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Abstract: Cuproptosis is a novel cell death mechanism caused by copper overload, with FDX1 serving as the key
regulator. LncRNAs are known to play a significant role in the aberrant regulation of gene expression in hepatocel-
lular carcinoma (HCC). In this study, we investigated the biological role of the LINCO2362/hsa-miR-18a-5p/FDX1
axis in HCC. We first explored the expression pattern, prognostic value, biological functions, drug sensitivity, and
immune effect of FDX1. Using bioinformatics techniques, we then predicted several potential target IncRNAs and
miRNAs. We identified a IncRNA-miRNA-FDX1 axis based on the ceRNA mechanism. In vitro experiments were con-
ducted to validate the relationship between the INcRNA-miRNA-FDX1 axis and its biological effects in HCC. Finally,
we investigated the relationship between the LINC0O2362/hsa-miR-18a-5p/FDX1 axis and oxaliplatin-induced cu-
proptosis in HCC. Our findings indicated that FDX1 expression was downregulated in HCC tissues; however, elevated
FDX1 expression correlates with improved prognosis and heightened sensitivity to oxaliplatin. We confirmed that
LINC02362 binds to and directly regulates the expression of miR-18a-5p, with FDX1 a target of miR-18a-5p. Experi-
mental results suggested that upregulating LINCO2362/hsa-miR-18a-5p/FDX1 axis suppressed the proliferation
of HCC cells. Furthermore, LINCO2362 knockdown led to a reduction in copper concentration and resistance to
elesclomol-Cu. We also discovered that augmenting the LINCO2362/hsa-miR-18a-5p/FDX1 axis could bolster the
sensitivity of HCC to oxaliplatin through cuproptosis. This work presents the LINCO2362/hsa-miR-18a-5p/FDX1 axis
as a novel pathway that triggers cuproptosis and enhances the sensitivity of HCC to oxaliplatin, presenting a promis-
ing therapeutic avenue to combat oxaliplatin resistance in HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the third
leading cause of cancer-related mortality, with
an estimated 841,000 cases diagnosed and
782,000 deaths annually [1]. Surgical resec-
tion stands as the gold standard for treatment
for HCC. However, despite advancements in
therapeutic strategies, challenges such as
metastasis, recurrence, and drug resistance
persist, resulting in a modest overall survival
rate.

In recent years, the scientific community has
been committed to discovering methods to
induce cancer cell death, as it presents a viable
approach to cancer treatment. Different types
of cell death have been identified based on

varying signal cascades and distinct molecular
mechanisms, including apoptosis [2], necro-
ptosis [3], pyroptosis [4], and ferroptosis [5].
Tsvetkov et al. introduced cuproptosis, a unique
mechanism instigated by copper toxicity, set-
ting it apart from other recognized programmed
cell death mechanisms [6]. Their research high-
lighted that an excess of intracellular copper
can lead to the aggregation of lipoylated pro-
teins, loss of iron-sulfur (Fe-S) cluster-contain-
ing proteins, and induction of HSP70, cumula-
tively inducing proteotoxic stress and cytoto-
xicity. As a key regulator in cuproptosis, FDX1 is
an upstream regulator of protein lipoylation.
Previous study have shown that FDX1 expres-
sion is significantly reduced in multiple cancer
types and is correlated with immune infiltration
level [7]. While some studies have confirmed
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the diminished expression of FDX1 in HCC and
its correlation with improved survival [7, 8], the
role of FDX1 in HCC remains elusive and war-
rants further exploration.

Past research has indicated that copper trans-
porters are fundamental to the biological res-
ponse to antitumor platinum drugs such as cis-
platin, carboplatin, and oxaliplatin [9]. The co-
pper influx transporter CTR1 is pivotal for the
cellular uptake of platinum drugs [10-13]. Addi-
tionally, proteins like Menkes (ATP7A) and
Wilson disease protein (ATP7B) influence the
efflux and sequestration of cisplatin, conse-
quently amplifying tumor resistance to plati-
num drugs [14-18]. The expression levels of the
soluble Cu chaperone ATOX1 are also linked to
cisplatin sensitivity [19]. Therefore, cuproptosis
might play a crucial role in platinum drug-
induced cell death in HCC.

LncRNAs, which regulate gene expression
across transcriptional, post-transcriptional,
and epigenetic levels, are instrumental in vari-
ous diseases, including cancer [20]. For
instance, Liu et al. found that SPZ1-induced
IncRNA DUBR enhances stemness and oxalipl-
atin resistance in HCC [21], while another study
by Liu et al. reported that IncSNHG6 synchro-
nizes cholesterol sensing with mTORC1 activa-
tion in HCC [22]. Earlier investigations have
also shown that IncRNAs can influence diverse
cell death processes in HCC [23-26], reinforc-
ing the idea that IncRNAs are vital modulators
of HCC biological phenotypes.

In our study, we first delineated the expression
pattern, prognostic implications, copy number,
DNA methylation level, functional enrichment
analysis, drug sensitivity, and immune effects
of FDX1 in HCC. We then employed multiple
databases to identify potential IncRNA/miRNA/
FDX1 axes and verified their regulatory sig-
nificance in HCC using in vitro experiments.
Additionally, we explored the interplay between
the IncRNA/miRNA/FDX1 axis, proliferation,
cuproptosis, and oxaliplatin resistance, aiming
to uncover potential therapeutic targets and
elucidate the relationship between cuproptosis
and oxaliplatin resistance in HCC.

Materials and methods
Data collection
A schematic of the study workflow is illustrated

in Figure 1. RNA-seq and miRNA-seq data of
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424 samples (comprising 374 tumor and 50
normal samples), along with their clinical data,
were sourced from The Cancer Genome Atlas
(TCGA) database (https://www.cancer.gov/ab-
out-nci/organization/ccg/research/structural-
genomics/tcga). Additional RNA-seq data and
associated clinical data from HCC samples in
the GSE14520 dataset were retrieved from the
Gene Expression Omnibus (GEO) database
(http://ww.ncbinlm.nih.gov/geo/). Ensembl IDs
were processed and converted to gene sym-
bols. The DNA methylation data was download-
ed from the UALCAN database (http://ualcan.
path.uab.edu). The copy humber variation data
was downloaded from the cBioPortal database
(http://www.cbioportal.org). The gene interac-
tion network was obtained from the String
database (https://ngdc.cncb.ac.cn/databasec-
ommons/database/id/62), while IncRNA tar-
gets were predicted using LncBase v3 (https://
diana.e-ce.uth.gr/Incbasev3/interactions) and
miRNA targets from Starbase (https://star-
base.sysu.edu.cn/).

Differential expression analysis

According to the tandem mass tag (TMT) label-
ing, proteins with FC > 1.2 or FC < 0.833 were
considered as differentially expressed proteins
(DEPs). RNA-seq data were categorized into low
and high FDX1 expression groups from the
TCGA HCC cohort. Differential analysis was
conducted using the “DESeq2” package [27].
LncRNAs with |logFC| > 1 and an adjusted
p-value < 0.05 were deemed as differentially
expressed INcRNAs (DEINcRNAS).

