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Abstract: The human microbiome, an intricate ecological network, has garnered significant attention due to its po-
tential implications in oncogenesis. This paper delves into the multifaceted relationships between the microbiome, 
its metabolites, and cancer development, emphasizing the human intestinal tract as the primary microbial habitat. 
Highlighting the potential causative associations between microbial disturbances and cancer progression, we un-
derscore the role of specific bacterial strains in various cancers, such as stomach and colorectal cancer. Traditional 
causality assessment methods, like randomized controlled trials (RCTs), have limitations. Therefore, we advocate 
using Mendelian Randomization (MR) as a powerful alternative to study causal relationships, leveraging genetic 
variants as instrumental variables. With the proliferation of genome-wide association studies, MR harnesses genet-
ic variations to infer causality, which is especially beneficial when addressing confounders like diet and lifestyle that 
can skew microbial research. We systematically review MR’s application in understanding the microbiome-cancer 
nexus, emphasizing its strengths and challenges. While MR offers a unique perspective on causality, it faces hurdles 
like horizontal pleiotropy and weak instrumental variable bias. Integrating MR with multi-omics data, encompassing 
genomics, transcriptomics, proteomics, and metabolomics, holds promise for future research, potentially heralding 
groundbreaking discoveries in microbiology and genetics. This comprehensive review underscores the critical role of 
the human microbiome in oncogenesis and champions MR as an indispensable tool for advancing our understand-
ing in this domain.
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Introduction

The human microbiome is an intricate ecologi-
cal network, teeming with various microorgan-
isms encompassing bacteria, viruses, fungi, 
and protozoa. These microorganisms have col-
onized numerous sites within our bodies, such 
as the skin, oral cavity, vagina, and most promi-
nently, the gastrointestinal tract [1]. Astoun- 
dingly, the human intestinal tract, serving as 
the epicenter of this microbial diversity, is a 
sanctuary to approximately 40 trillion bacteria. 
The combined genetic repertoire of these 
microorganisms eclipses that of the human 
genome, being about 150 times more exten-
sive [2]. Current scientific endeavors indicate 
that the intricate interactions between the mi- 
crobiome and the metabolites they produce 

profoundly influence the tumor microenviron-
ment [3]. An imbalance or disruption in this 
microbiome can wreak havoc on cellular sig- 
naling pathways, ignite localized inflammation, 
and undermine the epithelial barrier’s function, 
potentially accelerating cancer progression [4, 
5]. One illustrative example is stomach cancer, 
which is believed to have a close association 
with the bacterium Helicobacter pylori. The 
potential interplay between Helicobacter pylori 
infections and alterations in the intestinal mi- 
crobiota composition could be instrumental in 
the genesis of gastric carcinoma.

Furthermore, there has been a significant 
uptick in the presence of certain bacteria su- 
ch as Escherichia coli, enterotoxin-producing 
Enterotoxin fragile-like bacilli, anaerobic diges-
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tive Streptococci, and Enterococcus faecalis in 
colorectal cancer tissues [6, 7]. Additionally, an 
overabundance of Clostridium perfringens has 
been implicated in aiding tumor invasion and 
fostering metastatic proliferation. In breast 
cancer contexts, shifts in the microbiota com-
position could play a pivotal role in hormone 
regulation, potentially influencing the disease’s 
etiology [8]. One notable player in this arena is 
Lactobacillus johnsonii, an Enterococcus genus 
member, which has been observed to exert a 
profound influence on breast cancer progres-
sion, primarily by promoting elevated estrogen 
levels [9]. 

The pursuit of unraveling the causal links 
between microorganisms and cancer holds 
paramount significance for advancing patho-
logic research and refining cancer prevention 
and treatment strategies. The randomized con-
trolled trial (RCT) is traditionally the gold stan-
dard for deducing causality [10]. Yet, the practi-
calities of RCTs, including substantial human, 
material, and financial outlays and ethical con-
siderations, delineate its limitations in clinical 
research scenarios. An alternative avenue to 
shed light on the nexus between exposure and 
disease is the observational study [11-13]. 
Notably, various cancers, such as colorectal, 
lung, breast, and pancreatic cancers, have 
been associated with the microbiome through 
observational studies [9, 14, 15]. However, 
these traditional observational investigations 
often grapple with inherent constraints, includ-
ing confounding at the local level and the loom-
ing specter of reverse causality. 

Mendelian randomization (MR), drawing inspi-
ration from Gregor Mendel’s foundational laws 
of heredity, leverages genetic variants with 
robust correlations to exposure factors as 
instrumental variables (IVs) [16, 17]. MR re- 
sembles RCTs in its approach and can navigate 
the pitfalls of unmeasured confounders, there-
by mitigating biases inherent to observational 
studies [18]. Moreover, MR’s versatility enables 
it to probe exposures that are unfeasible to ran-
domize in traditional RCTs. The comparison of 
RCTs, observational studies, and MR analysis is 
in Figure 1. The burgeoning domain of genome-
wide association studies (GWAS) has further 
bolstered MR’s potential, transforming gene- 
tic variation into a formidable arsenal for caus-
al inference. Traditional observational studies 

often find themselves in a dilemma when trying 
to discern the causal relationship between 
microbial composition and disease risk, espe-
cially given that shifts in microbial composition 
might be intertwined with other disease risk 
factors, such as dietary and lifestyle habits. MR 
rises to this challenge by meticulously selecting 
genetic variants associated with microbial com-
position as IVs, offering a more refined estima-
tion of the causal relationship between micro-
bial composition and disease risks [16, 19]. 
This review aims to distill insights from the 
application of MR in understanding the intri-
cate relationship between the microbiome and 
cancers, laying a theoretical foundation to fath-
om the deep-seated influence of the microbi-
ome in systemic malignancies.

