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Abstract: Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regu-
lation of most biological functions via post-translational inhibition of protein expression. Increased expression of 
pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been 
demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor 
metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal 
and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-can-
cer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies 
indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and 
migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor 
genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and 
Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal 
transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of 
chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. 
The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and 
treatment of gastrointestinal malignancies. 

Keywords: MicroRNA (miR), gastrointestinal malignancy, esophageal cancer, cancer biomarker, miR-183, miR-
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Introduction

Prevalent gastrointestinal (GI) malignancies, 
including colorectal cancer (CRC), gastric can-
cer (GC) and esophageal cancer (EsC), are the 
most common GI cancers with high morbidity 
and mortality rates. Significant progress has 
been achieved in the diagnostics and treat-
ment of GI tumors, although GI-cancer-related 
death remains still high, ranking third (GC) and 
fifth (CRC) positions in cancer epidemiology 
worldwide [1, 2]. Patients with GC and EsC 
demonstrate poor survival rates and a high 
incidence of metastasis [3, 4]. Furthermore, 

most GI cancers are diagnosed at advanced 
stages with existing metastasis, high intratu-
mor heterogeneity, and treatment-resistance 
[5-8]. Late diagnostics of advanced tumors 
results in poor overall survival rates. For in- 
stance, the 5-year survival rate after surgical 
treatment for stage I GC is between 60% and 
80%, while the 5-year survival rate for stage III 
GC cases is between 18% and 50% [9, 10]. The 
survival rates of patients with early CRC have 
been drastically improved (compared to GC). 
However, the late CRC is considered lethal. 
Accordingly, the 5-year survival rate of stage I 
CRC patients is about 93%, while stage IV CRC 
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patients demonstrated only 8% survival rates 
during the same period of monitoring [11]. 
Surgical interventions may offer prolonged sur-
vival for CRC patients, although many patients 
develop metastasis [12]. This data warrants 
further investigation of molecular mechanisms 
of GI cancer progression and forces a search 
for better therapeutic targets for these tumors.

MicroRNAs (miRs) are short single-stranded 
RNAs (18-24 nucleotide long) that comprise a 
large class of endogenous, non-coding RNAs 
with regulatory functions [13]. The expression 
and function of miRs are directed by many 
genetic factors and epigenetic networks. It has 
been reported that miRs are powerful epigene-
tic regulators which can silence gene activa-
tion. Oncogenic miRs (onco-miRs) were shown 
to promote tumor progression, while anti-onco-
genic miRs can inhibit cancer growth and 
spreading via blockade of oncogenes [14, 15]. 
MiRs can fully or partially complement the tar-
get gene mRNAs through base complementary 
pairing, guiding the formation of so-called 
silencing complex (RISC). Formation of RISC 
helps to degrade the mRNA or impede its  
translation [16-19]. Activation of miR expres-
sion was linked to the regulation of cell prolif-
eration, invasion, differentiation, and apopto-
sis. Increased expression of oncogenic miRs 
was observed in different tumors and during 
stimulation of angiogenesis [20-24].

There are many miRs that were originally asso-
ciated with normal body functioning, including 
miR-183 and related miRs (miR cluster). Lo- 
cated at locus 7q31-34 of the human chromo-
some, miR-183 was suggested to maintain the 
normal function of visual and sensory organs 
[25, 26]. It is highly conserved in different 
organisms [16, 27, 28]. MiR-183 belongs to the 
miR-183/96/182 cluster (miR-183C) involved 
in the regulation of immunity, autoimmunity, 
and cancer-related pathologies [26]. The role of 
miR-183C in the maturation and functions of 
various innate and adaptive immune cells have 
been reviewed recently [26]. Many studies have 
shown that miR-183 is involved in the regula-
tion of carcinogenesis and is abnormally ex- 
pressed in various tumors [29], including EsC 
[30], GC [31], hepatocellular carcinoma (HCC) 
[32], and CRC [33]. Notably, miR-183-5p ex- 
pression can vary significantly, producing in- 
consistent findings [34-37].

All miR-183C members are located within 5 kb 
of chromosome 7q32 and encoded by the adja-
cent gene (miR-183C genes). MiR-183C group 
demonstrated sequence homology. Structural 
similarities support the possibility that miR-
183C members may share common targets 
and have similar biological functions [38-40]. 
Interestingly, miRs-183C were found involved in 
the regulation of cell responses both indepen-
dently and cooperatively (as a group). Although 
there is a strong similarity between miR-183C 
sequences, small differences in their seed cod-
ing were associated with overlapping and dis-
tinct messenger RNA (mRNA) targets, different 
target genes, and pathways regulated by each 
miR-183C member [41, 42]. Therefore, each 
miR in this cluster may produce specific effects 
in different tumors.

Previous studies have revealed that miR clus-
ters have regulatory advantages compared to 
single miR-based effects [43, 44], although 
this hypothesis warrants further investigation. 
Nevertheless, Pidikova et al. reported that miR-
183C expression strongly correlated with the 
occurrence of metastasis in CRC patients [45]. 
The expression of miR-183C members is regu-
lated by several oncogenic signaling pathways 
and growth-promoting transcription factors 
(TFs). Tang et al. reported that glycogen syn-
thase kinase 3 beta (GSK3b), a multifaceted 
enzyme involved in the development of drug 
resistance [46], triggers miR-183/96/182 
expression in GC cells, employing the β-Ca- 
tenin/T-cell factor (TCF)/lymphoid enhancer 
factor (LEF-1) pathway [47]. β-Catenin interacts 
with bases within miR-183C core promoter 
gene which contains complimentary sequenc-
es for various TFs, supporting a diversity of 
regulation of this miR cluster. For instance, in 
prostate cancer cells, miR-183 was found to 
activate cell growth and motility which were 
mediated by induction of Dkk-3 (dickkopf ho- 
molog-3) and SMAD4 (Mothers against deca-
pentaplegic homolog 4; TF/tumor suppressor) 
[48]. Several studies reported that carcinogen-
esis and poor GI cancer prognosis are associ-
ated with the activation of miR-183 expression 
which is coordinated by Wnt/β-Catenin path-
way [47, 49, 50] (Figure 1). In turn, increased 
levels of miR-183C were shown to regulate 
Bcl-2/P53 [51], PI3K/AKT/mTOR [31], and oth- 
er signaling pathways [52]. The role of various 
TFs and other upstream epigenetic regulators 
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Figure 1. MiR-183/96/182 cluster signaling is activated by Wnt/β-catenin pathway and associated with oncogenic 
transformation, cell cycle disorders, evasion of cell death, and development of drug resistance in GI cancers. Inhibi-
tion of the miR-183 signaling was shown to suppress tumorigenesis. Inhibition of miR-183C signaling was linked to 
the regulation of FoxF2, RCN2, and DAB2IP (the cluster targets) upstream of Wnt, leading to the and inhibition of 
cancer progression.

of miR-183C expression will be discussed in 
this study.

Effects of another miR-183C member, miR-96, 
were regulated by Forkhead Box O1 (FOXO1) 
and O3a (FOXO3a), the cell fate directing TFs 
[53]. MiR-96 stimulated progression of HCC 
cell growth and colony formation via inhibition 
of FOXO1/FOXO3 expression [54]. This miR was 
also identified as a useful biomarker in other 
solid cancers [55]. The last member of this 
cluster, miR-182, was also found involved in the 
stimulation of tumorigenicity and invasiveness 
[56]. The miR promoted breast cancer cell 
(BCC) growth via the matrix metalloproteinase 
inhibitor RECK (Reversion-inducing Cysteine-
rich protein with Kazal motifs) [57]. However, 
controversial expression of miR-182 was re- 
ported in GCs [58, 59], suggesting complex role 
of this miR in carcinogenesis.