Function enrichment analysis

To elucidate the underlying mechanism associ-
ated with FDX1, gene function enrichment anal-
ysis was performed using the Gene Oncology
(GO) data (cb.go.v7.5.1.symbols.gmt) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
data (c2.cp.kegg.v7.4.symbols.gmt) from the
molecular signature dataset. Only results with
adjusted p-value < 0.05 were considered sta-
tistically significant.

Prognostic analysis

Survival curves between groups were generat-
ed by Kaplan-Meier analysis and log-rank test.
Univariable analyses and multivariable analy-
ses of risk factors for overall survival (OS), risk

Am J Cancer Res 2023;13(11):5590-5609



LINCO2362/FDX1 axis improve sensitivity of HCC to oxaliplatin via cuproptosis

expression difference analysis

oxaliplatin-resistant prognosis analysis

97H

Prbr b cox regression analysis
oxaliplatin proteomic analysis copy number analysis
Hj N P FDX1 DNA methylation analysis
experiment for . .
. different subtypes analysis
97H cuproptosis-related genes correlation analysis
W”m - enrichment analysis
i drug sensitivity analysis
== == FDXI1-related
- m% IncRNA p Predicted IncRNA-
=N miRNA by Starbase

v

predicted miRNA-
mRNA by miRDB

immune 1nfilt.rat10n ar{alysm ¢ ceRNA network > expel.'lmefntal
prognostic analysis validation

Points

S Pathologic T stage
saen o me we

o TiaT2 NI
o B SORRRE R REEE R R No |
R T Pathologic M stage
e e il K
BEEREE 4 0000 ER 00N 0 Histologic grade G14G2 o
L} ' N AFP(ng/ml) '—‘<, 0
_
pall e cuproptosis-related
° > 60 0
e experiment
TR TR TR
4 I-ycar Survival Probabilty e 3 ] - siNc 7 © sine
B L R P ] 09 08 070605 S!JW' siLNC02362 . 100 : 1 « siLNC02362
3 =] i 1C50=1832 1M Z ©] [ 1C50=203.1 oM
3 “] - IO S,
2 0] 1C50136.6 ] 2 w] [TV S
38 20 ! 3 © 2]
. T T
Figure 1. The overall flowchart of the study.
Log eesciomo-cul () Lod oesciomal.Cul (o)
Huh7 97H

5592 Am J Cancer Res 2023;13(11):5590-5609



LINC02362/FDX1 axis improve sensitivity of HCC to oxaliplatin via cuproptosis

factors for progression-free survival (PFS) were
performed with Cox regression models. Vari-
ables with P < 0.05 from univariable analyses
were included in multivariable analyses. Addi-
tionally, both univariable and multivariable
analyses for OS of hub genes were executed
using Cox regression models. Results were
visualized as forest plots using the “forestplot”
R package. For the construction of the nomo-
gram model, factors related to OS from multi-
variable Cox regression analysis were utilized.
Nomograms were developed using the “rms”
and “survival” R packages. A P-value < 0.05
was considered statistically significant for
patients.

The role of FDX1 in predicting drug sensitivity

To evaluate the role of FDX1 in estimating the
response to HCC treatment, the half-maximal
inhibitory concentration (IC50) for oxaliplatin
and other standard HCC drugs in the TCGA
cohort was calculated using the ‘pRRophetic’ R
package [28].

Correlation analysis

Given that the data from RNA-seq, miRNA-seq,
and IC50 did not follow a normal distribution,
the Spearman correlation was employed for
analysis. Results from the Spearman correla-
tion were visualized with the “ggplot2” R
package.

Immune infiltrate analysis

Through single-sample gene set enrichment
analysis (ssGSEA) with the R package “GSVA”
and CIBERSORT databases, we ascertain-
ed the infiltration levels of 28 immune cell
types and 22 immune cell types individually
in TCGA. The stromal score, immune score,
and ESTIMATE score from TCGA tumor sam-
ples were determined using the R package
“ESTIMATE”. Furthermore, the relationship
between FDX1 expression and immune check-
point genes was analyzed using Spearman’s
correlation method.

Cell lines and cell culture

The normal liver cell line LO2, and human HCC
cell lines HepG2, PLC/PRF/5, Hep3B (Cell
Bank of the Chinese Academy of Sciences,
Shanghai, China), Huh7 (Japanese Cancer
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Research Resources Bank), MHCC97H and
HCCLM3 (Liver Cancer Institute, Fudan Uni-
versity, Shanghai, China) were routinely cul-
tured in Dulbecco’'s modified Eagle medium
(DMEM, Gibco) containing 10% fetal bovine
serum (FBS, Gibco) and 1% penicillin-strepto-
mycin (Invitrogen, USA) at 37°C in humidified
air with 5% CO,. Here we used oxaliplatin-resis-
tant MHCCO7H (97H-OXA) cell line which was
established in our previous study [29]. In brief,
MHCCO7H cells were exposed to oxaliplatin
(Sigma, St. Louis, MO) for three months, with
concentrations incrementally increased to 25
UM. 97H-OXA was consistently cultured in 1 yM
oxaliplatin to maintain its resistance.

Cell transfection

The LINC02362 small interfering RNA (siRNA)
and negative control were purchased from
Tsingke Biotechnology Co., Ltd. (Beijing, China).
The hsa-miR-18a-5p mimic, negative control,
and overexpression plasmid pcDNA-FDX1
were purchased from Genomeditech Co., Ltd.
(Shanghai, China). The sequences of these syn-
thesized siRNAs, mimic RNAs, and plasmids
are provided in Table S1. Transfections
were carried out using Lipofectamine 8000
(Beyotime Biotechnology, China) as per the
manufacturer’s instructions.

RNA extraction and quantitative real-time PCR

Total RNA, including miRNA, was extracted
from cells using the RNA-Quick Purification Kit
(EZBioscience, China). Complementary DNA
(cDNA) was synthesized using the 4x EZscript
Reverse Transcription Mix Il (EZBioscience). For
MRNA and IncRNA, single-stranded cDNA was
amplified with a 2x SYBR Green qPCR Master
Mix (ROX2 plus; EZBioscience). MiRNA analysis
was performed using 2x SYBR Green Mix
and mMIiDETECT A Track™ Uni-Reverse Primer
(RiboBio Company, Guangzhou, China). The
expression of IncRNAs, mRNAs, and miRNAs
were normalized to the expression levels of
18S RNA, B-actin, and U6, respectively. Primer
sequences are listed in Table S2.

Reagents and antibodies

Tetrathiomolybdate (TTM, E1166) was obtain-
ed from Selleckchem (Houston, TX, USA).
Z-VAD-FMK (HY-16658B), Necrostatin-1 (Nec-1,
HY-15760), Ferrostatin-1 (Fer-1, HY-100579),
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N-Acetylcysteine (NAC, HY-B0215) and Chlo-
roquine (CQ, HY-17589A) were purchased from
MedChemExpress (MCE, China). The following
antibodies were used: FDX1 (ab108257,
Abcam, UK), GAPDH (AF1186, Beyotime, China).

