PD-L1/PD-1 treatment

Covariate
Univariate Multivariate

HR 95% CI P-value† HR 95% CI P-value†
Age (≥65 y vs. <65 y) 0.907 0.396-2.077 0.817
Sex (male vs. female) 0.526 0.218-1.270 0.153 0.446 0.181-1.099 0.079
Stage (IV vs. III) 1.990 0.464-8.541 0.354
Smoking history (+ vs. -) 1.108 0.294-4.178 0.879
RRM2 (high vs. low) 0.259 0.076-0.882 0.031 0.234 0.068-0.804 0.021
Abbreviations: CI, confidence interval; HR, hazard ratio. †The Cox proportional-hazard test.
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Supplementary Table 5. Univariate and multivariate analyses of progression-free survival for IHC 
cohort with PD-L1/PD-1 treatment

Covariate
Univariate Multivariate

HR 95% CI P-value† HR 95% CI P-value†
Age (≥65 y vs. <65 y) 0.978 0.945-1.012 0.196
Sex (male vs. female) 0.429 0.210-0.876 0.020 0.095 0.256-1.114 0.095
Stage (IV vs. III) 1.065 0.412-2.753 0.896
Smoking history (+ vs. -) 1.458 0.540-3.938 0.457
RRM2 (high vs. low) 0.360 0.140-0.928 0.034 0.089 0.160-1.137 0.089
Abbreviations: CI, confidence interval; HR, hazard ratio. †The Cox proportional-hazard test.