This review study is focused on the analysis of 
the role and expression levels of miR-183C in 
GI tumors. Confirmed TFs and target genes for 
this miR cluster are also discussed. To assess 

the suitability of this miR cluster as a reliable 
cancer biomarker, we summarized the avail-
able information about miR-183C-induced sig-
naling pathways, target genes, and the biolo- 
gical processes involved in the activation of 
tumor cell proliferation, angiogenesis, metasta-
sis, and development of drug resistance.

Dysregulation of miR-183C expression and 
their targets in GI malignancies

We summarized the findings reported about 
the upstream regulation of miR-183 expression 
and its downstream targets in GI malignancies 
(Table 1). MiR-183 levels varied in different 
cancer types. MiR-183 is often overexpressed 
in EsC and CRC, where this miR promotes pro-
liferation and metastasis, while supporting the 
resistance to apoptosis [30, 60]. However, con-
flicting data was reported in GCs. We identified 
at least six studies which reported miR-183 
overexpression in GC tissues [51, 61-65], while 
four studies observed downregulation of miR-
183 in GCs [36, 66-68]. Furthermore, the inhi-
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Table 1. Proven upstream regulators and downstream target genes of miR-183
Cancer 
types

Oncogene/Suppres-
sor of miR-183 Position Downstream target gene/

upstream regulator Function Year Ref.

CC Oncogene Downstream regulator THEM4 Proliferation, invasion and apoptosis 2021 [87]
CC Oncogene Downstream regulator PD-L1 Proliferation and apoptosis 2021 [292]
CC Oncogene Downstream regulator ABCA1 Apoptosis and proliferation 2016 [293]
CC Oncogene Downstream regulator EGR1 Migration 2010 [35]
CRC Oncogene Downstream regulator FOXO1 Proliferation, invasion and angiogenesis 2020 [79]
CRC Oncogene Downstream regulator ATG5 Radioresistance 2019 [60]
CRC Oncogene Downstream regulator FOXO1, FOXO3 and SMAD4 Cellular senescence and apoptosis 2022 [78]
CRC Oncogene Downstream regulator RCN2 Proliferation and invasion 2019 [149]
CRC Oncogene Downstream regulator UVRAG Autophagy and apoptosis 2016 [85]
EsC Oncogene Downstream regulator FOXO1 Apoptosis 2020 [76]
EsC Oncogene Downstream regulator ABI3BP Proliferation, migration, and invasion 2020 [294]
ESCC Oncogene Downstream regulator Smad4 Invasion and metastasis 2020 [112]
ESCC Oncogene Downstream regulator PDCD4 Apoptosis, proliferation 2014 [101]
ESCC Oncogene Downstream regulator PDCD4 Promotes proliferation and invasion 2014 [30]
GC Suppressor Downstream regulator EEF2 Proliferation and migration 2019 [66]
GC Oncogene Downstream regulator TPM1 Migration and invasion 2019 [51]
GC Oncogene Downstream regulator UVRAG Autophagy and apoptosis 2018 [61]
GC Oncogene Downstream regulator PDCD4 Migration, invasion, adhesion, proliferation, colony formation 2016 [62]
GC Suppressor Downstream regulator Ezrin Invasion 2014 [279]
GC Suppressor Downstream regulator Bmi-1 Proliferation and invasion 2014 [36]
GC Suppressor Downstream regulator Ezrin Differentiation, metastasis, and prognosis 2012 [68]
CRC Oncogene Upstream regulator Circ_0026344 Metastasis 2019 [190]
CRC Oncogene Upstream regulator AKAP12 Proliferation, migration and invasion 2019 [295]
CRC Oncogene Upstream regulator RANBP1 Proliferation, invasion and apoptosis 2022 [296]
EC Oncogene Upstream regulator LncRNA ELFN1-AS1 Proliferation, migration, and invasion 2020 [297]
GC Oncogene Upstream regulator Lnc BX357664 Proliferation, migration, invasion, and apoptosis 2021 [63]
GC Oncogene Upstream regulator LINC00163 Invasion and metastasis 2020 [64]
GC Oncogene Upstream regulator hsa_circ_0000291 Migration and proliferation 2019 [65]
Abbreviations: CC: colon cancer; CRC: colorectal cancer; EsC: esophageal cancer; ESCC: esophageal squamous cell carcinoma; GC: gastric cancer; THEM4: the profiles of thioes-
terase superfamily member 4; PD-L1: programmed cell death receptor - Ligand 1; ABCA1: ATP-binding cassette transporter A1; FOXO1: the Forkhead box class O proteins 1; ATG5: 
Autophagy related gene 5; RANBP1: RAN binding protein 1; RCN2: reticulocalbin-2; UVRAG: Ultraviolet radiation Resistant-associated gene; ABI3BP: ABI family member 3 binding 
protein; PDCD4: programmed cell death 4; EEF2: eukaryotic elongation factor 2; TPM1: tropomyosin 1; AKAP12: A kinase anchor protein 12.
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Figure 2. Dual role of miR-183 signaling in GCs. Various targets, including NF-κB, PDCD4, FOXO1, VEGFR, PI3K/AKT/
mTOR, MMP-2/9, TGF-β, FHL1, MUC15, ATG5, and TPM1 were associated with the tumor promoting effects of miR-
183. Anti-oncogenic and tumor suppressive roles of miR-183 were correlated with the inhibition of Ezrin (actin-bind-
ing scaffold protein), Bmi-1, EEF2, ANUBL1, NF-κB, JNK, and activation of immune responses (NKG2D signaling).

bition of proliferation and invasion of GC cells 
by miR-183 was mediated by downstream tar-
gets Bim-1 and Ezrin (Figure 2) [36, 67]. Ac- 
cordingly, the controversy of this observation is 
associated with the heterogeneity of down-
stream targets of miR-183 which include onco-
genes, tumor suppressor genes, signal trans-
duction molecules, regulators of cell cycle, 
invasion and metastasis [69].

Multiple studies have shown that FOXO1 medi-
ates miR-183C effects in GI tumors. The FOXOs 
family members (FOXO1, FOXO3, FOXO4 and 
FOXO6) are important physiological regulators 
and versatile TFs. The family controls cell pro- 
liferation, apoptosis, differentiation, oxidative 
stress, DNA damage and recovery, and many 
others [70-72]. Many normal physiological pro-
cesses are regulated by miR-183C. It has been 
reported that miR-183C targeted FOXO1 in the 
ovary during the follicular-luteal phase, promot-
ing the progesterone production and survival of 
luteal cells [73]. FOXO1 was indicated as a 
potential target for miR-182 and miR-183 in 

endometrial cancers [74]. Higher expression of 
miR-183 inhibits FOXO1 and promotes the 
growth of non-small cell lung cancers (NSCLC) 
in vitro and in vivo [75] (Figure 2). Similar 
effects were reported in EsC cells [76]. Notably, 
inhibition of miR-183 increased the expression 
of FOXO1 and pro-apoptotic regulators, includ-
ing Bim-1 and Noxa proteins [76]. Bim-1 and 
Noxa proteins control mitochondrial outer 
membrane permeability and promote apopto-
sis by binding to and regulating anti-apoptotic 
Bcl-2 proteins [77]. Consequently, inhibition of 
miR-183 enhanced cisplatin-induced apoptosis 
in EsC cells via up-regulation of FOXO1 [76].