Western blot analysis

Proteins were extracted from cells with RIPA
cell lysis (Beyotime, China) containing 1 mM
of phenylmethanesulfonyl fluoride (PMSF, Be-
yotime). Concentrations were determined
using a BCA kit (Beyotime, China). Proteins
were run on SDS-PAGE and then blotted into
PVDF membranes (Millipore). After blocking
with 5% skimmed milk for 1 h, membranes
were incubated with primary antibodies at 4°C
overnight, followed by incubation with HRP-
conjugated secondary antibodies for 1 h at
room temperature. Staining was visualized
with ECL reagents (Yeasen, China) by the imag-
ing system.

Luciferase reporter assay

Huh7 and MHCC97H cells were seeded into
96-well plates and co-transfected with speci-
fic combinations of luciferase expression
plasmids: either WT or mutated versions of
LINC02362 (pmirGLO-LINCO2362-WT or pmir-
GLO-LINC02362-Mut), and either WT or mutat-
ed 3’ untranslated regions (3’'UTR) of FDX1
(pmirGLO-FDX1-3’'UTR-WT or pmirGLO-FDX1-
3’UTR-Mut), in conjunction with either a miR-
18a-5p mimic or a negative control. After a
48-hour incubation, both firefly and Renilla
luciferase activities were assessed using a
dual-luciferase Assay Kit (Yeasen, China) on a
GloMax 20/20 Luminometer (Promega, Ma-
dison, WI, USA) according to the manufactur-
er’s protocol.

Measurement of intracellular copper

Cells were seeded in 6-cm plates and incuba-
ted overnight; they were then treated with 200
nM elesclomol-Cu (1:1 ratio) for 24 hours. After
treatment, cells were collected and resus-
pended in 120 pL ddH,0. The intracellular
copper concentration was then determined
using the Copper Assay Kit (E-BC-K775-M,
Elabscience, China) according to the manufac-
turer’s instructions.

ROS assay

Huh7 and MHCC9O7H cells were seeded in 6-cm
plates. After seeding, 200 nM elesclomol-Cu
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(1:1 ratio) was added and the cells were incu-
bated for 24 hours. Post-incubation, cells were
treated with a 10 uM dichlorodihydrofluoresce-
in diacetate probe (Beyotime Biotechnology,
China) for 20 minutes at 37°C. Fluorescence
intensities, representing reactive oxygen spe-
cies (ROS) levels, were subsequently captured
using a flow cytometer using excitation and
emission spectra of 488/525 nm.

Cell viability assay

Approximately 2000 HCC cells per well were
seeded into 96-well plates. These cells were
then exposed to varying doses of the test
reagents for 24 hours. Then, 100 yL of culture
medium containing 10% CCK8 solution (Yea-
sen, China) was added. After a 2-hour incuba-
tion at 37°C, the optical density was deter-
mined at 450 nm using a spectrophotometer.

Half-maximal inhibitory concentration assay
(IC50)

Cells were seeded into 96-well plates at a den-
sity of 2000 cells per well. After a 24-hour incu-
bation, elesclomol-Cu (1:1 ratio) or oxaliplatin
was introduced at corresponding concentra-
tions for 48 hours. Subsequently, 100 yL of cul-
ture medium containing 10% CCKS8 reagent
(Yeasen, China) was added to each well and the
plates were incubated for an additional 2 hours
at 37°C. The absorbance was then determined
at 450 nm using a Multiskan Spectrum spec-
trophotometer (Thermo Scientific, USA).

TMT-labelled quantitative proteomics

To discern protein expression differences
between the HCC cell line MHCC97H and the
oxaliplatin-resistant 97H-OXA, protein extrac-
tion and digestion were performed using the
filter-aided sample preparation (FASP) method
as delineated by Matthias Mann [30]. 100 pg of
peptide mixture from each sample was labeled
by the TMT reagent according to the manufac-
turer’s instructions (Thermo Scientific). All sam-
ples were analyzed at Shanghai Applied Protein
Technology.

Statistical analysis

Data were evaluated using GraphPad Prism 9
and RStudio, along with its related packages.
Continuous data, either between two groups or
among multiple groups, were compared using
the Student’s t-test or one-way ANOVA. For cat-
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egorical data, comparisons were made using
the Chi-square test or Fisher’s exact test. All
tests were two-sided, with a p-value < 0.05
indicating statistical significance. Significance
levels were denoted as follows: P < 0.05 as *, P
< 0.0l as **, and P < 0.001 as ***,

Results
The role of FDX1 in HCC

Recent research has unveiled a novel mecha-
nism wherein copper overload induces cell
death, termed “cuproptosis”, with FDX1 being
the pivotal regulator of this process [6]. We sys-
tematically explored the vital function of FDX1
in HCC through bioinformatics analysis. First,
we observed that FDX1 expression is consis-
tently downregulated in HCC tissues from both
TCGA and GSE14520 datasets (Figure 2A).
Kaplan-Meier survival curves revealed that
patients exhibiting elevated FDX1 expression
generally experience improved survival out-
comes (TCGA-OS: HR=1.306, P=0.0353; GSE-
14520-0S: HR=1.977, P=0.0008) (Figure 2B).
Univariable and multivariable Cox regression
analyses were performed on the GSE14520
dataset to assess risk factors for both OS and
PFS. As shown in Table S3, expression of FDX1,
predicted metastasis risk, main tumor size,
multinodular, TNM staging, BCLC staging, and
AFP levels correlate with OS in the univariable
analysis. The multivariable cox regression anal-
ysis confirmed multinodular, TNM staging
and BCLC staging as independent predictors.
Univariable analysis showed FDX1, predicted
metastasis risk, gender, main tumor size, TNM
staging and BCLC staging were related to PFS
(Table S4). Furthermore, gender, TNM staging,
and BCLC staging were singled out as indepen-
dent predictors in the multivariable analysis.
In addition, FDX1 copy number was significantly
correlated with mRNA expression level (r=0.34,
P < 0.001) (Figure 2C). We also found a de-
crease in the DNA methylation level of FDX1 in
HCC samples (P < 0.001, Figure 2D). The
expression of FDX1 was further classified
based on several crucial HCC criteria (Figure
S1) [31-39]. These results demonstrate that
HCC patients with low level expression of FDX1
were generally categorized within the poor
prognosis subtype of HCC (including iCluster 1
subclass, subtype A based on NCI proliferation
signature, subtype A based on hepatic stem
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cells signatures, high risk scores based on
Seoul National University recurrence signature,
cholangiocarcinoma-like, exhibited similarity to
non-differentiated RNA clustering phenotypes
(Hoshida C2), and high risk scores based on a
gene expression signature of 65 genes).

Functional enrichment analyses of FDX1

Using the String database, we constructed an
interaction network between FDX1 and its
associated genes (Figure S2A). Subsequent
GO and KEGG functional enrichment analyses
were undertaken to elucidate potential mecha-
nisms linked to FDX1 (Figure S2B, S2C).
Interestingly our findings reveal that FDX1,
along with its associated genes, predominantly
enriches functions associated with cation
channels, cation transport, and cation trans-
membrane transporter related activities.

