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Abstract: The preoperative assessment of visceral pleural invasion (VPI) in patients with early lung adenocarcinoma 
is vital for surgical treatment. This study aims to develop and validate a CT-based radiomics nomogram to predict 
VPI in peripheral T1-sized solid lung adenocarcinoma. A total of 203 patients were selected as subjects, and were 
divided into a training cohort (n=141; scanned with Brilliance iCT256, Brilliance 64, Somatom Force, and Optima 
CT660) and a test cohort (n=62; scanned with Somatom Definition AS+). Radiomics characteristics were extracted 
from CT images. Variance thresholding, SelectKBest, and least absolute shrinkage and selection operator (LASSO) 
method were applied to determine optimum characteristics to construct the radiomic signature (radscore). After 
multivariate logistic regression analysis, a nomogram was structured regarding clinical factors, conventional CT 
features, and radscore. The nomogram property was tested based on its area under the curve (AUC). The nomogram 
based on the radscore and two conventional CT features (tumor pleura relationship and lymph node enlargement) 
showed high discrimination with an AUC of 0.877 (95% CI: 0.820-0.935) and 0.837 (95% CI: 0.737-0.937) in the 
training and test cohorts, respectively. The calibration curve and decision curve analysis showed good consistency 
and high clinical value of the nomogram. In conclusion, The CT-based radiomics nomogram was helpful in predicting 
VPI in peripheral T1-sized solid lung adenocarcinoma.
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Introduction

With the application of CT technology in lung 
cancer screening, an increasing number of 
early lung cancers have been found. Lung can-
cer can be split into small cell lung cancer and 
non-small cell lung cancer (NSCLC). The latter 
is more common, accounting for 85% of lung 
cancer [1]. Surgery is currently the dominant 
treatment for early NSCLC [1]. Visceral pleural 
invasion (VPI) of lung cancer, which is related to 
tumor recurrence, lymph node metastasis, and 
distant metastasis, is reportedly a poor progno-
sis factor for patients after surgery [2-5]. For 
T1-sized NSCLC, if VPI occurs, the tumor would 
upstage to T2a. Under the circumstances, lo- 
bectomy and more extensive lymph node dis-

section, rather than segmentectomy, are nec-
essary during the operation [6, 7]. Therefore, an 
accurate assessment of VPI before surgery is 
essential for treatment decisions.

Puncture biopsy is an invasive procedure, and it 
assesses only a portion of the diseased tissue, 
not all lesions. CT becomes a vital auxiliary 
examination in the preoperative assessment of 
VPI [8]. Many CT features were found as risk 
factors for VPI, including pleural tags, tumor 
contact with pleura, tumor pleura contact 
length, tumor pleura distance, pleural indenta-
tion, tumor size, and lymph node enlargement 
[9-13]. Some clinical factors, including gender, 
age, and carcinoembryonic antigen (CEA) level, 
were also found to be risk factors for VPI in lung 
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cancer [10, 12, 13]. However, the diagnostic 
efficiency of VPI based on conventional CT fea-
tures and clinical factors is not high. Ahn et al. 
[9] found that the sensitivity of CT features in 
VPI diagnosis was only 0.25 for T1-sized periph-
eral adenocarcinomas. Iizuka et al. constructed 
a risk-score model based on clinical factors 
and conventional CT features for the VPI predic-
tion of NSCLC, and the area under the curve 
(AUC) of their model was 0.68 [12]. Thus, it is 
necessary to develop a new method for enhanc-
ing the diagnostic precision of VPI.

Radiomics has become a research hotspot 
because it can high-dimensionally extract mas-
sive characteristics from images to quantify the 
intrinsic heterogeneity of lesions [14]. Now, it is 
extensively applied in the diagnosis, pathologi-
cal subtype classification, and prognosis pre-
diction of lung cancer [15, 16]. However, only a 
few studies have focused on VPI prediction by 
radiomics. Zuo et al. constructed a nomogram 
containing texture features to predict the VPI of 
lung adenocarcinoma, and the model exhibits 
high classification performance, with a C-index 
of 0.864 [17]. Similarly, Wei et al. constructed a 
nomogram combining CT texture features and 
conventional CT features for the VPI prediction 
of T1-sized NSCLC. Their model showed a good 
classification property, with an AUC of 0.894 
[18]. It is suggested that radiomics combined 
with conventional CT features can improve the 
diagnostic efficacy of the VPI of lung cancer 
compared with single conventional CT fea- 
tures.