A couple of independent investigations found 
that miR-183 is overexpressed and FOXO1 is 
downregulated in CRCs [78, 79]. Notably, high-
er levels of FOXO1 can reverse miR-183-in-
duced tumor angiogenesis. Accordingly, aven- 
anthramide-C (a potent natural antioxidant) 
was demonstrated to protect from degradation 
miR-183C common targets, such as FOXO1/
FOXO3 and SMAD4, and inhibit tumor growth 
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[78]. The antioxidant also promoted the ex- 
pression of p21 and p16 senescence-regulat-
ing proteins, which can cause cell cycle arrest 
and induce cell senescence [78]. Shang et al. 
extracted miR-183-containing exosomes from 
HT29 CRC cells and co-cultured the exosomes 
with HMEC-1 cells [79]. Using dual-luciferase 
reporter, quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) and We- 
stern blot assays, the study demonstrated  
that exosomes-linked miR-183-5p decreased 
FOXO1 expression [79]. 

Exosomes are small nanovesicles which can be 
commonly released by tumor cells in vivo [80]. 
Exosomes enable the transfer of biological 
information between cells and support antigen 
presentation in immunity [81]. Often defined  
as extracellular vesicles, exosomes can par- 
ticipate in the regulation cancer progression, 
metastasis, and drug resistance [80]. The can-
cer cell secreted vesicles are used to support 
communications between tumor cells and 
tumor microenvironment (TME) [82, 83]. MiR-
183-5p was found to be pro-oncogenic in CRC 
[84-86] and highly expressed in exosomes 
secreted by CRC cells [87]. Various angiopoi-
etin-related proteins, stimulators of angiogene-
sis, including vascular endothelial growth fac-
tor receptor (VEGFR) [88], angiotensin II [89], 
placental growth factor [90], and metalloprote-
ases 2 and 9 (MMP-2; MMP-9) [91, 92] were 
also found to be regulated by miR-183. 

GI cancers are often promoted by the activation 
of inflammatory networks, including various 
substance and exosomes released by immune 
cells. For instance, the accumulation of macro-
phages contributes greatly to CRC progression. 
The level of exosomal miR-183 was found 
enriched in M2-polarized tumor-associated 
macrophages (M2-TAM). Thioesterase super-
family member 4 (THEM4) can be targeted in 
M2-TAM to prevent miR-183 dependent activa-
tion of Akt/NF-κB pathway and CRC progres-
sion and invasion [87].

One of the most prominent effects of miR-183 
is to inhibit expression of programmed cell 
death 4 (PDCD4; tumor suppressor gene) pro-
teins in malignant cells. Inhibition of PDCD4 
expression results in cancer promoting effects. 
Accordingly, PDCD4 expression is reduced in 
various tumors [93, 94]. In GI tumors, the 
expression of PDCD4 was found to be lower in 

gastric cancer, colon cancer and pancreatic 
cancer, compared to the surrounding non-
tumor tissues [95-97]. Furthermore, PDCD4 
levels are lower in medium-to-low differentiat-
ed tissues, compared to highly differentiated 
tissues [98, 99]. PDCD4 was defined as a miR-
183 target in CRCs [100]. This observation can 
be used as a tumor diagnostic tool and thera-
peutic target. Supporting this data, the nuclear 
localization of PDCD4 was significantly reduced 
or lost in esophageal squamous cell carcinoma 
(ESCC) cells, in which miR-183 was significantly 
upregulated [30, 101]. MiR-183 inhibited the 
expression of PDCD4 gene by binding to PDCD4 
3’UTP in ESCC [30, 101]. Application of miR-
183 inhibitors weakened the inhibition of cell 
apoptosis. The inhibition of PDCD4 was pro-
carcinogenic and associated with changes in 
cell cycle, accelerating the G1/S transforma-
tion process, and promoting proliferation [102].

PDCD4 is a reliable biomarker for the detection 
of early EsC [103], and therefore can be a prom-
ising target for miR-183 inhibitors. In GCs, the 
regulatory role of miR-183 in PDCD4 expres-
sion was also confirmed. A significant negative 
correlation between the level of miR-183 and 
the expression of PDCD4 was reported [62, 
104, 105]. Inhibition of miR-183 expression 
increased the levels of PDCD4-related mRNA 
and protein [62, 104, 105]. The up-regulation 
of miR-183 was found to be associated with GC 
clinical stage, metastasis, and deep tissue 
invasion [62]. Analysis of 64 GC patient sam-
ples demonstrated higher expression of miR-
183 in cancer tissues [62]. The tumor samples 
with high levels of miR-183 showed deeper 
local invasion, larger tumor size, later TNM 
staging, and more lymph node metastasis. 
Interestingly, another study did not confirm the 
association of miR-183 with the tumor stage  
or the occurrence of lymphatic metastasis in 
ESCC patients [30]. However, Fassan et al. [93] 
showed that the expression of PDCD4 nega-
tively correlated with the clinicopathological 
features of tumors and perivascular invasion  
in ESCC cells. Therefore, more research is 
required to clarify the role of miR-183 in EsCs.

Transcriptional regulation of miR-183C ex-
pression and the signaling pathways involved

High cancer heterogeneity, cell/tissue context, 
and other internal and external (chemotherapy) 
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Figure 3. Molecular regulation of miR-183/96/182 cluster in GI malignancies.

factors impact the complexity of transcriptional 
regulation of the miR-183C [106]. The cluster-
based and single miR-targeting regulations of 
miR-183C expression were reported by differ-
ent groups, indicating the diversity of transcrip-
tional mechanisms. Transcription of a large pri-
mary transcripts (pri-miRs) from a long single 
hairpin-shaped (hsa)-pri-miR-183C transcript is 
the first step in the biogenesis of this clus- 
ter [107]. Interestingly, overexpression of hsa-
miR-183 correlated with poor overall survival 
for patients with CRC [100], supporting the pro-
oncogenic role of miR-183C in GI cancers. The 
generated pri-miRs are usually cleaved into a 
precursor miR (pre-miR) which then trans-
formed into the mature miRs [106, 108].

TFs, the upstream regulators of miR-183C 
expression, can bind miR-183C promoter re- 
gions. A large group of TFs triggered pri-miR-
183C transcription during activation of onco-
genesis in a tissue-specific manner. The gener-
ation of miR-183C transcripts in different cells 
was reported to be regulated by multifunctional 
TFs, including tumor protein p53 [109], MYC 
[110, 111], c-Jun [112], ZEB1/ZEB2 [110, 113], 

β-catenin/T-cell factor (TCF)/lymphoid enhanc-
er factor (LEF) [47], SP1 [114], zinc-finger pro-
tein 304 (ZNF304; Krueppel C2H2-type zinc-
finger family protein) [115], AVI1 [116], SMAD3 
[117], Kruppel-like factor 4 (KLF4) [117], and 
transforming growth factor β (TGF-β) [30, 112, 
118, 119]. For instance, c-Jun binds directly to 
pre-miR-183 promoter region, leading to the 
increased expression of miR-183 and decre- 
ased levels of SMAD4 in esophageal squa- 
mous cell carcinomas [112]. KLF4 was also 
shown to signal alone and bind miR-183C pro-
moter region in human embryonic stem cells 
(hESCs) and in melanoma tumors [117]. 