The role of FDX1 in predicting drug sensitivity

To assess the role of FDX1 in evaluating the
response to HCC treatment, some common
chemotherapy drugs used during the clinical
treatment of HCC were analyzed respective
to FDX1 levels using the ‘pRRophetic’ R pack-
age [28]. Drugs showing the most significant
correlations included Brilanestrant, MIRA-1,
PF-4708671, JQ1, Dihydrorotenone, Fulves-
trant, SB505124, AZD2014, GSK269962A
and RO-3306. Importantly, we identified a
marked correlation between FDX1 expression
and sensitivity to both cisplatin (r=-0.114,
P=0.028) and oxaliplatin (r=-0.138, P=0.008)
(Figure S3A-L).

Screening of target IncRNAs and target miR-
NAs

To identify potential IncRNAs that might regu-
late FDX1, we conducted a series of bioinfor-
matics analyses. Gene expression profiles from
TCGA revealed 3534 differentially expressed
IncRNAs (DEIncRNAs) in HCC samples com-
pared to normal tissues, 69 FDX1-related Inc-
RNAs, and 965 prognosis-related IncRNAs.
From these datasets, we intersected the gen-
es, yielding eight candidates: TMEM220-AS1,
AC099508.2, LINCO0261, LINC0O2362, APOO-
1065.3, LINC0O1093, AC004160.1, and LINC-
02037 (Figure 3A). Co-expression analysis of
these genes demonstrated a strong positive
correlation between the eight IncRNAs and
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Figure 3. Screening of target INncRNAs and target miRNAs. A. The overlapped IncRNAs of between the prognosis-
related IncRNAs, FDX1-related IncRNAs and the DEIncRNAs in TCGA. B. The co-expression analysis between 8 can-
didate IncRNAs and FDX1. C. The expression level of 8 candidate IncRNAs between HCC tissues and normal tissues.
D. Kaplan-Meier survival curves for HCC patients with high or low INncCRNA expression. E. The overlapped miRNAs of
between the LncBase predicted miRNAs and the Starbase predicted miRNAs. F. The expression level of 5 miRNAs
between HCC tissues and normal tissues. G. Kaplan-Meier survival curves for HCC patients with high or low miRNA
expression. H. Analyzed the subcellular localization of the LINCO2362 using the IncLocator platform. I. The Spear-
man correlation analysis between the LINCO2362, has-miR-18a-5p, and FDX1. *P < 0.05, **P < 0.01, ***P <

0.001.

FDX1 (TMEM220-AS1, r=0.396, P < 0.00%;
AC099508.2, r=0.397, P < 0.001; LINC00261,
r=0.356, P < 0.001; LINC02362, r=0.336, P <
0.001; AP001065.3, r=0.354, P < 0.001;
LINC01093, r=0.345, P < 0.001; AC004160.1,
r=0.401, P < 0.001; LINCO2037, r=0.384, P <
0.001) (Figure 3B). All eight candidate genes
exhibited higher expression in normal tissues
(Figure 3C). Kaplan-Meier curves assessed
the impact of these IncRNAs on HCC out-
comes (TMEM220-AS1, log-rank P < 0.001;
AC099508.2, log-rank P < 0.001; LINCO0261,
log-rank P=0.004; LINC02362, log-rank P=
0.011; AP001065.3, log-rank P=0.023; LINC-
01093, log-rank P=0.044; AC004160.1, log-
rank P=0.046; LINC02037, log-rank P=0.050)
(Figure 3D). Using Incbase, potential miRNAs
that might bind to the eight candidate IncRNAs
were predicted. After intersecting potential mi-
RNAs that might bind to FDX1 using Starbase,
we identified five candidate miRNAs for HCC
(Figure 3E). Figure 3G shows that hsa-miR-
140-5p and hsa-miR-576-5p were downregu-
lated in tumor tissues, and only hsa-miR-
18a-5p was upregulated in tumor tissues.
Kaplan-Meier curves assessed the impact and
diagnostic value of these miRNAs on HCC out-
comes (hsa-miR-140-5p, log-rank P=0.505;
hsa-miR-18a-5p, log-rank P=0.010; hsa-miR-
18b-5p, log-rank P=0.106; hsa-miR-23c, log-
rank P < 0.001; hsa-miR-576-5p, log-rank
P=0.054) (Figure 3H). Based on the mecha-
nism of ceRNA, we identified the LINCO2362/
hsa-miR-18a-5p/FDX1 axis as highly important
in HCC outcomes. Subcellular localization of
LINCO2362 by the IncLocator platform was pre-
dicted to mainly be localized in the cytoplasm
(Figure 3F). The Spearman correlation analysis
was used to assess the correlation between
LINC02362, has-miR-18a-5p, and FDX1 since
the expression of these three genes did not
conform to normal distribution. Analysis re-
vealed a negative correlation between has-miR-
18a-5p and LINC02362 (r=-0.195, P < 0.001)
or FDX1 (r=-0.187, P < 0.001), and a positive
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correlation between LINC02362 and FDX1
(r=0.336, P < 0.001) (Figure 3I).

Validation of LINCO2362/has-miR-18a-5p/
FDX1 axis expression in HCC cells

We first evaluated the expression of LINCO2362
and FDX1 across six HCC cell lines and normal
liver cells. Both genes were frequently down-
regulated in HCC cell lines (Figure 4A, 4B).
After transfecting Huh7 and 97H cells with
LINCO2362 siRNA, we observed a decrease in
both LINCO2362 and FDX1 expression in si-
LINC02362 cells compared to the si-negative
control cells, whereas hsa-miR-18a-5p expres-
sion increased (Figure 4C). To further validate
the LINC02362/hsa-miR-18a-5p/FDX1 axis,
we quantified FDX1 protein expression levels in
si-negative control cells, si-LINCO2362 cells,
mir-negative control cells and hsa-miR-18a-5p
mimic cells and found that the protein expres-
sion level of FDX1 is significantly downregulat-
ed in si-LINC02362 cells compared with si-neg-
ative control cells, as well as downregulated in
hsa-miR-18a-5p mimic cells compared with
mir-negative control cells (Figure 4D). The
CCKS8 assay further suggested that knockdown
of LINC0O2362 promoted HCC cell proliferation
(Figure 4E). Similarly, overexpression of hsa-
miR-18a-5p also promoted proliferation in
Huh7 and 97H cells (Figure 4F). Finally, dual-
luciferase reporter assays in Huh7 cells
revealed decreased luciferase activity upon
upregulating hsa-miR-18a-5p in cells transfect-
ed with either LINCO2362 or FDX1 wild-type
vectors (Figure 4G).