Bidirectional causal relationship between 
microbiome and cancer

Microbial imbalances, commonly called dysbio-
sis, have been intrinsically linked to the onset 
and progression of cancer [20-22]. The inter-
play between cancer and the microbiome en- 
compasses a range of complex interactions, 
including the association of specific microbes 
with cancer development and alterations in 
microbial composition within cancer patients. 
About 20% of human cancers may be linked  
to microbes [23], with specific types like 
Helicobacter pylori, Fusobacterium nucleatum, 
Escherichia coli, Bacteroides fragilis, and Por- 
phyromonas gingivalis associated with the 
development of malignancies such as colorec-
tal, gastric, and pancreatic cancer. In patients 
with colorectal cancer (CRC), for instance, the 
composition of the gut microbiome differs sig-
nificantly from that of healthy individuals, and 
the tumor microbiome in CRC tissue also shows 
distinct variations from non-cancerous tissue. 
Additionally, the discovery of bacteria within 
many tumors, such as large microbial commu-
nities in the pancreatic tissue of patients with 
Pancreatic Ductal Adenocarcinoma (PDAC), 
challenges the notion that tumors are sterile 
environments. These microbes inhabit tumors 
and contribute to carcinogenesis through pa- 
thogenic products that cause chronic inflam-
mation and subsequent damage. Specific viru-
lence factors of bacteria, such as those pro-
duced by the microbes mentioned above, are 
implicated in various cancers, influencing the 
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Figure 1. Advantages, disadvantages, and application conditions of six research methodologies: Mendelian ran-
domization, randomized controlled trials, systematic reviews and meta-analyses, bioinformatics and computational 
biology, observational studies, multi-omics sequencing, and animal models.

pathogenesis and progression of these di- 
seases.

Furthermore, the microbiome plays a crucial 
role in shaping the host’s immune response to 

tumors and significantly affects the response 
to cancer treatments, particularly in therapies 
like immune checkpoint blockade. Recent 
research further emphasizes this by linking 
microbial cytotoxins and probiotic strains to 
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cells. In addition, compounds like gallic acid 
have demonstrated regulatory effects on im- 
mune cells, potentially improving the efficacy of 
cancer treatments. 

The clinical significance of cancer’s impact on 
the microbiome is multifaceted and complex. 
Studies have indicated that the microbiome, 
particularly the gut microbiome, is instrumen- 
tal in the evolution and advancement of cancer 
as well as the reaction to its treatment. Factors 
such as inflammation, tumor development, and 
cancer therapy can significantly alter a person’s 
microbiome. In particular, altered metabolism, 
a hallmark of cancer, is influenced by the gut 
microbiota, affecting human health and cancer 
therapy. Cancer may modify the microbiome  
by inducing tissue inflammation, altering host 
immune responses, or directly affecting the gut 
environment. Cancer treatments like chemo-
therapy, radiotherapy, immunotherapy, and tar-
geted therapies not only affect cancer cells but 
also alter the microbial composition of patients, 
potentially leading to dysbiosis, increased in- 
fection risks, and even influencing treatment 
responses. Analyzing a patient’s microbial com-
position clinically allows for more precise treat-
ment choices. At the same time, measures to 
maintain or restore a healthy microbiome, such 
as using probiotics or prebiotics, can reduce 
gastrointestinal discomfort caused by chemo- 
therapy.

Moreover, monitoring changes in the microbi-
ome of the gut or other body parts can aid in 
the timely detection of treatment or side ef- 
fects. Appropriate dietary and lifestyle adjust-
ments can also help maintain a healthy micro-
biome. Overall, understanding how cancer 
affects the microbiome and leveraging this 
knowledge to refine therapeutic strategies, 
such as adjusting anti-cancer treatments to 
minimize the destruction of beneficial micro- 
bes, is vital for enhancing treatment effective-
ness and reducing side effects.

Overview of methodologies microbiome-
cancer research: advantages, limitations, and 
practical applications

Randomized controlled trial

As the gold standard in research design, RCTs 
minimize bias with random assignment and 
controlled conditions, making them practical 

cancer cell death, highlighting their potential as 
targeted tools in cancer therapy [2, 14, 24, 25]. 
Interestingly, microorganisms can migrate to 
various bodily regions irrespective of their ori-
gins, potentially influencing tumorigenic pro-
cesses [26]. Beyond the direct implications of 
pathogenic organisms in cancer genesis, it’s 
crucial to underscore the role of commensal 
bacterial communities. Through the induction 
of symbiotic imbalances, these communities 
can influence cancer genesis via several under-
lying pathways [27-30]. 

Metabolomics, which stands at the crossroads 
of environmental factors, metabolic molecules, 
host genes, and diseases, has emerged as a 
focal point of attention for researchers aiming 
to dissect tumor development [31-33]. Several 
metabolites, including short-chain fatty acids 
(SCFAs), amino acids, vitamins, bile acids, and 
toxins, are intricately linked with microbial 
actions [34, 35]. For instance, SCFAs, pivotal 
metabolites synthesized by gut microbes, pro-
foundly affect intestinal function and overall 
metabolism [36, 37]. Studies have illuminated 
that augmenting the abundance of SCFA-
producing strains can potentially impede the 
progression of colorectal cancer. A notable 
mention is an isovaleric acid (IVA), a specific 
SCFA that has been intertwined with colorectal 
cancer [38]. IVA is known to trigger the upregu-
lation of proteins, thereby elevating levels of 
5-hydroxytryptophan (5-HT), which, in turn, can 
exert direct influence over tumor cells, enhanc-
ing their self-renewal capacity and, conse-
quently, increasing susceptibility to intestinal 
cancer [39].

Moreover, inevitable microbial byproducts have 
been identified to influence T cell activities 
potentially. A case in point is isotretinoin, which 
is known to bolster mitochondrial functionality 
while promoting the production of regulatory T 
cells [40]. Another metabolite, oxodeoxycholic 
acid, has been associated with a heightened 
risk for stomach cancer. Furthermore, specific 
bacterial strains can initiate intracellular signal-
ing cascades, producing reactive oxygen spe-
cies (ROS) and triggering immune responses 
[41]. Some bacteria also release formate, whi- 
ch can activate cancer-related signaling path-
ways. Notably, trimethylamine oxide (TMAO) in 
the intestinal milieu has been identified to 
enhance the anticancer properties of CD8+ T 
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for testing new drugs or therapies [42]. RCTs 
have a rigorous approach to reducing bias 
through randomly allocating subjects into ex- 
perimental and control groups, paired with 
stringent control over experimental conditions. 
This robust framework is particularly adept at 
assessing the efficacy and safety of new phar-
maceuticals and therapeutic strategies. RCTs 
play a crucial role in microbial research related 
to cancer. They are the cornerstone for evaluat-
ing the effectiveness of antimicrobials or clini-
cal testing of anti-cancer drugs [43-45], provid-
ing high-quality evidence while minimizing bias. 
Such trials are fundamental in addressing anti-
microbial resistance, which presents a signifi-
cant challenge in cancer care. However, while 
RCTs are excellent for assessing immediate 
outcomes of interventions against oncogenic 
microbes, they may not fully capture the extend-
ed interplay between the microbiome and can-
cer progression. Here, observational studies 
complement RCTs by providing long-term data 
on the evolution of microbial communities 
throughout cancer development, thereby offer-
ing a more comprehensive view of the interac-
tions that influence carcinogenesis.