The implication of β-catenin, a downstream 
effector of Wnt signaling, was accented previ-
ously as oncogenesis-promoting branch in miR-
183C network [106]. Wnt signaling pathway is 
involved in the regulation of many biological 
functions, including metastasis and apoptosis 
[120, 121]. The classical signaling pathways 
Wnt and catenin-β1 were linked to miR-183 
expression in several studies [122, 123]  
(Figure 3). The knockdown of Wnt/catenin-β1 
decreased miR-183 activity, but increased 
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expressions of CASP3 and Bax (key pro-apop-
totic proteins) in CRC line HCT-116 [49, 50], 
suggesting that Wnt/catenin-β1 are the up- 
stream regulators of miR-183 in CRC. In GC 
cells, glycogen synthase kinase 3β (GSK3b) 
was also associated with the regulation of miR-
183C through the Wnt/catenin-β1/TCF/LEF-1 
pathway which stimulates cell proliferation 
[47].

Several of the listed TFs were reported to bind 
hsa-miR-183 promoter located 1.5-5 kb up- 
stream of the miR sequences. Transcription 
start site (TSS) of miR-183C promoter has not 
been confirmed, although the prospective loca-
tion was suggested at 5207 bases upstream of 
the precursor of miR-183 [124]. The minimal 
promoter region, the primary driver of the miR-
182C transcription, was described in melano-
ma cells [117]. The original TSS was predicted 
to be 139 bp upstream of the miR-183 site 
[125]. Two secondary TSSs were identified in 
the miR-96/182 intergenic region (upstream of 
miR-182) in lung cancer cells [126] and in sar-
coma [127].

It has been shown that a couple of TFs can 
silence miR-183C expression. EVI1 was de- 
scribed as a negative regulator/TF of miR-96 
expression in pancreatic cancer [128], although 
EVI1’s role in the regulation of miR-182 and 
miR-183 transcription remains unclear. Among 
the identified TFs, ZEB1 (also known as δ-cry- 
stallin enhancer binding factor 1 (δEF1) or tran-
scription factor 8 (TCF8)) repressed expression 
of miR-183 during regulation of epithelial-to-
mesenchymal transition (EMT) [129]. However, 
the controversial data was reported by another 
group in breast cancer cells [130], accenting 
the diverse and tissue-specific role of TFs in the 
regulation of miR-183C expression and its role 
in cancer progression. 

Specific TF was linked to the activation of anti-
oncogenic function of miR-183C. E2F1 was 
shown to trigger the expression of miR-183-5p 
which demonstrated tumor suppressor role via 
feed-back loop in breast cancer cells [111]. 
E2Fs are represented by a family of TFs which 
are important stimulators of the cell division 
[131]. The existence of different pre-miR-183C 
variants with opposite cancer-related functions 
and their association with specific TFs warrant 

future investigations. Moreover, a presence of 
single nucleotide polymorphism (SNP) located 
near or within the miR-183C regions was asso-
ciated with the development of different malig-
nancies [132-135], including GI cancers [136]. 
It remains to understand how SNPs may be 
associated with the transcriptional regulation 
of miR-183C expression and regulation of 
down-stream effectors.

Notably, transcription of miR-183C is generally 
activated in non-cancerous tissues, including 
sensory organs. For instance, a key member of 
the RNA Induced Silencing Complex (RISC), 
Argonaute 2 (AGO2), was found responsible for 
the regulation of miR-183C expression in the 
retina [137]. In non-human (non-cancerous) tis-
sues, transcription of miR-183C was activated 
by SREBP2 [138] and cMAF [139]. Negative 
regulation of miR-183 expression by potassium 
voltage-gated channel subfamily Q member 1 
overlapping transcript 1 (KCNQ1OT1) was ob- 
served in keratinocytes [140]. miR-183C expre- 
ssion was also downregulated by NF-κB p65 
which triggered expression of HDAC2 and in- 
creased deacetylation in microglia [141] and 
neuroblastoma cells [110].

Expression of all three members was increased 
by hormones during steroidogenesis in adrenal 
glands. Pretreatment of rats with adrenocorti-
cotropic hormone (ACTH) resulted in the upreg-
ulation of miR-183/96/182 expression levels 
for all three members, although to different 
degrees [142]. The observed group regulation 
could be explained by the presence of a com-
mon promoter for these three miRs. However, 
the same study indicated strong upregulation 
of only miR-182 and miR-96 by 17α-ethinyl 
estradiol or dexamethasone [142]. It is unclear 
why the miR-183 was not upregulated, suggest-
ing a presence of powerful post-transcriptional 
regulation for miR-183 level in this tissue, or 
generation of different pri-miR-183 with the 
missing sequences for miR-183 itself. It re- 
mains to uncover the exact molecular mecha-
nisms responsible for the observed effects. 
Using a model cell line of Leydig cells, MLTC-1 
cells, the expression of miR-183C members 
was also increased by Bt2cAMP (an analog of 
cAMP, a second messenger for the hormonal 
signaling) by unknown mechanisms. The rele-
vance of these transcriptional regulation to GI 
cancers remains unclear.
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Epigenetic and viral regulation of miR-183C 
expression

Aside from TFs, epigenetic regulation by meth-
ylation of miR-183C CpG islands was shown 
[143]. Hypermethylation of has-miR-183 was 
reported in liver cancer cells [144]. Demethy- 
lation of CpGs for miR-182 alone was reported 
in melanomas [145]. Direct binding of a miR to 
competing endogenous RNA (ceRNA) can also 
silence miRs [146, 147]. It was reported that 
several types of ceRNA, including long non-cod-
ing RNA (lncRNA) and circular RNA (circRNA), 
can absorb and isolate miR molecules, acting 
as miR-targeting sponges, and direct gene 
expression downstream of miRs [45, 148]. For 
instance, lncRNA BX357664 binds to miR-183-
3p (sponging action) and inhibits downstream 
PTEN protein expression through PI3K/AKT 
pathway [63]. Following lncRNA BX357664 
treatment, GC cell growth and migration were 
blocked [63]. LncRNA MALAT1, another spongy 
ceRNA, was found to decrease miR-183 ex- 
pression, and block GC cell proliferation, mi- 
gration, autophagy and chemotherapy resis-
tance to anticancer therapy [149]. LEMD1-AS1 
(LEMD1 antisense RNA 1), a recently identified 
lncRNA, contained complementary sites of 
miR-183-5p [150] and might act as a miRNA 
sponge. Notably, LEMD1-AS1 regulated p53 
expression by sponging miR-183-5p in ovarian 
cancer cells [150], although its effect in GI 
remains to be tested. Another lncRNA NEAT1 
also interacted with miR-183-5p, leading to 
antioncogenic effects in neuroblastoma [151]. 
The ability of endogenous ceRNAs to inhibit 
miR-induced target indicated on the existence 
of internal mechanism to prevent oncogenesis, 
although they can be also highjacked by 
cancers.