Immune infiltration analysis of LINCO2362,
has-miR-18a-5p, and FDX1

We explored the relationship between these
key genes and immune infiltration levels in the
TCGA-LIHC cohort using ssGSEA databases
(Figure 5A-D). Intriguingly, LINCO2362, hsa-
miR-18a-5p, and FDX1 all correlated with NK
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Figure 4. Validation of LINCO2362/has-miR-18a-5p/FDX1 axis. A, B. The mRNA expression level of LINCO2362
and FDX1 in the HCC cell lines and normal live cells by gPCR analysis. C. Compared the mRNA expression level
of LINC02362, has-miR-18a-5p and FDX1 between si-negative control cells and si-LINC0O2362 cells. D. Detected
the protein expression levels of FDX1 in HCC cells transfected with LINCO2362 siRNA or has-miR-18a-5p mimic by
western blot analysis. E. Silencing of LINCO2362 expression promoted the growth of HCC cells. F. CCK-8 assays were
performed in Huh7 and 97H cells treated with si-NC+miR-NC, si-LINCO2362+miR-NC, si-NC+has-miR-18a-5p-mim-
ic, si-LINC02362+has-miR-18a-5p-mimic. G. The luciferase activity of wildtype-LINCO2362 or mutant-LINCO2362
(wildtype-FDX1 or mutant-FDX1) after co-transfection with miR-18a-5p mimic in Huh7 cells. *P < 0.05, **P < 0.01,

**%pP < 0.001.

CD56 bright cells, DC, Th17 cells, TFH, and
Tcm. Further, we plotted the relationship
between these key genes and stromal score,
immune score, and ESTIMATE score using TCGA
database (Eigure S4). Additionally, we evaluat-
ed the correlation between FDX1 mRNA expres-
sion and immune checkpoint genes (Figure
5E). The result suggested that FDX1 strongly
associates with various immune checkpoint
genes, including CD80, CD86, PDCD1, CD276,
TNFRSF4, TNFRSF9, TNFRSF18, ICOS, CTLA4,
HAVCR2 and LAIR1.

Prognostic analysis in HCC

We executed univariate and multivariate
Cox regression analyses using the TCGA data-
base to evaluate the prognostic potential of
LINC02362, hsa-miR-18a-5p, and FDX1 in
HCC. Our findings revealed that high expression
of LINCO2362 might enhance survival rates,
whereas high expression of hsa-miR-18a-5p
could reduce survival rates in HCC as indepen-
dent factors (Tables S5, S6, S7). We construct-
ed nomogram models and calibration curves
to evaluate the relationship between the
LINCO2362/has-miR-18a-5p/FDX1 axis and
the OS of HCC (Figure 6A-F). Collectively, these
results suggest that upregulating LINC02362/
has-miR-18a-5p/FDX1 axis may suppress the
development of HCC.

Validation of effect of LINCO2362/has-miR-
18a-5p/FDX1 axis on cuproptosis

To determine if LINCO2362 has a role in cuprop-
tosis, which might influence elesclomol-Cu
resistance in HCC, we assessed the relative
MRNA expression levels of LINCO2362, hsa-
miR-18a-5p, and FDX1, as well as the relative
protein expression of FDX1 in cells treated with
elesclomol-Cu for 24 hours. As anticipated,
LINCO2362 knockdown led to increased hsa-
miR-18a-5p levels and decreased FDX1 expres-
sion (Figure 7A, 7B). We then determined that
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LINCO2362 knockdown significantly reduced
copper concentration in elesclomol-Cu treated
HCC cell lines (Figure 7C). Given that prior
research indicates oxidative stress is a crucial
mechanism of metal-induced toxicity [40], we
evaluated ROS levels to understand the oxida-
tive stress induced by elesclomol-Cu. Contrary
to expectations, elesclomol-Cu did not signifi-
cantly increase ROS levels in Huh7 and 97H
cells (Figure 7D). Additionally, we measured the
IC50 values of elesclomol-Cu (1:1 ratio) in si-
NC Huh7 cells, si-LINC02362 Huh7 cells, si-NC
97H cells, and si-LINC0O2362 97H cells; 1C50
values were determined to be 130.0 nM, 193.2
nM, 164.6 nM and 203.1 nM, respectively
(Figure T7E). These findings underscore the
potential of the LINCO2362/hsa-miR-18a-5p/
FDX1 axis in promoting cuproptosis in HCC
cells.

Validation of correlation between LINCO2362/
has-miR-18a-5p/FDX1 axis and oxaliplatin-
resistance

Previous studies have posited a robust relation-
ship between copper transport systems and
platinum drugs [9]. In this context, we explored
the interplay between the LINC02362/hsa-
miR-18a-5p/FDX1 axis and oxaliplatin resis-
tance in HCC. The CCK8 assay results indicat-
ed that TTM, a cuproptosis inhibitor, notably
mitigated oxaliplatin-induced cell death across
Huh7, 97H, and 97H-OXA cells (Figure 8A). qRT-
PCR was employed to gauge the mRNA expres-
sion levels of cuproptosis-related key genes in
97H and 97H-OXA cells. The results showed
differential gene expression, with FDX1 down-
regulated and MTF1, GLS, and CDKN2A upreg-
ulated in 97H-OXA cells (Figure 8B). To eluci-
date the expression profile of proteins in oxa-
liplatin-resistant HCC, we performed TMT-la-
belled quantitative proteomics to identify pro-
teins that were expressed abnormally in paren-
tal oxaliplatin-sensitive (97H) and oxaliplatin-
resistant (97H-OXA) HCC cells. The results
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Figure 5. Immune infiltration analysis of LINCO2362, has-miR-18a-5p, and FDX1 in HCC. A-D. The association be-
tween LINC02362, has-miR-18a-5p, and FDX1 and different kinds of immune cells in the TCGA-LIHC cohort using
ssGSEA databases. E. The heat map for the relationship between the mRNA expression level of FDX1 and immune
checkpoint genes in the TCGA-LIHC cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 6. Prognostic analysis of LINCO2362, has-miR-18a-5p, and FDX1 in HCC. A, B. Constructed the nomogram
models and calibration curves to evaluate the relation between LINCO2362 and the OS of HCC. C, D. Constructed
the nomogram models and calibration curves to evaluate the relation between has-miR-18a-5p and the OS of HCC.
E, F. Constructed the nomogram models and calibration curves to evaluate the relation between FDX1 and the OS

of HCC.
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Figure 7. Validation of effect of LINCO2362/has-miR-18a-5p/FDX1 axis on cuproptosis. A. The mRNA expression
level of LINCO2362, hsa-miR-18a-5p and FDX1 in si-NC cells, si-NC cells treated with 500 nM elesclomol-Cu (1:1
ratio) for 24 h, si-LINC02362 cells treated with 500 nM elesclomol-Cu (1:1 ratio) for 24 h. B. The protein expression
level of FDX1 in si-NC cells, si-NC cells treated with 500 nM elesclomol-Cu (1:1 ratio) for 24 h, si-LINC02362 cells
treated with 500 nM elesclomol-Cu (1:1 ratio) for 24 h. C. The intracellular copper levels in si-NC and si-LINC02362
cells treated with 500 nM elesclomol-Cu (1:1 ratio) for 24 h. D. ROS levels in si-NC and si-LINCO2362 cells treated
with 500 nM elesclomol-Cu (1:1 ratio) for 24 h. E. The IC50 of elesclomol-Cu in si-NC and si-LINC02362 cells were
determined using the CCK-8 assay. *P < 0.05, **P < 0.01, ***P < 0.001.