Observational studies

Observational studies provide critical insights 
into the dynamics of real-world settings, en- 
compassing expansive populations and the 
long-term consequences of variable and un- 
controllable factors. Observational studies in 
microbial research have significantly advanced 
our understanding of the complex interactions 
between the microbiome and various health 
outcomes, including cancer [23]. They generate 
longitudinal data that elucidate the evolution of 
microbial communities in concert with disease 
progression or changes in the tumor microenvi-
ronment [46, 47]. Such studies have unveiled 
potential causal linkages by establishing asso-
ciations between specific microorganisms or 
variations in microbial diversity and distinct  
disease states. Moreover, observational stud-
ies have been fundamental in elucidating the 
microbiome’s influence on the efficacy of phar-
macological treatments and immunotherapeu-
tic approaches, as well as in identifying bio-
markers critical for diagnosing and monitoring 
disease trajectories. The insights derived from 
these studies are paramount for developing 
hypotheses that can subsequently be tested 

within the confines of more rigorously con-
trolled experimental designs, such as RCTs. 
Nonetheless, the intrinsic nature of observa-
tional studies, which are devoid of the random-
ization characteristic of RCTs, renders them 
more vulnerable to the effects of confounding 
variables [48]. These confounding factors can 
veil the authentic interrelations between vari-
ables, thereby necessitating the application of 
advanced statistical methodologies to differen-
tiate actual effects from those that are merely 
coincidental [49].

Systematic reviews and meta-analyses

In microbial research, systematic reviews and 
meta-analyses have precipitated considerable 
advancements by synthesizing extant data to 
elucidate the complex roles of the microbio- 
me in human health and various pathologies. 
These systematic analyses have illuminated 
distinct microbial signatures associated with 
various diseases, including neoplasms and 
immune dysfunctions [50], through compara-
tive assessments of microbiota compositions. 
Furthermore, these analytical approaches have 
underscored the representational imbalances 
in microbiome research, notably within African 
cohorts [51], thereby identifying pivotal re- 
search lacunae that necessitate further schol-
arly inquiry. In aggregate, these methodologi- 
cal endeavors bolster the statistical robust-
ness required to extract authentic correlations 
and inform subsequent investigative directions 
by amalgamating results from smaller studies 
that may be subject to bias, thus reinforcing the 
pertinence and practicality of findings within 
the microbiome research milieu [52]. However, 
it is imperative to acknowledge that these 
methodologies are not impervious to publica-
tion bias and must meticulously consider the 
heterogeneity in study design and quality dur-
ing data amalgamation.

Multi-omics sequencing

Multi-omics sequencing approaches have sig-
nificantly propelled microbiome and cancer 
research, offering nuanced insights into the 
complex interplay between microbial communi-
ties and cancer development and progression. 
Integrating genomics, epigenomics, transcrip-
tomics, proteomics, and metabolomics has  
illuminated the functional consequences of 
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genomic alterations and the associations bet- 
ween mutations and downstream signaling 
pathways in cancer. This technique has facili-
tated the identification of distinct molecular 
patterns, biomarkers for disease diagnosis and 
prognosis, and the potential for personalized 
treatment strategies based on the interactions 
between a patient’s microbiome and their 
response to therapy [53]. Moreover, multi-
omics has been particularly impactful in tumor 
microbiome research, providing a comprehen-
sive toolbox for researchers to dissect the intri-
cate relationships between the tumor microen-
vironment and microbial inhabitants [54]. In 
essence, multi-omics analyses facilitate the 
clustering of biological samples into meaning-
ful groups, providing a deeper understanding  
of prognostic and predictive phenotypes. They 
play a pivotal role in dissecting cellular res- 
ponses to therapy and assist in translational 
research by offering integrative models that 
bridge the gap between benchtop research and 
clinical application [55]. However, these meth-
ods are costly, require intensive data analysis, 
and necessitate extensive expertise in biology 
and bioinformatics for data interpretation.

Animal models

Animal models are essential in microbial oncol-
ogy, providing a means to study cancer’s com-
plex mechanisms and the microbiome’s impact 
on its development. Researchers can utilize 
models such as mice, zebrafish, and fruit flies 
to investigate genetic and environmental con-
tributions to cancer influenced by microbial 
interactions [56, 57]. These models are crucial 
for assessing the efficacy and safety of new 
cancer treatments and understanding the mi- 
crobiome’s effect on drug metabolism and 
immune response. They also allow for examin-
ing tumor microenvironments to understand 
microbial effects on cancer progression. Animal 
models thus remain fundamental for translat-
ing research from lab to clinic, driving forward 
the fight against cancer. Nonetheless, biologi-
cal differences between animal models and 
humans restrict the findings’ direct applicabili-
ty, and ethical concerns for animal welfare are 
growing.

Bioinformatics and computational biology

Recent developments in computational biology 
and bioinformatics have significantly increased 

our awareness of the microbiome’s influence 
on cancer. Bioinformatics is crucial to microbi-
ome research, enabling the analysis of how 
microbial changes correlate with cancer devel-
opment and treatment outcomes. This field 
supports multi-omic studies to elucidate the 
microbiome’s impact on cancer at the molecu-
lar level. New computational frameworks shed 
light on the microbiota’s role in cancer develop-
ment [58]. This demonstrates the innovative 
methods addressing the complexities of micro-
biome data analysis. Machine learning, part of 
computational biology, excels in microbiome 
studies, especially in selecting features, identi-
fying biomarkers, and predicting disease and 
treatment outcomes [59]. These techniques 
can decode complex microbiome patterns, po- 
tentially revealing disease conditions or thera-
peutic responses. Clinical bioinformatics em- 
ploys these methods to aid in diagnosing, tre- 
ating, preventing, and managing diseases like 
cancer. Bioinformatics tools are vital for identi-
fying biomarkers crucial to diagnosing and 
monitoring conditions and crafting personal-
ized treatments. For example, big data analyt-
ics and machine learning studies reveal the gut 
microbiome’s complex role in cancer [60]. While 
bioinformatics and computational biology have 
propelled research forward, they encounter 
critical challenges, such as the complexity of 
managing and interpreting extensive datasets 
like 16S rRNA and metagenomics [61]. Fur- 
thermore, the difficulty in integrating data from 
different studies and the lack of necessary 
computational infrastructure hinder effective 
collaboration and slow the pace of scientific 
discovery.