CircRNAs have no 5’ caps and 3’ tails and are 
abundantly expressed in human GI cancers 
[152-155]. MiR-183 is the target of circ-
0000291 in GC cell lines [65]. To estimate the 
role of circRNAs, circ-0000291 was blocked 
using silencing vector [65]. The inhibition result-
ed in upregulated expression of miR-183, sug-
gesting that this circRNA is a natural inhibitor of 
miR-183 expression in GCs. Notably, the study 
demonstrated controversial findings to previ-
ously observed carcinogenic role of miR-183 
[62, 63, 149]. According to the reported data by 
Cao et al. [65], miR-183 plays anti-cancer role 

in the tested GC cell lines and can inhibit the 
invasive and metastatic GC phenotypes [65]. 
Although controversial, this data is compatible 
with the previously published study which pre-
sented activation of apoptosis in endometrial 
cancer cells with increased expression of miR-
183 [156]. Another recent study also indicated 
a pro-apoptotic role of miR-183-5p in NSCLC 
[157].

Considering the importance of immune res- 
ponses and inflammation for cancer progres-
sion, it is notable that miR-183C expression 
can be activated during immune responses to 
viral infections (an external factor-induced tran-
scriptional activation). Increased expression of 
all three miR-183C members was observed in 
cells infected with herpes simplex virus-1 (HSV-
1) [158]. All three miR-183C members were 
upregulated by β-herpesvirus too [159]. The 
activation was mediated by the viral immedi-
ate-early protein ICP0, employing its E3 ubiqui-
tin ligase function. ZEB1/ZEB2 degradation is 
under control of ICP0 [158]. In turn, reduced 
levels of ZEB1 are associated with increases  
in miR-183C expression [158]. Orchestrated 
effects of ZEB may be mediated by several 
corepressors, such as C-terminal binding pro-
teins 1 and 2 (CtBP1/CtBP2) and histone 
deacetylase 2 (HDAC2) in neuroblastoma cells 
[110]. It remains to confirm whether similar 
mechanisms are activated in GI cancers.

Regulation of biological processes and 
prospective clinical applications of miR-183 
cluster

MiR-183 regulates autophagy and apoptosis in 
GI cancers

The crosstalk between autophagy and apopto-
sis is ultimately associated with the cell fate 
[160]. While apoptosis (programmed cell death) 
is a well-established anti-cancer mechanism, 
autophagy plays dual role in carcinogenesis, 
and both promote or block cell death in differ-
ent cells/pathologies. Defined as “self-eating” 
process, autophagy is marked by the utilization 
of intracellular resources in case when the 
external supply is limited or blocked [161, 162]. 
Autophagy is often activated during cancer 
hypoxia [163] and may speed up activation of 
necrosis and apoptosis [164-166]. Autopha- 
gy is responsible for processing of damaged 
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organelles, proteins and pathogens which are 
enveloped into autophagic vesicles and trans-
ported to lysosomes. The degradation of inter-
nal resources in lysosomes provides temporary 
relief for the cell metabolic needs, although 
may plays negative role in the tumor suppres-
sion [167-169]. Accordingly, autophagy-regulat-
ing genes are linked to genetic susceptibility to 
various metabolic dysregulations and GI malig-
nancies, including CRC [170, 171]. In GI can-
cers, miR-183 controls PDCD4 and FOXO1 tar-
get genes [30, 53, 54, 172]. Notably, both 
genes (PDCD4 and FOXO1) were associated 
with autophagic responses [173, 174]. There- 
fore, miR-183 may influence autophagy indi-
rectly, through its effectors (PDCD4 and/or 
FOXO1), although this requires further testing.

The miR-183-dependent regulation of autopha-
gy and apoptosis in GI tumors was found to be 
mediated by targeting Ultraviolet Radiation 
Resistant-Associated gene (UVRAG) [61, 175]. 
Autophagy resulted in miR-183 downregulation 
in GC MKN28 cells [176]. Accordingly, overex-
pressed miR-183 inhibited autophagy and 
apoptosis in GC and CRC [176]. miR-183 also 
attenuates hunger-induced autophagy and 
apoptosis by inhibiting autophagy protein (Lc-3) 
and apoptosis protein (Bax/Bcl-2). After the 
endogenous miR-183 expression was inhibited, 
the expression of mTOR (regulator of autopha-
gy), LC3II protein (autophagosome formation 
marker), and sequestosome 1 (p62/SQSTMI, a 
marker of lysosomal degradation) [177, 178] 
were assessed in HCT116 or HT29 cells [176]. 
Western blotting analysis confirmed that UV- 
RAG expression enhancement could alleviate 
miR-183-mediated autophagy and apoptosis 
reduction in GC and CRC cells [85, 176]. These 
findings indicate the importance of miR-183 for 
the regulation of autophagy in cancer tissues.

Metastatic potential and EMT in GC cancers 
is regulated by miR-183 cluster: mechanisms 
and main molecular targets

Tumorigenesis is a complex process that em- 
ploys various biological mechanisms, including 
EMT. Metastasis and cancer drug resistance 
are also associated with activation of EMT-
related genes [179, 180]. Epigenetic signaling 
pathways and different miRs were shown to 
contribute to EMT [181, 182]. A variety of sig-
naling pathways were linked to the regulation of 

EMT in GI tumors, including Wnt, TGF-β, and 
Notch signaling pathway [183, 184]. Among  
the most prominent factors involved into the 
regulation of EMT, TGF-β network has been 
shown to control progression of metastasis  
in GI tumors. Notably, TGF-β1 was suggested  
to mediate effects of miR-183C in CRC cell 
lines [34]. The expression levels of all miR-
183C members were downregulated in p21-/- 
cells. Several other miRs were also down- 
regulated (miR-200a/b/c, miR-9, miR-192, and 
miR-10a), while some other were upregulated 
(miR-34a, miR-205, and miR-503) in cells with 
depleted p21, suggesting the activation of 
orchestrated epigenetic mechanism during 
oncogenesis [34]. The regulatory role of p21 
protein, which can bind different TFs, has been 
reported previously [185]. The protein has  
been described as EMT inhibitor, downstream 
effector of various tumor suppressors, includ-
ing p53 [186], suggesting that p-21 down-
stream targets, including miR-183 cluster, can 
also control EMT.

Expression of miR-200 family members was 
strongly associated with regulation of Zinc 
Finger E-Box Binding Homeobox 1 (ZEB1), an 
established regulator of EMT [187]. The activa-
tion of negative feedback loop between miR-
183C and ZEB1/ZEB2 was reported and 
marked by the depletion of ZEB1)/δ-crystallin 
enhancer binding factor 1 (δEF1) and ZEB2/
Smad-interacting protein 1 [158]. It has been 
found that ZEB1 can inhibit miR-183C tran-
scription in HCT116 CRC cells [34]. Reintro- 
duction of miR-183 repressed ZEB1 expres-
sion. ZEB1 binding motif was detected in the 
183-S DNA area of hypothetical miR-183 clus-
ter promoter region. The authors of this study 
also reported that p21 may directly bind ZEB1 
(p21-ZEB1 complex) and inhibit its effects on 
miR-183 transcription. As a result of p21 deple-
tion and inhibition of miR-183, the expression 
levels of epithelial markers such as E-cadherin 
and zonula occludens-l (ZO-1) were decreased, 
while the expression of interstitial markers 
(vimentin and N-cadherin) were up-regulated. 
Following these changes, the epithelial-like 
tumor cells had been transforming due to reor-
ganization of intracellular skeleton. The chang-
es lead to the decline of the cell adhesion and 
the increase in migration, which may result in 
metastasis and associated cancer progression 
[188, 189]. Accordingly, the down-stream tar-
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gets of p-21, miR-183C may also inhibit EMT 
and, therefore represent a reasonable thera-
peutic target in GI cancers.