Adenocarcinoma, which accounts for about 
half of NSCLCs, is very common in lung cancer 
[19]. Adenocarcinoma is mainly located periph-
erally and close to the pleura, so VPI can easily 
occur. Based on CT density, adenocarcinoma 
can be split into pure ground glass nodules 
(pGGNs), part solid, and pure solid nodules. 
Given the heterogeneity of adenocarcinoma, 
the probability of VPI and the risk factors of VPI 
vary among different substyles on CT. Several 
studies have confirmed that pGGNs do not or 
only rarely occur VPI, and with the increase in 
solid proportion, the malignant degree and the 
probability of VPI of adenocarcinomas increase 
[9, 20, 21]. Some studies have proven that VPI 
is a poor prognostic factor only for pure solid 
tumors [22, 23]. However, few studies have 
focused on VPI in pure solid lung adenocarci-

noma [21], and no study using the radiomics 
method for VPI prediction in pure solid lung 
adenocarcinoma has been reported to our 
knowledge. Accordingly, the present study 
selected T1-sized pure solid adenocarcinoma 
as the research object and explored the diag-
nostic performance of radiomics combined 
with conventional CT features and clinical fac-
tors for VPI prediction.

Materials and methods

Patients

This study was approved by the Institutional 
Ethics Committee of Yantai Yuhuangding Ho- 
spital, and informed consent was waived. All 
patients were collected from Yantai Yuhuang- 
ding Hospital. The manuscript was prepared 
and revised according to the TRIPOD checklist 
of items (Supplementary File 1). A total of 831 
cases who underwent chest CT scans before 
operations and were confirmed with lung can-
cer by postoperative pathology from May 2019 
to Feb 2021 were reviewed retrospectively. The 
inclusion criteria: (1) patients with tumor con-
firmed as adenocarcinoma by pathology, (2) 
patients whose VPI status was confirmed by 
pathology, (3) patients whose CT results sug-
gested pure solid tumor, (4) patients with tumor 
smaller than or equal to 3.0 cm in diameter, (5) 
patients with tumor located away from the seg-
mental bronchi, (6) patients who received oper-
ation within two weeks after CT scans, and (7) 
patients with comprehensive and standardized 
medical records, encompassing the present 
and past medical history, as well as the find- 
ings from preoperative laboratory and imaging 
examinations. The exclusion criteria: (1) pa- 
tients accepted neoadjuvant treatment before 
CT scans, and (2) patients with poor imaging 
quality due to respiratory or movement arti-
facts. The study flow chart is shown in Figure 2.

Pathological VPI evaluation

All specimens were evaluated by an experi-
enced pathologist. According to the TNM 
Classification for Lung and Pleural Tumors 
(Ninth edition) [24], the reference standards of 
VPI were as follows: PL0, tumor did not invade 
the elastic fibers; PL1, tumor invaded the elas-
tic fibers; and PL2, tumor further invaded the 
visceral pleural surface. When the hematoxylin 
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Figure 1. Pattern diagrams and CT images of tumor pleura relationships (I-IV). A. Type I, the tumor was unrelated to 
the pleura. B. Type II, the tumor was not contacted with the pleura directly, but the linear pleural tag was visible. C. 
Type III, the tumor was not contacted with the pleura directly, but the linear pleural tag with the density of soft tissue 
on the pleural side was visible (arrow). D. Type IV, the tumor was contacted with the pleura directly.

and eosin (H&E) stain could not determine 
whether the elastic fibers were invaded, special 
elastic staining was used for further evaluation 
[25]. PL0 was classified as VPI negative, and 
PL1 and PL2 were classified as VPI positive.