Mendelian randomization

MR utilizes genetic variants for randomization, 
addressing the confounding biases common in 
observational studies, and applies where direct 
experimentation is impractical or unethical. 
This genetic epidemiology tool offers a comple-
mentary approach to the methods discussed, 
providing a quasi-experimental design to infer 
causality, which is particularly invaluable when 
traditional experimental studies are not feasi-
ble. However, MR necessitates robust statisti-
cal tools and in-depth genetic knowledge, as 
interpretations may be complex due to genetic 
heterogeneity and pleiotropic pathways. The 
MR will be explored in depth later. Figure 1 
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summarizes the strengths, weaknesses, and 
application conditions of all research methods 
mentioned above. 

Mendelian randomization: principles and ap-
plications

MR is a method for assessing causal rela- 
tionships in epidemiology and genetics using 
genetic variants as instrumental variables (IVs). 
To ensure the credibility of MR studies, the sin-
gle-nucleotide polymorphisms (SNPs) chosen 
as IVs must satisfy three core assumptions: rel-
evance, independence, and exclusion restric-
tion. These dictate a strong IV-exposure asso-
ciation, the absence of confounder associations, 
and a direct influence on the outcome through 
the exposure, respectively [62]. The “relevance 
assumption” mandates a robust association 
between the instrumental variable and the 
exposure under study. The “independence as- 
sumption” dictates that the chosen SNPs sh- 
ould be devoid of associations with potential 
confounders that might skew the relationship 

between the exposure and the outcome. Finally, 
the “exclusion restriction assumption” stipu-
lates that SNPs should influence the outcome 
solely via the exposure of interest, without any 
alternative pathways intervening [62]. Figure 2 
shows the MR model and three key assump-
tions. The validity of these assumptions in MR 
can be compromised by issues such as pleiot-
ropy, where genetic variants influence more 
than one trait, potentially violating the ex- 
clusion restriction assumption. Heterogeneity 
tests can address this by identifying and ex- 
cluding variants with pleiotropic effects. Robust 
MR methods like median and mode-based 
approaches represent the true causal effect  
by the median or mode of estimates across 
variants despite potential instrument inva- 
lidity. The Mendelian randomization-Egger 
(MR-Egger) method estimates causal effects, 
assuming instrument strength is unaffected by 
direct outcomes, thus accommodating invalid 
instruments. Despite their advancement, the- 
se methods depend on inherently untestable 

Figure 2. Mendelian randomization model and three key assumptions of a Mendelian randomization analysis. MR, 
Mendelian randomization.
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assumptions about the heterogeneity and dis-
tribution of pleiotropic effects. Therefore, criti-
cally assessing these assumptions and the 
robustness of the employed data and methods 
is crucial. 

Several classifications of MR have emerged, 
including independent-sample MR, two-sample 
MR, multivariate MR, bidirectional MR, and net-
work MR [63]. In extensive biobanks, one-sam-
ple MR is being increasingly utilized to investi-
gate causal links, as genomic associations with 
diverse exposures and outcomes become more 
prevalent. One-sample MR, which differs from 
two-sample MR, derives gene-exposure and 
gene-outcome association estimates from the 
same set of individuals. However, this approach 
may encounter challenges in scenarios with 
confounding variables. Consequently, resear- 
chers have employed an array of techniques, 
including both fixed and random effects meta-
analyses, weighted median estimators, weight-
ed mode estimators, and MR-Egger regression. 
These methods are applicable to both single-
sample and two-sample MR, and their efficacy 
has been evaluated across various contexts, 
encompassing the existence of actual causal 
effects, the extent of confounding factors, and 
the nature of polymorphism. 

In instances where confounders create signifi-
cant correlations, methods designed for two-
sample MR, when applied in one-sample MR 
settings, generally show similar performance to 
their use in two-sample MR scenarios. However, 
MR-Egger may introduce biases that mirror the 
direction and intensity of the confounding fac-
tors. Despite this, studies indicate that, within 
large biobanks, two-sample MR techniques can 
be securely implemented in single-sample MR 
analyses, except for MR-Egger. This particular 
method is advised against in single-sample MR 
unless the correlations caused by confounding 
are substantially reduced or there is a high vari-
ability in the strength of the instruments. This 
suite of findings offers vital methodological 
insights for probing causality in intricate bio-
medical datasets.

In a typical two-sample MR study, researchers 
embark on a journey encompassing five crucial 
stages: 

(1) Study Typology and Genetic Instrumentation: 
The purpose of MR analysis is to quantify and 

test the causal effect of one trait on another by 
utilizing genetic variants as IVs. The first step 
necessitates the meticulous curation of genet-
ic variants strongly associated with the expo-
sure under investigation. This often involves 
delving into extensive biobanks or meta-analyt-
ic databases.

(2) Instrumental Variable Screening: Post se- 
lection, these IVs undergo rigorous validation 
checks to ensure their adherence to MR’s foun-
dational principles, thus bolstering the study’s 
statistical power. In order for an IV to be consid-
ered genuine, there needs to be a clear connec-
tion between the genetic variant and the expo-
sure. Additionally, any relationship between the 
variant and the outcome should be influenced 
by the exposure. Direct correlations between 
the genetic variant and the result or a con-
founding factor are prohibited.

(3) Causal Inference and Interpretation: Com- 
bine the selected genetic tools with outcome 
data, using various MR models such as MR- 
Egger, weighted median methods, etc., to 
ensure consistency and reliability of results. 
Analyze potential biological mechanisms, inter-
preting how genetic variants might influence 
the outcome through environmental exposure.

(4) Statistical Paradigms for Effect Estimation: 
Estimating causal effects predominantly har-
nesses a suite of statistical methods, from 
Wald ratios to two-stage least squares and 
inverse variance weighting. For pooled data 
studies, the analytical toolbox expands to 
include techniques such as weighted median 
methods and MR-Egger regression.

(5) Sensitivity Analyses: An integral component, 
sensitivity analysis aims to reinforce the credi-
bility of the study’s findings. Conduct various 
methods (like leave-one-out, MR-Egger regres-
sion) to detect and adjust for potential biases, 
such as genetic pleiotropy or heterogeneity in 
the outcomes. Test the robustness of the 
results to ensure the inferred causal relation-
ships are not influenced by specific analytical 
strategies or assumptions.