Following these findings, miR-183 was declar- 
ed the anti-metastatic miR in CRC [190]. MiR-
183 mediated effects of circ_0026344 which 
inhibited the synergistic effect of chemokines 
CCL20 and CXCL8, reduced the expression of 
E-cadherin, and up-regulated levels of N-cad- 
herin and Vimentin. The anti-EMT function of 
circ_0026344 and miR-183 were linked to the 
inhibition of Wnt/β-catenin signaling pathways 
[190]. However, controversial findings were re- 
ported by another group which detected higher 
expression of miR-183-5p in CRC and indicated 
its pro-oncogenic role [191]. Targeting genes  
in different tissues [192, 193], miR-183 was 
found both to activate or inhibit the Wnt/β-
catenin signaling pathway [49, 149], disrupt the 
balance between pathways, induce tissue cell 
proliferation, and other biological processes 
[92, 149] (Figures 2 and 3). For instance, inhibi-
tion of miR-183-5p led to the blockade of its 
target gene RCN2 expression and Wnt/β-catenin 
signaling pathway [149]. The effect also down-
regulated the growth of CRC cells which was 
marked by decreased expression of down-
stream target genes (β-catenin, cyclin D1, 
c-Myc and MMP-2) [149]. Four and a half LIM 
protein 1 (FHL1, a tumor suppressor gene) was 
also targeted by miR-183C. It has been shown 
that miR-183-5p and miR-96-5p associates 
with the FHL1-3’-UTR [194] that can lead to  
the downregulation of this effector [195]. In 
HCC cells miR-183 also inhibited TGF-β induced 
apoptosis and stimulated cancer progression 
[32]. 

The large variety of controversial data suggests 
that TGF-β and miR-183 may trigger heteroge-
neous and cell/tissue-specific effects in differ-
ent cancers, pre-cancerous pathologies (such 
as liver fibrosis [196-199]), and immune cells in 
TME [200, 201]. For instance, in ovarian cancer 
cells miR-183 promoted cell growth via inhibi-
tion of TGF-β/mothers against decapentaple- 
gic homolog 4 (SMAD4) pathway [202]. Similar 
miR-183 tumor-promoting and TGF-β-inhibiting 
effects were suggested in breast cancer cell 
[203], vulvar [204] and lung squamous cell car-
cinoma [205]. In lung adenocarcinoma miR-
183 expression was triggered by TGF-β and 
helped to promote immune evasion via Natural 

Killer (NK) cell activating receptors (NKG2D) 
and the major histocompatibility complex class 
I chain-related (MIC) proteins MICA/B receptor-
ligand system [206]. Further investigation of 
miR-183C signaling is warranted.

Circulating miR-183 as a biomarker for diag-
nosis and prognosis of GI cancers

Detection of circulating nucleic acid as cancer 
biomarkers in the blood/serum of cancer pa- 
tients represents an attractive method of 
advanced cancer diagnostics. Accordingly, the 
presence of high levels of onco-miRs in circula-
tion provides valuable information for the can-
cer diagnosis and prognosis [34, 207, 208]. 
Serum miR testing is not only less invasive, 
simple, accurate and reliable, but also can 
improve the accuracy of traditional cancer diag-
nostics, classification, prognosis (recurrency), 
and overall treatment efficacy [209]. The ex- 
pression of miRs in peripheral blood varied 
greatly among different tumor types. In the 
study of Yuan et al., the overall survival of CRC 
patients with higher expression of miR-183 in 
plasma was shorter than that of patients with 
lower expression of this miR [210]. Another 
study, which aimed to evaluate tumor dynamic 
before and after surgical intervention, demon-
strated that level of miR-183 in plasma de- 
creased after surgery, although 3 patients had 
increased expression of miR-183 after postop-
erative recurrence [211]. Therefore, miR-183 
levels may reflect the risk of recurrence and 
poor survival [211].

However, the current data is insufficient and 
may not deliver clear answers to the role of miR-
183 cluster in carcinogenesis and metastasis. 
For instance, although miR-183 was overex-
pressed in EsC tissues, the level of miR-183 in 
plasma was found to be significantly down-reg-
ulated in patients with the increased risk of EsC 
recurrence. The presence of miR-183 in the 
tumor tissue and blood/plasma may serve dif-
ferent purposes. The correlations between the 
expression of miR-183 in tumors, blood/serum 
levels of miR-183, and cancer clinicopathologic 
characteristics should be assessed in future 
studies. Preliminary data indicates that miR-
183 cluster can be used as a biomarker to pre-
dict lymph node metastasis, distant metasta-
sis, pTNM staging, prognosis and aggressi- 
veness of CRC [211-213]. However, large pro-
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spective studies are required to assess this 
hypothesis.

Targeting miR-183 in GI malignancy: a poten-
tial which requires verification

Surgery, radio- and chemotherapy have long 
been the main means of treatment for patients 
with GI cancer [214, 215]. During last decade, 
it has been demonstrated that epigenetic re- 
gulation and miRs are crucial regulators of can-
cer sensitivity to chemo/radiotherapy [216-
218]. However, the mechanism of miR-induced 
effects in GI cancers remains largely unclear, 
although diverse miR downstream targets have 
been reported [219-222]. Using comprehen-
sive network analysis, it was demonstrated 
that miR-183 plays a pro-carcinogenic role in 
synovial sarcoma, rhabdomyosarcoma, and 
CRC, targeting two tumor suppressor genes, 
early growth response protein 1 (EGR1) and 
phosphatase and tensin homolog (PTEN) [86]. 
Accordingly, anti-miR-183 treatment resulted  
in decreased cell migration, while EGR1 knock-
out reversed the anti-migratory effect of this 
miR inhibition [35]. Another study found that 
decreases in the proportion of Bax/Bcl-2 and 
Lc3B-II/Lc3B-I may be caused by miR-183 
overexpression. High level of miR-183 also 
inhibited rapamycin-induced autophagy and 
apoptosis in GCs [61]. In liver tumor-initiating 
cells, miR-183-5p directly targeted and down-
regulated mucin 15 (MUC15) expression, lead-
ing to increased tumorigenicity and develop-
ment of resistance [223]. These studies in- 
dicated a high potential of anti-miR-183 the- 
rapy.

Cisplatin-based chemotherapy was found to be 
an effective treatment of EsC. Cisplatin pro-
motes FOXO1-induced up-regulation of pro-
apoptotic proteins Bim-1 and Noxa, leading to 
increased mitochondrial membrane permeabil-
ity and apoptosis [224]. Inhibition of miR-183 
was shown to up-regulate the expression of 
FOXO1 and enhance cisplatin-induced apopto-
sis [172, 225-227]. FOXO1 is a context-depen-
dent tumor suppressor, involved in the regula-
tion of cancer chemotherapy resistance [228]. 
The sensitivity of EsC cells to cisplatin was 
found to be partially regulated by the level of 
miR-183 which also regulate levels of FOXO1. 
Suggestively, targeted manipulations of miR-
183/FOXO1 axis may be used to overcome can-
cer resistance [172, 225-227].