CT scanning protocol

All research subjects accepted chest CT scan-
ning on the following devices: Brilliance iCT256 
or Brilliance 64 (Philips Medical), Somatom 
Force or Somatom Definition AS+ (Siemens 
Medical), and Optima CT660 (GE Medical). The 
CT parameters were as follows: tube voltage, 
80-120 kV; tube current, 120-250 mA; recon-
struction slice thickness, 1.25 or 1 mm; matrix, 
512 × 512; field of view, 500 mm; lung window 
width/level, 1600/-500 HU; and mediastinum 
window width/level, 300/45 HU.

Data extraction

We collected data including baseline clinical 
factors, conventional CT features, and radiomic 
characteristics.

Baseline clinical factors, including sex, age, 
smoking history, history of other malignancy, 
family history of lung cancer, tumor location 
and tumor markers of lung cancer, were derived 
from medical record systems. Tumor markers 

included CEA, neuron-specific enolase (NSE), 
cytokeratin 19 fragment antigen 21-1 (CYF- 
RA21-1), and squamous cell carcinoma antigen 
(SCCA) level.

Two radiologists (with abundant experience in 
chest disease imaging diagnosis) assessed  
the conventional CT features of each case. The 
conventional CT features included tumor pleura 
relationship and other conventional CT fea-
tures. According to previous studies [11, 13], 
we divided tumor pleura relationship into four 
types: type I, the tumor was unrelated to the 
pleura; type II, the tumor was not directly con-
tacted with the pleura, but the linear pleural tag 
was visible; type III, the tumor was not directly 
contacted with the pleura, but the linear pleural 
tag with density of soft tissue on the pleural 
side was visible; and type IV, the tumor was 
contacted with the pleura directly (Figure 1). 
Other relationships between tumor and pleura 
included the following: (1) pleural indentation 
(absent or present); (2) tumor pleura contact 
length (the maximum contact length measured 
on axial, sagittal, or coronal mediastinum win-
dow images); and (3) tumor pleura distance 
(the shortest distance measured on axial, sag-
ittal, or coronal mediastinum window images). 
Other conventional CT features included the  
following: (1) tumor size (the longest diameter 



Nomogram for predicting visceral pleural invasion in lung adenocarcinoma

5904 Am J Cancer Res 2023;13(12):5901-5913

Figure 2. The flowchart and ra-
diomics workflow of the study.

measured on axial, sagittal, or coronal lung  
window images); (2) shape (round/oval or irreg-
ular); (3) lobulation (absent or present); (4) 
tumor-lung interface (smooth or rough); (5) 
spiculation (absent or present); (6) bronchial 
cut-off sign (absent or present); (7) CT value;  
(8) vacuole (absent or present); (9) lymph node 
enlargement (the shortest diameter of the tho-
racic lymph node more than 1 cm on axial CT; 
absent or present); and (10) vascular conver-
gence (absent or present).

The radiomic workflow is shown in Figure 2.  
The RadCloud platform (Huiying Medical 
Technology Co., Ltd., http://radcloud.cn/) was 
employed to segment tumors and extract 
radiomic characteristics. Two radiologists with 
7 (reader A) and 14 (reader B) years of experi-
ence in chest disease imaging diagnosis manu-
ally segmented the volume of interest. Initially, 
they randomly segmented 50 nodules to extract 
characteristics to verify interobserver repro-
ducibility. Then, reader A repeated the identical 
procedure half a month later to verify intraob-
server reproducibility. Intraclass correlation 
coefficients (ICCs) were applied to assess the 
consistency of characteristic extraction regard-
ing intraobserver and interobserver reproduc-

ibility. Characteristics with ICC > 0.75 were 
retained for further analysis. Reader A continu-
ally segmented residual nodules. A total of 
1409 radiomics characteristics were extracted 
from each tumor’s CT images, including texture, 
first-order, and high-order characteristics.