A variety of statistical methodologies have 
been harnessed, ranging from the inverse vari-
ance weighted (IVW) method to the Mendelian 
randomization-Egger (MR-Egger) method, and 
include techniques like the Weighted median 
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(WM) method, Simple mode, and the Weighted 
mode method [64]. While the IVW method often 
emerges as the primary technique in MR stud-
ies, the other methods serve as supplementary 
tools [17]. For instance, MR-Egger is tailored  
to detect and adjust for pleiotropy - a situation 
where a single genetic variant impacts multiple 
traits. Despite its ability to yield unbiased esti-
mates even when faced with invalid instru-
ments, MR-Egger demands larger sample sizes 
and typically has diminished statistical power 
[65]. On the other hand, the weighted median 
approach is often reserved for scenarios with 
substantial sample sizes and aids in deriving 
weighted median estimates by prioritizing ca- 
usal effect estimates for individual SNPs. 

Logistic regression analysis is essential in MR 
studies with binary outcomes as it helps iden-
tify associations between exposures and out-
comes and compute ratio estimates. The study 
by Park et al. [66] was analyzed by logistic 
regression analysis in the MR study for short  
or long sleep duration and CKD. Although not 
as frequently discussed, factor analysis can 
uncover latent variables that influence obser- 
ved variables and may act as instruments or 
confounders in MR. The role of factor analysis 
in MR studies is equally important yet often 
understated. This method reveals latent vari-
ables, unobserved factors affecting multiple 
observed variables. In MR, latent variables pro-
vide insights as potential instruments or con-
founders. Identifying and accounting for these 
hidden factors allows researchers to refine 
models to reflect the genetic complexity affect-
ing health outcomes more accurately. Factor 
analysis further enriches MR’s statistical land-
scape by clarifying the complex genetic archi-
tecture of traits. It enables the exploration of 
genetic variations affecting multiple pheno-
types, which is invaluable for understanding 
SNPs’ pleiotropic effects. Meta-analysis can 
also be used in MR to combine results from 
separate epidemiological studies using a small 
but select group of genetic variants [67]. Such 
analytical depth is crucial for validating MR’s 
instrumental variables, ensuring they fulfill the 
rigorous assumptions necessary for credible 
causal inference. Consequently, integrating 
logistic regression and factor analysis into MR 
studies bolsters the precision and reliability of 
findings, advancing genetic epidemiology.

Advantages and limitations of Mendelian ran-
domization in microbiological research

Thanks to its distinctive advantages, MR has 
carved a niche for itself in microbiological 
research. One of the foremost benefits of MR is 
its adeptness in circumventing the intricate 
web of confounders - variables such as diet, 
lifestyle, and medication - which often muddy 
the waters in microbial research [68-73]. By 
leveraging instrumental variables, MR effec-
tively delineates causal impacts, rendering 
clarity to the analyses. Secondly, MR capitaliz-
es on the inherent randomness of genetic vari-
ations, thereby allowing researchers to ascer-
tain definitive causal links [16]. This is par- 
ticularly invaluable when probing the intricate 
interplay between microbial ecosystems and 
prevalent health conditions, such as obesity, 
diabetes, and cardiovascular diseases.

Furthermore, MR offers a buffer against the 
perennial challenge of reverse causality. By 
anchoring its analyses on immutable genetic 
variables, MR enhances the veracity of causal 
interpretations, offering more reliable insights. 
Another notable advantage lies in the realm of 
ethical considerations. MR can harness data 
from pre-existing genetic databases, eliminat-
ing the need for interventions that might be 
deemed ethically questionable, such as micro-
bial transplantation. Lastly, as the scientific 
community witnesses rapid strides in genome 
sequencing technologies and a concurrent 
expansion in microbiome datasets, the preci-
sion and feasibility of MR are poised to witness 
significant enhancements.

MR offers a distinctive edge in the investigation 
of causality. It’s imperative to remain vigilant of 
its inherent limitations. A primary concern aris-
es from the issue of horizontal pleiotropy, which 
can potentially disrupt the assumptions of in- 
dependence and exclusivity. There’s also the 
looming specter of weak instrumental variable 
bias, which can undermine the association 
assumption.

Several external factors further compound 
these challenges. LD, population heterogene-
ity, and the Beavis effect can subtly influence 
the foundational assumptions of MR [74]. 
Moreover, pinpointing the specific mechanisms 
underlying disease development remains an 
intricate endeavor [75]. While extensively stud-
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ied, the relationships between genes and dis-
eases are yet to be fully deciphered [76]. 
Furthermore, the conclusions drawn from 
GWAS can sometimes be hemmed in by popu-
lation-specific nuances, limiting their broader 
applicability. Achieving the statistical firepower 
required in MR studies often requires larger 
sample sizes [77]. Another nuance to consider 
is that MR predominantly zeroes in on the long-
term ramifications of risk factors on outcomes. 
This focus can make it challenging to parse out 
the causal effects at specific junctures of dis-
ease progression. As a result, while MR stands 
as a robust tool in causality assessment, it’s 
crucial to bolster its findings with corroborative 
evidence from high-quality RCTs, ensuring a 
holistic and rigorous approach to understand-
ing complex biological relationships.

Mendelian randomization illuminating 
microbiome-cancer causality

To gain a holistic understanding of the gut 
microbiome’s role in cancer etiology, an exha- 
ustive literature search was conducted, span-
ning publications from 2017 to 2023, sourced 
from the esteemed PubMed database. The 
search incorporated terms such as “Mendelian 
randomization”, “microbiota”, and “cancer” and 
their synonymous counterparts. After filtering 
out unrelated studies, 12 research pieces, all 
focusing on the microbiome, emerged as pivot-
al. Of these, several studies embarked on a 
broader trajectory, scrutinizing diverse can- 
cers. Zhu et al. embarked on an extensive 
exploration, leveraging data from the IEU Open 
GWAS project, to comprehend the causal nexus 
between gut microbiota and eight distinct can-
cer types, including breast, colorectal, and 
prostate. Their findings unveiled 11 unambigu-
ous causal links, particularly emphasizing the 
genetic predisposition of the gut microbiota, 
especially within the genus Bifidobacterium, 
and their impact on diverse cancer types [78]. 
In another analytical endeavor, researchers 
probed into the relationships between specific 
gut microbiota and five prevalent cancers, 
inclusive of their subtypes. Their observations 
underscored a direct association between hei- 
ghtened levels of the genus Sellimonas and an 
increased predisposition to estrogen receptor-
positive breast cancer. Conversely, an elevated 
concentration of the Alphaproteobacteria class 
was associated with diminished prostate can-
cer risk [79]. This nexus was further elucidated 

by Su et al. [80] and Xie et al. [81], who cast a 
wider net, encompassing a myriad of gastroin-
testinal cancers.