Resistance to radiotherapy in GI malignancies 
[229] was also linked to miR-183 [60, 227, 
230]. The inhibition of miR-183-5p expression 
improved the sensitivity of HCC to 5-FU and 
radiotherapy [227]. Alternatively, miR-183 over-
expression promoted radiotherapy resistance, 
mediated by the EGFR/Akt pathway [230]. 
Zheng et al. demonstrated that knockdown of 
miR-183-5p enhanced autophagy related pro-
tein 5 (ATG5) expression and reduces radiation 
resistance in CRC [60]. This data supports the 
hypothesis that inhibition of miR-183 expres-
sion can also improve the radiosensitivity of 
some GI tumors, although future investigations 
are warranted.

Role of miR-182 and miR-96 in GI cancers

Analysis of published data indicates that 26 
studies (found on the PubMed on 30 April 
2023) which assessed the role and expression 
of miR-182 in GI cancers. MiR-182 was found 
to be upregulated in 14 studies with EsC, GC, 
and CRC tissues (Table 2). However, 12 stu- 
dies reported downregulation of miR-182 in GI 
malignancies (Table 2). MiR-182 was reported 
to signal both as a tumor suppressor gene or an 
oncogenic miR. MiR-182 promoted prolifera-
tion, migration, and invasion of CRC and EsC 
cells by targeting FOXO3 [231, 232]. In GC,  
miR-182-5p directly targeted and downregulat-
ed levels of RAB27A, member of RAS oncogene 
group and the small GTPase Rab family which 
can enhance the rate of mitosis, migration, and 
invasion of cancer cells [233]. The dysregula-
tion of RAB27A expression was associated with 
the occurrence and progression of various can-
cers, such as CRC [234, 235], pancreatic [236], 
and lung cancers [237]. Other studies found 
that miR-182 can silence several tumor sup-
pressor genes, including AT-rich sequence bind-
ing protein 2 (SATB2) [238], metastasis sup-
pressor-1 (MTSS1) [239], and 6-sialyltransfe- 
rase 2 (ST6GALNAC2) [240, 241].

Surprisingly, miR-182 also demonstrated tumor 
suppressor effects. Knocking down of RBP-J 
(Recombination Signal Binding Protein For Im- 
munoglobulin Kappa J Region) enhanced the 
expression of miR-182-5p in CRC, inhibited the 
Tiam1/Rac1/p38 MAPK signaling pathway, and 
reduced the volume and weight of CRC tissues 
[242]. These anti-cancer effects were overtu- 
rned by the suppression of miR-182-5p [242]. 
MiR-182 targets and downregulates ANUBL1 
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(also known as ZFAND4 (zinc finger, AN1-type 
domain 4), leading to the inhibition of GC prolif-
eration [243]. Long non-coding RNA (Lnc-RNA) 
and circ-RNA are the most studied upstream 
regulators of miR-182. Indicating the similarity 
to miR-183, miR-182 expression can be also 
suppressed by ceRNA sponges. LncRNA GAS5 
has been shown to inhibit the development of 

CRC employing the miR-182/FOXO3a axis 
[244]. Hsa_circ_0001658 plays a carcinoge- 
nic role by enhancing cell survival and inhibit- 
ing apoptosis via miR-182 sponge mechanism 
[245].

The regulatory role of miR-96 was also as- 
sessed in GI cancers. MiR-96 was found to be 

Table 2. Upstream regulators and downstream target genes of miR-182 and miR-96

miR Expression Disease Upstream  
regulator

Downstream 
target gene Potential contribution Year Ref.