showed that the protein expression level of
FDX1 is downregulated in 97H-OXA cells (Figure
8C). Through PPI analysis, we identified pro-
teins significantly associated with FDX1
(Figures S5, S6). KEGG and GO functional
enrichment analyses were performed to explore
potential FDX1-related mechanisms. Notably,
FDX1 and related genes predominantly partici-
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pate in transmembrane transporter activity,
transporter activity, and oxidoreductase activi-
ty (Figures S7, S8). To further validate our
hypothesis, we studied how oxaliplatin modu-
lates FDX1 expression. Intriguingly, FDX1 pro-
tein levels were downregulated in 97H-OXA
cells compared to 97H cells (Figure 8D), and
FDX1 expression also declined in HCC cells
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Figure 8. Validation of correlation between LINCO2362/hsa-miR-18a-5p/FDX1 axis and oxaliplatin-resistance. A.
TTM significantly inhibited oxaliplatin-induced cell death in Huh7 cells, 97H cells and 97H-OXA cells. B. The mRNA
expression level of the key cuproptosis genes in 97H cells and 97H-OXA cells by gPCR analysis. C. Heat map lists
the DEPs related to cuproptosis and volcano plot illustrates all the DEPs involved in 97H cells and 97H-OXA cells
using proteomics. D. The FDX1 protein expression level in 97H cells and 97H-OXA cells by western blot analysis. E.
The FDX1 protein expression level in cells treated with DMSO or 10 uM oxaliplatin for 24 h by western blot analysis.
F. The IC50 of oxaliplatin in si-NC and si-LINCO2362 cells were determined using the CCK-8 assay. G. The IC50 of
oxaliplatin in Mock and FDX1 oe cells were determined using the CCK-8 assay. H. Mock HCC cells and FDX1-overex-
pression cells were pretreated overnight with 10 uM DMSO, 20 uM TTM, 30 uM Z-VAD-FMK, 20 uM necrostatin-1,
10 uM ferrostatin-1, 1 mM N-acetylcysteine (NAC), and 10 uM chloroquine, respectively. And then cells were treated
with 10 uM oxaliplatin for 48 h with different disposal modes. I. Mock HCC cells, FDX1-overexpression HCC cells,
FDX1-overexpression HCC cells incubating with 20 uM TTM were treated with various concentrations of oxaliplatin
for 48 h. The relative cell viability was determined by the CCK-8 assays. *P < 0.05, **P < 0.01, ***P < 0.001.

treated with oxaliplatin (Figure 8E). Then we
determined the IC50 values of oxaliplatin in
si-NC Huh7 cells, si-LINCO2362 Huh7 cells,
si-NC 97H cells and si-LINC02362 97H cells,
which were 8.054 uM, 9.767 uM, 9.832 uM
and 12.740 pM, respectively (Figure 8F). We
also established FDX1 over-expression (oe) cell
lines, confirmed by western blot (Figure S9).
The IC50 values of oxaliplatin in Control Huh7
cells, FDX1 oe Huh7 cells, Control 97H cells,
and FDX1 oe 97H cells were 10.540 pyM, 7.850
UM, 9.929 uM and 7.640 pM, respectively
(Figure 8G). TTM (cuproptosis inhibitor) restor-
ed cell viability. This was not observed with
other cell death inhibitors, including Z-VAD-FMK
(apoptosis inhibitor), Necrosulfonamide (ne-
croptosis inhibitor), ferrostatin-1 (ferroptosis
inhibitor), N-Acetylcysteine (ROS inhibitor), and
CQ (autophagy inhibitor, Figure 8H). Moreover,
FDX1 overexpression bolstered resistance to
oxaliplatin treatment in HCC cells, as shown by
relative cell viability (Figure 8l). Furthermore,
the phenomenon raised by FDX1 overexpres-
sion was partly recovered by co-treatment with
TTM, a cuproptosis inhibitor. Collectively, these
findings underscore the pivotal role of the
LINC02362/hsa-miR-18a-5p/FDX1 axis in mo-
dulating HCC sensitivity to oxaliplatin through
cuproptosis.

Discussion

HCC is characterized by a high mortality rate
due to its asymptomatic nature, diagnostic
challenges, and the absence of effective thera-
peutic approaches. Despite these challenges,
the molecular underpinnings of HCC remain
poorly understood, requiring further study to
elucidate these mechanisms and drive effec-
tive therapeutic breakthroughs. In our study we
combined bioinformatics analyses with in vitro
experiments to identify a novel therapeutic tar-
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get for HCC: the LINCO2362/FDX1 axis. Our
findings indicated that an upregulated LINC-
02362/FDX1 axis correlates with a more
favorable prognosis. Crucially, elevating the
LINCO2362/FDX1 axis appears to inhibit HCC
proliferation and enhance the sensitivity of
HCC cells to oxaliplatin through the mechanism
of cuproptosis.

Copper, an essential trace element in the
human body, is implicated in a variety of tumor-
related biological behaviors [41]. Over the
years, the relationship between copper and
regulated cell death has been a topic of exten-
sive research. Although the potential of copper
to induce cell death was proposed as early as
the 1980s [42], the exact mechanism wasn’t
elucidated until March 2022 by Tsvetkov et al.
[6]. This mechanism, termed “cuproptosis”, is
believed to interact with components of the
mitochondrial tricarboxylic acid (TCA) cycle and
involves lipoylation, a conserved post-transcrip-
tional protein modification pathway. Given the
liver's central role in copper metabolism and
storage [43] and the elevated copper levels
observed in liver cirrhosis, a known risk factor
for HCC compared to normal liver tissue [44],
we hypothesize that cuproptosis plays a signifi-
cant role in HCC onset and progression.

Within the cuproptosis mechanism, FDX1
emerges as a pivotal player. It's postulated to
act upstream of the lipoic acid (LA) pathway,
influencing protein lipoylation processes. Addi-
tionally, FDX1 has been tied closely to elesclo-
mol (ES) sensitivity, as it directly binds with
ES-Cu, leading to reduced stability of the Fe-S
cluster [45]. FDX1's vital role in Fe-S cluster bio-
genesis has been underscored by several stu-
dies [46, 47]. Notably, FDX1 downregulation in
HCC is well-documented, with higher FDX1 lev-
els acting as protective factors [7, 8, 48]. Today,
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using bioinformatics analysis to discover novel
biomarkers in various cancers has seen suc-
cess. In light of FDX1's function in cuproptosis,
our study is the first to reveal the potential ther-
apeutic significance of the LINC02362/hsa-
miR-18a-5p/FDX1 axis in HCC.