Colorectal cancer stood out, being the focal 
point of eight discerning studies [78-80, 82- 
86]. Ni et al. [86] highlighted the protective role 
of Blautia in thwarting the onset of colorectal 
cancer. Conversely, Li et al. [82] discerned an 
augmented risk associated with Bacteroides 
and pinpointed protective attributes in micro- 
bes such as Faecalibacterium, Blautia, and 
Ruminococcus. Xie et al. [84] further bolstered 
the evidence base, suggesting a potential link 
between Bacteroides and enhanced suscepti-
bility to colorectal and stomach cancers. Hat- 
cher C’s [85] study presented an array of mi- 
croorganisms, including Fusobacterium and 
Peptostreptococcus, as potential risk enhanc-
ers for colorectal cancer. 

In addition to colorectal cancer, other cancers 
have also been addressed. In a study conduct-
ed by Zhou et al. [87], a correlation was estab-
lished between Weissella and Oscillospira with 
a decreased susceptibility to lung cancer. 
Conversely, Yang et al. [88] found a positive 
association between Prevotella and Veillonella 
and an increased incidence of Barrett’s esoph-
agus while also noting a potential protective 
effect of Lactobacillus. Ma et al. [89] has iden-
tified that the families Ruminococcaceae, 
Porphyromonadaceae, and Bacteroidetes are 
associated with reduced susceptibility to liver 
cancer. Bowdon et al. [90] combined meta-
analyses of different exposure contrast from 
50 studies with MR analysis, indicating an 
altered vaginal microbiome (RR=1.59 (95% 
CI=1.40-1.81)), is supported by strong and 
highly suggestive evidence for an association 
with HPV persistence, CIN or cervical cancer.

In conclusion, the findings above provide sub-
stantial evidence for the causal involvement of 
gut microbiota in the development of cancer 
while presenting promising avenues for further 
research on the mechanisms and clinical im- 
plications of microbiota-related cancer causes. 
Results are summarized in Table 1 and Figure 
3.

Mendelian randomization illuminating cancer-
microbiome causality

In addition to microbes promoting tumorigene-
sis and progression, cancer may modify micro-
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Table 1. Summary of current research on microbiome causality in relation to multiple cancers

Author, year Exposure/ 
Outcomes Outcomes/Exposure Direction Causality

Long Y, 2023 Gut microbiota Eight cancer types (BC, LC, 
CRC, PCA, GC, Head and 
neck cancer, Endometrial 
cancer, OC)

Bidirectional Actinobacteria, Bifidobacteriaceae, higher risk of BC; Ruminococcaceae, Bifidobacteriaceae, lower 
risk of BC; Actinobacteria, Tyzzerella3, Lactobacillales, higher risk of LC; Burkholderiales, lower risk 
of LC; Tyzzerella3, lower risk of CRC; Ruminococcustorquesgroup, Verrucomicrobiae, Desulfovibrio-
nales, higher risk of CRC; Ruminococcustorquesgroup, Verrucomicrobiales, Terrisporobacter, lower 
risk of PCA; AlphaproteobacteriaM, higher risk of PCA; Peptostreptococcaceae, higher risk of GC; 
Gastranaerophilales, Actinobacteria, lower risk of head and neck cancer; Gammaproteobacteria, 
lower risk of endometrial cancer; Ruminiclostridium 6, higher risk of OC

Wei Z, 2023 Gut microbiota Five cancers and their 
subtypes (BC, LC, PCA, 
Endometrial cancer, OC)

One-way Bifidobacterium: lower risk of BC; Lactobacillus: lower risk of BC and endometrial cancer
Bacteroides & Ruminococcus: higher risk of BC and LC; Prevotella: higher risk of BC and endome-
trial cancer; Faecalibacterium, Roseburia, Blautia, Akkermansia & Eubacterium: lower risk of LC; 
Alphaproteobacteria: lower risk of PCA; Christensenellaceae, Streptococcaceae, Peptostreptococ-
caceae: higher risk of OC 

Ma J, 2023 Gut microbiota Liver cancer One-way Ruminococcaceae, Porphyromonadaceae & Bacteroidetes: lower risk of liver cancer
Ni JJ, 2022 Gut microbiota CRC One-way Blautia: lower risk of CRC
Li W, 2023 Gut microbiota CRC Bidirectional Bacteroides: higher risk; Faecalibacterium, Blautia & Ruminococcus: lower risk
Xie N, 2021 Gut microbiota CRC, GC, EC, liver cancer, 

and PC 
Bidirectional Bacteroides: higher risk of CRC and GC; Faecalibacterium: lower risk of CRC and GC; Blautia & 

Ruminococcus: lower risk of CRC; Prevotella: higher risk of EC
Su Q, 2023 Gut microbiota CRC, GC, EC, PC, liver can-

cer, gallbladder cancer
Bidirectional Bifidobacterium: lower risk of CRC; Faecalibacterium: lower risk of GC; Ruminococcus: higher risk 

of GC; Lactobacillus: lower risk of EC; Prevotella: higher risk of PC; Bacteroides: higher risk of liver 
cancer; Clostridium: higher risk of gallbladder cancer

Hatcher, 2023 Gut microbiota  CRC One-way Fusobacterium, Peptostreptococcus & Parvimonas: higher risk
Zhou H, 2020 Gut microbiota LC One-way Weissella & Oscillospira: lower risk
Yang Z, 2022 Gut microbiota Barrett’s esophagus  One-way Prevotella & Veillonella: higher risk; Lactobacillus: lower barrett’s esophagus risk
Li H, 2023 Gut microbiota CRC One-way Bacteroides: higher risk of left-sided colon cancer and stage III CRC

Faecalibacterium: lower risk of right-sided colon cancer and stage I CRC
Fusobacterium: higher risk of rectal cancer and stage IV CRC

Hong W, 2023 Gut microbiota  BC One-way Bifidobacterium: lower risk of ER-positive BC; Lactobacillus: lower risk of ER-negative BC; Pre-
votella: higher risk of ER-positive BC

BC, breast cancer; CRC, Colorectal cancer; LC, Lung cancer; GC, Gastric cancer; EC, Esophageal cancer; PC, Pancreatic cancer; PCA, Prostate cancer; OC, Ovarian cancer.
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bial communities’ composition. Research has 
revealed that various forms of cancer, along 
with tumors that possess distinct clinicopatho-
logic characteristics such as cancer stage, 
grade, and receptor status, display notable 
variations in the relative prevalence of microbi-
al communities [2]. The gut microbiota in indi-
viduals diagnosed with colon cancer frequently 
exhibits substantial alterations in comparison 
to those in healthy persons. As an illustration, 
specific pathogenic bacteria, such as Fusoba- 
cterium nucleatum, tend to exhibit higher levels 
of prevalence among individuals diagnosed 
with colon cancer [15]. Sagarika et al. [91] 
breast cancer subtypes exhibit distinct microbi-
ome compositions, with estrogen receptor-pos-
itive tumors displaying the highest microbial 
diversity and triple-negative tumors exhibiting 
the lowest. Different microbial profiles enable 
the discrimination of various breast cancer 
subtypes. 