182 Up CAC FBXW7 Malignant transformation 2014 [298]

182 Down CC VEGF-C Angiogenesis and lymphangiogenesis 2020 [257]

182 Up CC LncRNA XIRP2-AS1 Proliferation and invasion 2019 [282]

182 Down CRC AGAP2-AS1 CFL1 Cell growth, migration, invasion, and EMT 2022 [299]

182 Down CRC RBP-J Tiam1 Proliferation, migration and invasion 2021 [242]

182 Up CRC FOXO3a Cell cycle progression 2021 [231]

182 Up CRC Lnc-AGER-1 Proliferation, migration and cell apoptosis 2019 [300]

182 Down CRC MTDH Proliferation, metastasis and EMT 2019 [301]

182 Up CRC DAB2IP proliferation, invasion and tumor growth 2019 [302]

182 Up CRC lncRNA GAS5 Cell proliferation and cellular apoptosis 2018 [244]

182 Up CRC ST6GALNAC2 Tumorigenesis and invasiveness 2017 [240]

182 Up CRC ST6GALNAC2 Chemoresistance 2017 [241]

182 Down CRC SNHG3 Cellular proliferation 2017 [303]

182 Up CRC FOXF2 Cell growth and invasion 2015 [304]

182 Up CRC SATB2 Proliferation, metastasis and EMT 2014 [238]

182 Up EsC LOC441178 FOXO3a Proliferation, migration and apoptosis 2020 [232]

182 Down EsC Circ-LRP6 Myc Cell viability, colony formation and invasion 2020 [281]

182 Down EsC YWHAG Metastasis, invasion, proliferation, apoptosis 2018 [305]

182 Down GAC CREB1 Cell growth 2012 [58]

182 Up GC Circ_0001658 RAB10 Autophagy and apoptosis 2022 [245]

182 Up GC Circ_002059 MTSS1 Proliferation and migration 2021 [239]

182 Down GC CircNRIP1 ROCK1 Apoptosis, migration and invasion 2020 [283]

182 Down GC CircFN1 Viability and apoptosis 2019 [267]

182 Down GC Circ-sFMBT2 Proliferation 2018 [306]

182 Up GC RAB27A Viability, mitosis, migration, and invasion 2017 [233]

182 Up GC RUNX3 Proliferation and metastasis 2017 [307]

182 Down GC ANUBL1 Proliferation 2015 [243]

182 Up GIST CYLD Proliferation, apoptosis, colony formation and migration 2018 [308]

96 Up CRC MYC Proliferative and apoptotic 2020 [309]

96 Up CRC TPM1 Chemosensitivity 2020 [246]

96 Up CRC FOXO1/FOXO3 Proliferation 2015 [56]

96 Up CRC RECK Invasion 2018 [249]

96 Up EsC RECK Chemo- or radioresistance 2014 [250]

96 Up GAC ZDHHC5 Apoptosis 2019 [251]

96 Up GC MAP4K4 Proliferation 2019 [256]

96 Up GC KIF26A Metastasis and EMT 2021 [255]

96 Up GC FOXO3 Proliferation 2020 [247]

96 Up GC FOXO1 Chemosensitivity 2018 [248]
Abbreviations: CAC: colon adenocarcinoma; CC: colon cancer; GAC: gastric adenocarcinoma; EsC: esophageal cancer; GIST: Gastrointestinal stromal tumors; FBXW7: sub-
strate recognition component of a ubiquitin ligase complex functioning; VEGF-C: vascular endothelial growth factor; AGAP2-AS1: LncRNA AGAP2 Antisense RNA 1; CFL1: 
Cofilin 1; RBP-J: transcription factor; Tiam1: T lymphoma invasion and metastasis 1; FOXO3: The Forkhead box class O proteins 3; MTDH: Metadherin; DAB2IP: DOC-2/
DAB2 interactive protein; ST6GALNAC2: sialyltransferase; SNHG3: Small nucleolar RNA host gene 3; FOXF2: forkhead box F2; SATB2: AT-rich sequence binding protein 2; 
circ-LRP6: circRNA derived from LRP6 gene; CREB1: encoding cAMP responsive element binding protein 1; RAB10: Ras-related protein Rab-10; MTSS1: metastasis sup-
pressor-1; CircNRIP1: circRNA nuclear receptor interacting protein 1; ROCK1: rho-associated protein kinase 1; circFN1: originating from exons 10, 11, and 12 of the FN1 
gene hsa_circ_0058147; Circ-sFMBT2: hsa_circ_0017639; RAB27A: small GTPase Rab family; RUNX3: transcriptional factors of the Runt family; ANUBL1: ZFAND4 (zinc 
finger, AN1-type domain 4); CYLD: cylindromatosis; TPM1: tropomyosin 1; RECK: reversion cysteine-rich Kazal motif; KIF26A: kinesin superfamily protein 26A.
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upregulated in 11 cancer assessing studies 
(Table 2). Majority of studies reported that miR-
96 is an oncogenic miR and promote carcino-
genesis in GI tumors. Upregulated miR-96 pro-
moted cell proliferation, migration, invasion, 
and enhanced resistance to radiotherapy and 
chemotherapy [56, 246-251]. MiR-96 targets 
include tropomyosin 1 (TPM1) [246], FOXO1 
and FOXO3 [56, 247, 248], RECK [249, 250], 
and zinc finger DHHC domain 5 (ZDHHC5) 
[251]. Both miR-182 and miR-96 were shown  
to activate NF-κB [252], PI3K/AKT (phosphati-
dylinositol 3 kinase/protein kinase B) [240, 
241, 253], TGF-β [254], focal adhesion kinase 
(FAK) [255], MAPK/JNK (mitogen-activated pro-
tein kinase/c-Jun N-terminal kinase) [242, 256], 
ERK (extracellular regulated protein kinases)/
AKT [257], and Wnt/β-catenin [47] pathways. 
Interestingly, all three members of miR-183C 
were linked to the regulation of circadian rhy- 
thms. For instance, miR-96 targets PERIOD2 
(PER2), a core circadian clock gene [258]. PER2 
regulates biological clocks, DNA repair system, 
and oncogenesis [259]. An association of miR-
96 expression and the regulation of PER2 in GI 
cancer cells remains unexplored. 

Dysregulation of miR-182 and miR-96 expres-
sion was associated with poor prognosis in vari-
ous GI tumors. High levels of miR-182 and miR-
96 expression correlated with advanced tumor 
stage and poorer survival rates in CRC patients 
[260-263]. Accordingly, elevated levels of miR-
182 and miR-96 in serum have been identified 
as potential diagnostic GI cancer biomarkers 
[254, 264, 265]. Several studies reported that 
inhibition of miR-182/96 levels can suppress 
tumor cells growth, invasion, and metastasis 
[241, 248, 249]. Downregulation of miR-182/
miR-96 can also sensitize cancer cells to radio- 
and chemotherapy [216, 241, 266-270].

Conclusions and future perspectives

Oncogenesis and progression are regulated by 
epigenetic mechanisms which favour pro-onco-
genic signaling and/or silence pro-apoptotic 
effectors [216, 218]. Oncogenic miRs (onco-
miRs), powerful epigenetic regulators, inacti-
vate tumor suppressor genes and facilitate 
tumor progression [52, 271, 272]. The regula-
tion of tumor growth by miR is mediated by 
complete or incomplete complementary bind-
ing of miRs to the target genes which prevents 

mRNA translation or direct generation of mRNA 
[216]. Targeted miR binding results in epi- 
genetic (reversible) gene silencing [273], which 
can promote cancerogenic signaling pathways 
[274]. Multiple target genes can be affected by 
one miR, although the same target gene can be 
regulated by several miRs, thus, complicating 
the mechanisms of signaling and therapeutic 
interventions.

MiR-183C was found to be implicated in the 
occurrence and development of GI cancers 
[275, 276]. MiR-183 targets and inhibits tumor 
suppressor genes in most GI cancers and 
malignant cell lines, promoting malignant cell 
proliferation and migration. However, some 
studies indicated anti-cancer role of this miR 
[36, 66]. Different groups reported increased 
levels of miR-183 in EsC [277] and CRC [212, 
213], suggesting the potential diagnostic role 
of this marker. Contradictory results were ob- 
served in GCs by different groups [36, 66, 278]. 
Except for the anti-cancer effect of miR-183 
associated with activation of Bim-1 and Ezrin 
genes (Figures 2 and 3) [156, 279], most re- 
ported GC data indicates on pro-carcinogenic 
role of miR-183 [106, 280]. Conflicting data 
about miR-182 expression was reported in EsC, 
GC, and CRCs [232, 239, 257, 281-283] (Table 
2). However, no contradictions were found for 
the expression of miR-96 which was consis-
tently increased in GI tumors (Table 2). In CRC, 
the expression levels of all three miRs (miR-
182/96/183) exhibited the same directional 
transcription with highly conserved “seed se- 
quence” (as a whole), suggesting a potential 
group-like regulation and signaling [45, 78, 
280]. Although this finding requires future 
experimental confirmations. Differential expre- 
ssion of miR-183 was also observed in breast 
[284, 285] and cervical cancers [286, 287]. 
Variations in miR-183 levels may reflect the 
dual role of this miR in the regulation of cell 
growth during different stages of carcinogene-
sis. Further studies may clarify the inconsisten-
cies and uncover the exact mechanism of miR-
183 signaling in cancer tissue and TME.

Several cancer suppressor genes, including 
FOXO1, PDCD4, EGR1 and PTEN were identified 
as the downstream miR-183 targets [79, 86, 
102, 288]. Overexpressed miR-183 downre- 
gulates tumor suppressor genes FOXO1 and 
PDCD4 in GI [30, 79]. MiR-183 was associate 
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with the regulation of PI3K/AKT/mTOR [30, 31], 
Wnt/β-catenin [91], Bcl-2/P53 [51]. AKT and 
c-Jun were also shown to induce activation of 
miR-183 promoter [30, 112], suggesting the 
existence of a feed-back loop in this pathway. 
Increased expression of miR-183 was linked to 
the inhibition of apoptosis and autophagy [61, 
76, 85] and promotion of EMT [112], prolifera-
tion and migration [289]. GI cancer patients 
with increased levels of miR-183 appear to 
have a later clinical stage of the disease, more 
metastatic lymph nodes, distant metastases, 
and poor prognosis [34, 104, 213]. Radio- and 
chemotherapy resistance were also observed 
in some GI cancers with increased expression 
of miR-183 [172, 225-227]. Accordingly, miR-
183 inhibition sensitized EsC cells to cisplatin-
induced apoptosis [172, 225-227]. Due to the 
relative stability of miRs in blood and the easi-
ness of detection of miRs in tumor patients, 
some studies have proved that analysis of cir-
culating miRs content can provide important 
information for the prediction and diagnosis of 
cancer [290, 291]. Several studies indicated 
that the high expression of plasma miR-183 is 
linked to lymph node metastasis, distant me- 
tastasis, pTNM staging, and invasiveness [112, 
213]. Interestingly, the expression of miR-183 
is decreased after GI cancer surgery and signifi-
cantly increased in patients with cancer recur-
rence, suggesting that plasma miR-183 can be 
regarded as a potential diagnostic biomarker. 
However, large clinical studies are warranted to 
confirm the diagnostic potential of miR-183 
cluster.
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