Model development and validation

Three methods were applied to determine the 
optimum radiomic characteristics from the 
training cohort. First, Variance Thresholding 
was performed to eliminate low variance char-
acteristics. Then, SelectKBest was used to 
retain the invariant value. Finally, the least 
absolute shrinkage and selection operator 
(LASSO) was applied to ascertain optimum 
characteristics. The radiomics signature (rad-
score), which can provide a linear combination 
using the optimum characteristics to quantify 
radiomics signature, was calculated. The rad-
score performance was verified according to 
the receiver operating characteristic (ROC) 
curve.

Multivariate logistic regression analysis was 
used to acquire independent predictors for VPI 
in conventional CT features, clinical factors, 
and radscore between VPI positive and nega-
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tive groups. A radiomics nomogram that could 
quantitatively and individually predict VPI was 
constructed on this basis. The ROC curve was 
used to verify the property of the nomogram. 
The calibration curve was applied to assess the 
classification precision of the prediction pro- 
bability between observations. Decision curve 
analysis (DCA) was conducted to test the clini-
cal applicability of the nomogram.

We also constructed a clinical model to com-
pare with the traditional clinical VPI prediction 
method. Univariate and multivariate logistic 
regression analyses were performed to deter-
mine the independent risk factors among all 
clinical factors and conventional CT features. 
The clinical model was constructed based on 
independent risk factors.

Statistical analysis

Statistical analyses were carried out using R 
and SPSS software. Kappa statistics for cate-
gorical variables and ICC for quantitative vari-
ables were applied to measure the interobserv-
er and intraobserver evaluation consistency, 
with ICC > 0.75 indicating a good consistency. 
Cases were classified into the training and test 
cohorts for building and validating models. 
Differences in variables between VPI positive 
and negative groups were computed based on 
the t-test or Wilcoxon rank-sum test for quanti-
tative variables and Fisher exact or chi-square 
test for categorical variables. AUCs were calcu-
lated to assess each model property (clinical 
model, radiomic model, and nomogram) and 
compared by the DeLong test. P < 0.05 indi-
cates statistical significance.

Results

Patients’ characteristics and conventional CT 
features

A total of 203 cases were included and as- 
signed to the training cohort (n=141; scanned 
with Brilliance iCT256, Brilliance 64, Somatom 
Force, and Optima CT660) and the test cohort 
(n=62; scanned with Somatom Definition AS+). 
Among the 203 patients, 55 (27.1%) were con-
firmed as VPI positive, and 148 cases (72.9%) 
as VPI negative. In the training cohort, 38 cases 
(27.0%) were confirmed as VPI positive, and 
103 cases (73.0%) as VPI negative. For the  
test cohort, 17 cases (27.4%) were confirmed 

as VPI positive, and 45 cases (72.6%) as VPI 
negative.

The basic clinical factors and conventional CT 
features of patients are listed in Table 1. No 
significant differences were found in the base-
line characteristics between the training and 
test cohorts. A good interobserver reproducibil-
ity existed between the two radiologists in 
assessing traditional CT features (ICC=0.849-
0.986). Univariate analysis showed that types 
III and IV tumor pleura relationship were more 
likely to lead to VPI than types I and II. However, 
no noticeable difference existed between types 
III and IV, and no noticeable difference existed 
between types I and II. Therefore, we further 
divided the tumor pleura relationship into 
Group A (type I + II) and Group B (type III + IV). 
The chi-square test showed that Group B was 
more likely to lead to VPI than Group A (P < 
0.05).

Radiomics characteristic selection and ra-
diomics signature construction

A total of 1234 characteristics (ICC > 0.75) 
were retained after Variance Thresholding  
from initial 1409 radiomics characteristics. 
Then, 427 characteristics were retained with 
SelectKBest. Finally, 11 characteristics were 
selected as the optimum characteristics after 
LASSO to construct a relevant radiomics signa-
ture (radscore) (Supplementary File 2) (Figure 
3). The radscore statistically differed between 
the VPI positive and negative groups (P < 0.05) 
(Figure 4).

Nomogram construction

Multivariate logistic regression was conducted 
between the VPI positive and negative groups 
among all variables (conventional CT features, 
clinical factors, and radscore). Finally, two con-
ventional CT features (types III and IV tumor 
pleura relationship and lymph node enlarge-
ment) and the radscore were ascertained as 
independent VPI predictors. A radiomics nomo-
gram based on these critical predictors was 
constructed (Figure 5).