Our methodology began with screening eight
candidate IncRNAs from the TCGA database,
based on their overlap with DEIncRNAs, FDX1-
related IncRNAs, and prognosis-related Inc-
RNAs. Subsequent predictions using Incbase
and Starbase identified potential miRNAs bind-
ing to these IncRNAs and FDX1. Among 5 candi-
date miRNAs only hsa-miR-18a-5p was found
to be upregulated in HCC samples relative to
normal samples and was associated with HCC
prognosis. These findings align with prior stu-
dies highlighting the roles of LINCO2362 and
hsa-miR-18a-5p in HCC progression [49-51].
Through CCK8 assays, we further corroborated
that upregulating the LINCO2362/FDX1 axis
suppresses HCC cell proliferation. Moreover,
we assessed the ability of this axis to induce
cuproptosis by evaluating intracellular copper
levels and IC50 values.

Oxaliplatin-based regimens are recognized as
one of the most effective treatments for ad-
vanced HCC [52]. While ferroptosis and apopto-
sis have been identified as key mechanisms of
oxaliplatin-induced cell death [53, 54], a nota-
ble connection between copper transport sys-
tems and platinum drugs, such as cisplatin,
carboplatin, and oxaliplatin, has been docu-
mented. Recent research by Yang WC et al.
suggested that oxaliplatin-resistant colorectal
cancer cells exhibit a weakened response to
elesclomol-Cu compared to their wild-type
counterparts [55]. Based on this, we postulat-
ed that cuproptosis is crucial for oxaliplatin-
induced cell death in HCC. Our experiments
demonstrated that TTM, a copper chelating
agent, can partially counteract oxaliplatin-in-
duced cell death by the CCK8 assay. We also
observed that LINCO2362 knockdown induces
oxaliplatin resistance and that oxaliplatin treat-
ment inhibits FDX1 in HCC cells. These findings
suggest that oxaliplatin administration could
induce cuproptosis. Thus, our research is the
first to identify that targeting cuproptosis to
improve oxaliplatin treatment efficacy may be a
promising strategy to conquer chemoresis-
tance in HCC.
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Conclusions

In summary, our research underscores the
LINCO2362/hsa-miR-18a-5p/FDX1 axis as a
novel pathway that suppresses HCC prolifera-
tion, driving cuproptosis, and enhances the
sensitivity of HCC to oxaliplatin. This pathway
holds promise as a new therapeutic target to
counteract oxaliplatin resistance in HCC.
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Table S1. The synthesized siRNAs, mimic RNAs and plasmids

Name Forward sequence, 5’ to 3’ Reverse sequence, 3’ to 5’
si NC UUCUCCGAACGUGUCACGU ACGUGACACGUUCGGAGAA
si LINCO2362 GCAUGAUCUUGACUCAAGA UCUUGAGUCAAGAUCAUGC

Negative control
hsa-miR-18a-5p mimic
Plasmid FDX1

UCACAACCUCCUAGAAAGAGUAGA
UAAGGUGCAUCUAGUGCAGAUAG
CGCAAATGGGCGGTAGGCGTG

UCUACUCUUUCUAGGAGGUUGUGA
CUAUCUGCACUAGAUGCACCUUA
GCCAGAGGCCACTTGTGTAG

Table S2. Primer sequences used in this study

Name Forward sequence, 5’ to 3’ Reverse sequence, 3’ to 5’
B-actin (Human) CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
FDX1 (Human) TTCAACCTGTCACCTCATCTTTG TGCCAGATCGAGCATGTCATT

18S RNA (Human)
LINC02362 (Human)
LIAS (Human)

DLAT (Human)

LIPT1 (Human)

GLS (Human)

MTF1 (Human)
PDHB (Human)

DLD (Human)
CDKN2A (Human)
PDHA1 (Human)

U6 (Human)
hsa-miR-18a-5p (Human)

CGTTCTTAGTTGGTGGAGCG
GGAAGCCCTGGGACATTGAAG
CAGCCCAGTCAGACCGTTAAG
CGGAACTCCACGAGTGACC
CCTCTGTTGTAATTGGTAGGCAT
AGGGTCTGTTACCTAGCTTGG
CACAGTCCAGACAACAACATCA
AAGAGGCGCTTTCACTGGAC
CTCATGGCCTACAGGGACTTT
GATCCAGGTGGGTAGAAGGTC
TGGTAGCATCCCGTAATTTTGC
TGCGGGTGCTCGCTTCGGCAGC
CGTAAGGTGCATCTAGTGCAGATAG

CCGGACATCTAAGGGCATCA
GATGAAAGCACGTTGGGGGAG
TTTCTGGCGTTTTAGGTTTCCT
CCCCGCCATACCCTGTAGT
CTGGGGTTGGACAGCATTCAG
ACGTTCGCAATCCTGTAGATTT
GCACCAGTCCGTTTTTATCCAC
ACTAACCTTGTATGCCCCATCA
GCATGTTCCACCAAGTGTTTCAT
CCCCTGCAAACTTCGTCCT
ATTCGGCGTACAGTCTGCATC
GTGCAGGGTCCGAGGT
GTGCAGGGTCCGAGGT
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Table S3. Univariable and multivariable cox regression analysis of risk factors for OS based on

GSE14520 database

Variables OR Comparison UV OR (95% ClI) uvpP MV OR (95% Cl) MV P*

FDX1 continuous variable 0.674 (0.526-0.864)  0.002 0.949 (0.712-1.265) 0.721

Metastasis risk High vs. Low 2.251(1.484-3.414) <0.001 1.506 (0.892-2.542) 0.125

Gender Female vs. Male 0.538 (0.261-1.110) 0.094

Age continuous variable 0.990 (0.972-1.008) 0.286

ALT High vs. Low 1.155 (0.772-1.727) 0.113

Main Tumor Size Large vs. Small 1.960 (1.309-2.933) 0.001 0.976 (0.550-1.731) 0.933

Multinodular Positive vs. Negative 1.653 (1.064-2.569) 0.025 2.503(1.180-5.312) 0.017

TNM staging Ilvs. | 2.671(1.470-4.853) 0.001 2.096 (1.173-3.747) 0.013
Ivs. Il 5.407 (3.107-9.409) <0.001 2.832(1.166-6.881) 0.022

BCLC staging Bvs. A 2.671(1.470-4.853) <0.001 2.991(1.086-8.237) 0.034
Cvs.B 4.970 (2.963-8.334) < 0.001 3.615(1.646-7.940) < 0.001

AFP continuous variable 1.686 (1.126-2.527) 0.011 1.319(0.833-2.089) 0.238

*Those variables found significant at P < 0.05 in univariable analyses were entered into multivariable analyses.