Four MR studies explored the bidirectional cor-
relation between cancer and microbes. Zhu et 
al. [78] also employed a methodology wherein 
cancer was considered the independent vari-
able (exposure) and the gut microbiota as the 
dependent variable (outcome). The authors 
observed a significant association between 
lung adenocarcinoma and the genus Tyzzerella 
3 (P=1.02×10-2, IVW), indicating a bidirec- 
tional causal relationship between these enti-
ties. Li et al. [82] suggest a significant associa-
tion between genetic susceptibility to colorec-

tal adenomas and the heightened prevalence 
of the class Gammaproteobacteria and the 
family Enterobacteriaceae by the reverse MR 
analysis. Su et al. [80] indicated significant 
links between genetic susceptibility to diges- 
tive system cancers and the relative prevalence 
of certain bacterial species. In the study on gut 
microbiota and digestive system cancers, Xie 
et al. [81] identified specific cancers can regu-
late the relative abundance of particular strains 
of gut microbiota by the reverse MR.

In summation, the body of evidence presented 
underscores the pivotal role of cancer in gut 
microbiota, offering a fertile ground for further 
exploration into the underlying mechanisms 
and potential therapeutic interventions.

MR studies of microbiome, metabolites, and 
cancers

A comprehensive study encompassed a sam-
ple size of 3432 individuals from China [92]. 
The study employed bidirectional MR methods 
to examine the causal associations between 
the gut microbiome and blood metabolites. 
This work used a hierarchical clustering app- 
roach to analyze the associations between 12 
microbial features and eight blood metabolites. 
The analysis revealed 17 causal linkages from 
the gut microbiota to the blood metabolites. 
The clustering process resulted in the forma-
tion of two distinct groups. One cohort observ- 
ed reduced plasma triglyceride and alanine lev-

Figure 3. Summary of current research on microbiome causality in relation to multiple cancers.
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els by manipulating gut microbial taxa or func-
tional modules.

In contrast, another cohort observed a drop in 
5-methyltetrahydrofuran or progesterone le- 
vels by manipulating gut microbial characteris-
tics while monitoring increased serum uric acid 
or plasma glutamate levels. Alistipes negatively 
affected blood triglycerides, reduced the risk  
of hepatocellular carcinoma (P=0.045), and 
increased the risk of colorectal cancer (P= 
0.047). Escherichia coli increased the risk of 
hepatocellular carcinoma (P=0.04). Similarly, 
Salmonella enterica increased the risk of pros-
tate cancer, and Pseudomonadales increased 
the risk of gastric (P=0.008), esophageal (P= 
0.027), and biliary tract (P=0.034) cancers. 
Streptococcus parasanguinis had a positive 
effect on colorectal cancer. These results illus-
trate the potential significance of the gut 
microbe-blood metabolite relationship in un- 
derstanding and preventing cancer. The re- 
search suggested the value of human genetic 
data in determining the importance of gut 
microbial characteristics for additional mech- 
anical and their involvement in cancers [92].

Utilizing bidirectional MR and a substantial 
sample size sourced from China, this study 
investigated the complex interconnections bet- 
ween blood metabolites and the gut microbi-
ome. The findings from this study spotlighted 
the transformative potential of harnessing the 
synergies between microbiota, metabolites, 
and malignancies, promising a new era of 
insights in cancer biology.

Mendelian randomization in the age of multi-
omics: a confluence of opportunities

MR emerges as a pivotal instrument in causal 
assessment, seamlessly integrating with novel 
technological advancements in microbiological 
research. A salient application of MR lies in its 
capability to harness the power of multi-omics, 
a holistic approach that delves deep into vari-
ous tiers of a biological system. From the metic-
ulous examination of DNA sequences in ge- 
nomics to probing mRNA expression in tran-
scriptomics, to the deep-dive scrutiny of protein 
dynamics in proteomics, and finally, to the 
expansive analysis of cellular metabolites in 
metabolomics, multi-omics stands as a com-
prehensive beacon in biomedical research 
[93]. Auwerx et al. [94] present a novel multi-

variate MR methodology that combines find-
ings from GWAS with information on genetic 
variations influencing transcript levels or me- 
tabolite composition. The variants, as men-
tioned above, known as eQTL (expressed quan-
titative trait loci) and mQTL (metabolite QTL), 
can be accessed from various demographic 
cohorts, enabling researchers to leverage the 
considerable wealth of existing information 
[95]. The causal links between transcripts  
and metabolites were established by employ-
ing overlapping mQTL and eQTL as IVs. Deter- 
mining causal effects between metabolites 
and phenotypes of interest is subsequently 
conducted utilizing mQTL and genetic varia-
tions found in GWAS. Subsequently, statistical 
computations were performed on the three 
entities, employing metabolism-related varia-
tion as an instrumental variable to establish a 
causal link between transcript, metabolite, and 
trait. This analysis aims to ascertain the extent 
to which transcription, either directly or through 
unidentified mediators, influences the trait and 
the extent to which fluctuation in metabolite 
levels mediates the association between tran-
scription and the trait [96]. 

The pioneering work of Xu et al. [97] introduced 
the utilization of multi-omics data within the 
framework of multivariate MR. Their study was 
designed to unravel potential causal pathways 
and molecular mechanisms linking osteoporo-
sis (OS) genes to Crohn’s disease (CD). The pri-
mary data sources encompassed both blood 
and intestinal tissues. A meticulous meta-anal-
ysis was executed on the intestinal transcrip-
tome to identify genes exhibiting differential 
expression in Crohn’s disease patients. By 
adopting the Summary-based MR approach, 
the research integrated GWAS data of CD with 
blood eQTL and DNA mQTL. Notably, incorpo-
rating gut eQTL and fecal microbial mBQTL in 
this study offered novel insights into potential 
interactions between host OS genes and the 
gastrointestinal microbiome. Two additional 
MR techniques were incorporated for sensitivi-
ty analyses to ensure robustness, addressing 
potential heterogeneity. The validity of the find-
ings was further underscored by their partial 
replication in distinct multi-omics datasets. 