Table S4. Univariable and multivariable cox regression analysis of risk factors for PFS based on

GSE14520 database

Variables OR Comparison UV OR (95% ClI) uv p MV OR (95% ClI) MV P*

FDX1 continuous variable 0.808 (0.656-0.995) 0.045 1.019(0.792-1.311) 0.885

Metastasis risk High vs. Low 1.605 (1.144-2.253) 0.006  1.136(0.743-1.739) 0.556

Gender Female vs. Male 0.424 (0.223-0.807) 0.009 0.514 (0.266-0.992) 0.047

Age continuous variable 0.998 (0.983-1.013) 0.775

ALT High vs. Low 1.381(0.986-1.935)  0.060

Main Tumor Size Large vs. Small 1.424 (1.008-1.935) 0.045 0.932(0.609-1.427) 0.747

Multinodular Positive vs. Negative 1.353 (0.913-2.005)  0.132

TNM staging Ilvs. | 1.962 (1.290-2.986) 0.002 1.844(1.192-2.852) 0.006
Ivs. Il 3.074 (1.946-4.856) <0.001 1.458(0.682-3.117) 0.331

BCLC staging Bvs. A 2.083(1.229-3.532) 0.006 1.673(0.863-3.241) 0.127
Cvs.B 3.303 (2.070-5.269) <0.001 2.916(1.386-6.135) 0.005

AFP continuous variable 0.674 (0.526-0.864) 0.113

*Those variables found significant at P < 0.05 in univariable analyses were entered into multivariable analyses.
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Figure S1. The expression of FDX1 according to several important HCC classification criteria based on TCGA database. A. Multi-Platform Integrative Molecular Sub-
typing. B. NCI proliferation (NCIP) signature. C. Hepatic stem cells (HS) signatures. D. Seoul National University recurrence (SNUR) signature. E. Cholangiocarcinoma-
like (CCL) signature. F. Hepatoblastoma 16 gene (HB16) signature. G. Hippo pathway signature. H. Hoshida signature. |. 65-gene risk scores for recurrence (RS65).
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Figure S3. The role of FDX1 in drug sensitivity prediction. A-L. The correlation between the expression of FDX1
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Figure S4. Immune infiltration analysis of LINC0O2362, has-miR-18a-5p, and FDX1 based on TCGA database. A.
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Table S5. The univariate and multivariate analysis of LINCO2362 and clinicopathological features of

HCC patients

L Total Univariate analysis Multivariate analysis
Characteristics - -
(N) Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value

Pathologic T stage 370 <0.001

T1&T2 277 Reference Reference

T3&T4 93 2.598 (1.826-3.697) <0.001 2.768 (1.791-4.279) <0.001
Pathologic N stage 258 0.375

NO 254 Reference

N1 4 2.029 (0.497-8.281) 0.324
Pathologic M stage 272 0.050

MO 268 Reference Reference

M1 4 4.077 (1.281-12.973) 0.017 2.059 (0.631-6.714) 0.231
Histologic grade 368 0.637

G1&G2 233 Reference

G3&G4 135 1.091 (0.761-1.564) 0.636
AFP (ng/ml) 279 0.773

<400 215 Reference

> 400 64 1.075 (0.658-1.759) 0.772
Vascular invasion 317 0.169

No 208 Reference

Yes 109 1.344 (0.887-2.035) 0.163
Age 373 0.293

<60 177 Reference

> 60 196 1.205 (0.850-1.708) 0.295
LINC02362 373 0.011

High 187 Reference Reference

Low 186 1.567 (1.105-2.224) 0.012 1.573 (1.017-2.435) 0.042




LINC02362/FDX1 axis improve sensitivity of HCC to oxaliplatin via cuproptosis

Table S6. The univariate and multivariate analysis of hsa-miR-18a-5p and clinicopathological features
of HCC patients

o Univariate analysis Multivariate analysis
Characteristics Total (N) - -
Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value

Pathologic T stage 371 <0.001

T1&T2 278 Reference Reference

TA&T3 93 2.617 (1.834-3.736) <0.001 2.656 (1.715-4.114) <0.001
Pathologic N stage 260 0.369

NO 256 Reference

N1 4 2.051 (0.503-8.372) 0.317
Pathologic M stage 275 0.050

MO 271 Reference Reference

M1 4 4.083 (1.284-12.990) 0.017 2.259 (0.690-7.390) 0.178
Histologic grade 370 0.722

G1&G2 232 Reference

G3&G4 138 1.068 (0.744-1.533) 0.721
AFP (ng/ml) 282 0.732

<400 218 Reference

> 400 64 1.090 (0.667-1.784) 0.730
Vascular invasion 319 0.177

No 208 Reference

Yes 111 1.337 (0.882-2.028) 0.172
Age 374 0.261

<60 178 Reference

> 60 196 1.222 (0.860-1.738) 0.263
hsa-miR-18a-5p 374 0.010

Low 187 Reference Reference

High 187 1.581 (1.111-2.248) 0.011 1.666 (1.080-2.571) 0.021
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Table S7. The univariate and multivariate analysis of FDX1 and clinicopathological features of HCC

patients
o Univariate analysis Multivariate analysis
Characteristics Total (N) - -
Hazard ratio (95% Cl) P value Hazard ratio (95% Cl) P value

Pathologic T stage 370 < 0.001

T1&T2 277 Reference Reference

T3&T4 93 2.598 (1.826-3.697) <0.001 2.780 (1.798-4.296) <0.001
Pathologic N stage 258 0.375

NO 254 Reference

N1 4 2.029 (0.497-8.281) 0.324
Pathologic M stage 272 0.050

MO 268 Reference Reference

M1 4 4.077 (1.281-12.973) 0.017 2.056 (0.631-6.704) 0.232
Histologic grade 368 0.637

G1&G2 233 Reference

G3&G4 135 1.091 (0.761-1.564) 0.636
AFP (ng/ml) 279 0.773

<400 215 Reference

> 400 64 1.075 (0.658-1.759) 0.772
Vascular invasion 317 0.169

No 208 Reference

Yes 109 1.344 (0.887-2.035) 0.163
Age 373 0.293

<60 177 Reference

> 60 196 1.205 (0.850-1.708) 0.295
FDX1 373 0.221

High 187 Reference

Low 186 1.240 (0.878-1.751) 0.221
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Figure S5. The interaction network between FDX1 and related genes using proteomics in 97H and 97-0XA cells.
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Proteinl Protein2 Neighborhood Cooccurence Coexpression | Experimental | Textmining | Combined_score
COX15 FDX1 46 0 62 0 447 461
HSCB FDX1 219 246 173 118 854 926
FDX1 BOLA1 0 0 81 0 428 452
FDX1 AKR1B1 0 0 56 0 790 793
FDX1 CYP11B2 |50 0 61 379 578 735
FDX1 TRMU 219 0 63 0 303 446
FDX1 NARF 0 0 55 325 328 533
FDX1 NFU1 183 0 64 0 753 795
FDX1 DBI 0 0 61 0 748 754
FDX1 COQ6 0 0 66 0 428 442
FDX1 GSTK1 0 0 0 0 523 523
FDX1 PGRMC2 |0 0 62 0 513 524
FDX1 LIMCH1 0 0 0 0 467 467
FDX1 COQ4 0 0 63 0 389 403

Figure S6. The significant proteins related to FDX1 using PPl analysis.
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Figure S8. The KEGG functional enrichment analysis of FDX1 and its related genes using proteomics in 97H and
97-OXA cells.
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Figure S9. Overexpression of FDX1 was confirmed by western blots in Huh7 and 97H cells.
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