Subsequently, the research by Darci-Maher et 
al. [98] amalgamated Mendelian randomiza-
tion with RNA-seq sequencing techniques, 
focusing on adipose and liver tissues. Their pri-



A review of Mendelian randomization on microbiome and oncogenesis

5798 Am J Cancer Res 2023;13(12):5785-5804

mary objective was to illuminate the implica-
tions of variations in blood triglyceride levels for 
non-alcoholic fatty liver disease (NAFLD).

In a distinct avenue of exploration, Klerk et al. 
[99] embarked on an investigative journey to 
discern fluctuations in long non-coding RNAs 
(lncRNAs) and messenger RNAs (mRNAs) within 
the blood profiles of individuals afflicted with 
type 2 diabetes mellitus. Leveraging the two-
sample MR methodology, the researchers 
probed the genetic determinants modulating 
mRNA expression. Moreover, they endeavored 
to delineate the potential causative roles of 
both lncRNAs and mRNAs in diabetes-associat-
ed phenotypes, particularly emphasizing lipid 
metabolism and anthropometric determinants 
[100].

The integration of this multi-faceted data 
unfolds a treasure trove of biological insights. It 
bestows researchers with a panoramic view  
of biological processes, disease mechanisms, 
and the nuances of therapeutic responses 
[101, 102]. For instance, genetic anomalies 
linked to a particular disease might ripple 
through the biological hierarchy, influencing 
gene expression, protein functionality, and 
metabolite levels [103]. Through MR, it be- 
comes feasible to discern the intricate web of 
causal associations between these biomarkers 
and specific health conditions or diseases.

Moreover, the confluence of multi-omics data 
promises to unveil novel biomarkers, pivotal for 
timely disease detection, prognostic evalua-
tions, and tailoring therapeutic interventions 
[104]. In the burgeoning arena of personalized 
medicine, this integrated data becomes instru-
mental in identifying patients more receptive to 
specific treatments, thus heralding a new era of 
bespoke medical interventions [105, 106]. Yet, 
as with all grand endeavors, challenges ab- 
ound. Multi-omics data’s sheer volume and 
intricacy demand innovative statistical method-
ologies and sophisticated computational tools. 
Furthermore, reconciling data from varied sour-
ces or platforms necessitates vigilant data har-
monization to forestall potential inconsisten-
cies or biases. It becomes paramount to in- 
stitute meticulous data preprocessing and 
standardization regimes. 

Future prospects in Mendelian randomization 
research

As the field of microbiomics evolves towards  
a paradigm emphasizing quality over quantity 
and functional understanding over mere struc-
tural characterization, the integration of novel 
bioinformatics tools becomes imperative for 
surmounting existing challenges and enhanc-
ing the efficacy of MR methodologies. This par-
adigm shift necessitates the adoption of 
sophisticated sequencing technologies, enab- 
ling the acquisition of intricate multi-omics 
data. Concurrently, there is a growing need for 
the development of refined data analysis tech-
niques and computational models tailored for 
such complex datasets.

A notable advancement in this realm is the in- 
tegration of machine learning and deep learn-
ing approaches. These methodologies are 
instrumental in discerning intricate patterns 
and interrelations within multi-omics data. The 
increasing relevance of Artificial Intelligence 
(AI) in bioinformatics, particularly in the context 
of microbiome research, cannot be overstated. 
AI and machine learning algorithms are pivotal 
in processing and analyzing large-scale bioin-
formatics data with enhanced efficiency. Such 
technological advancements facilitate resear- 
chers in identifying key patterns and associa-
tions within microbiome datasets, thereby 
enabling more accurate predictions and in- 
ferences.

In the analysis of microbiome data, traditional 
machine learning models like linear regression, 
random forests, and support vector machines 
have demonstrated efficacy and have been 
applied in various studies, including those  
predicting host ecological imbalances [107]. 
Furthermore, fully connected neural network 
architectures have shown a higher degree of 
classification accuracy in predicting host phe-
notypes from raw macrogenomic data com-
pared to traditional methodologies. Advanced 
deep learning methods, such as Convolutional 
Neural Networks (CNNs), as evidenced in appli-
cations like TaxNN and PopPhy-CNN, highlight 
the superiority of these approaches in tasks 
involving prediction of host phenotypes [108].

Another significant trajectory in microbiome 
research is integrated metagenomics analysis, 
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encompassing Metabolomics, Proteomics, and 
Genomics. This integrative approach allows 
researchers to construct a holistic view of the 
microbiome’s structure and function. Such mul-
tidimensional analyses are crucial for under-
standing the dynamics of microbial interactions 
and adaptability in varying environments. Uti- 
lizing network analysis tools facilitates the elu-
cidation of complex interactions both among 
microbiome constituents and between micro- 
bes and their hosts, thereby deepening our 
comprehension of the microbiome’s influence 
on host health and disease states [109].

For instance, Recurrent Neural Networks 
(RNNs) have been effectively employed for 
detecting dependencies and dynamic patterns 
in time-series data, with models based on long-
term tracking data, such as three-year infant 
allergy phenotype studies, outperforming tradi-
tional models [109, 110]. Additionally, autoen-
coders are increasingly being used for data 
dimensionality reduction, exemplified by Deep- 
Micro’s neural network, which employs a vari-
ant of multilayer autoencoder architecture, 
unveiling how diverse underlying information 
can enhance the prediction accuracy for condi-
tions like Irritable Bowel Syndrome and Type 2 
Diabetes.

In conclusion, the incorporation of cloud com-
puting and big data technologies marks a trans-
formative phase in microbiome research. These 
technologies are capable of managing and ana-
lyzing vast microbiome datasets, significantly 
improving data processing efficiency and scal-
ability. They also foster enhanced data sharing 
and collaborative efforts, thereby propelling the 
pace of scientific discoveries in this domain.

Conclusions

In summation, MR offers a robust scaffold, 
bridging the realms of microbiology and onco-
genesis. While challenges persist, the relent-
less march of technological progress in bio-
medical research promises a horizon replete 
with opportunities and transformative break- 
throughs.
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