Performance comparison of the three models

The AUCs of the clinical model, radiomics mo- 
del, and nomogram (combined model) were 
0.696, 0.819, and 0.877 in the training cohort 
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Table 1. Patient characteristics and conventional CT features in the training and test cohorts

Items
Training cohort (n=141) Test cohort (n=62) 

VPI(-)
n=103

VPI(+)
n=38 P VPI(-)

n=45
VPI(+)
n=17 P

Age (y) 60.34±8.55 62.89±9.75 0.132 62 (57, 67) 59 (49, 67) 0.492
Sex 0.113 0.429
    Male 45 (44) 23 (61) 17 (38) 9 (53)
    Female 58 (56) 15 (39) 28 (62) 8 (47)
Location 0.966 0.960
    RUL 21 (20) 9 (24) 15 (33) 5 (29)
    RML 9 (9) 3 (8) 3 (7) 1 (6)
    RLL 26 (25) 11 (29) 9 (20) 5 (29)
    LUL 26 (25) 9 (24) 5 (11) 2 (12)
    LLL 21 (20) 6 (16) 13 (29) 4 (24)
CEA (ng/ml) 0.765 0.073
    < 5 88 (85) 31 (82) 39 (87) 11 (65)
    ≥ 5 15 (15) 7 (18) 6 (13) 6 (35)
NSE (ng/ml) 0.947 1
    < 17.5 81 (79) 29 (76) 37 (82) 14 (82)
    ≥ 17.5 22 (21) 9 (24) 8 (18) 3 (18)
CYFRA21-1 (ng/ml) 0.471 1
    < 3.3 81 (79) 27 (71) 33 (73) 12 (71)
    ≥ 3.3 22 (21) 11 (29) 17 (27) 5 (29)
SCCA (ng/ml) 1 0.476
    < 2 103 (100.0) 38 (100) 44 (98) 16 (94)
    ≥ 2 0 (0) 0 (0) 1 (2) 1 (6)
Smoking history 0.691 1
    No 81 (79) 28 (74) 33 (73) 13 (76)
    Yes 22 (21) 10 (26) 12 (27) 4 (24)
Family history of lung cancer 1 0.568
    No 99 (96) 37 (97) 41 (91) 17 (100)
    Yes 4 (4) 1 (3) 4 (9) 0 (0)
History of other malignancy 1 1
    No 95 (92) 36 (95) 40 (89) 15 (88)
    Yes 8 (8) 2 (5) 5 (11) 2 (12)
Tumor pleura relationship 0.002 < 0.001
    I 14 (14) 0 (0) 9 (20) 0 (0.0)
    II 29 (28) 4 (11) 16 (36) 0 (0.0)
    III 11 (11) 7 (18) 2 (4) 2 (12)
    IV 49 (48) 27 (71) 18 (40) 15 (88)
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Tumor pleura relationship (Binary classification) 0.001 < 0.001
    I + II 43 (42) 4 (11) 25 (56) 0 (0)
    III + IV 60 (58) 34 (89) 20 (44) 17 (100)
Pleural indentation 0.020 0.131
    Absent 65 (63) 15 (39) 29 (64) 7 (41)
    Present 38 (37) 23 (61) 16 (36) 10 (59)
Tumor pleura contact length (mm) 0 (0, 10.3) 10.87 (0, 15.18) 0.003 0 (0, 7.64) 12.84 (8.57, 22,38) < 0.001
Tumor pleura distance (mm) 1.01 (0, 5.56) 0 (0, 2.05) 0.003 1.33 (0, 4.69) 0 (0, 0) 0.003
Tumor size (mm) 16.35 (12.43, 22.25) 21.25 (17.62, 25.72) < 0.001 15.54 (11.18, 20.93) 24.04 (14.17, 27.23) 0.031
Shape 1 0.712
    Round/oval 90 (87) 33 (87) 36 (80) 15 (88)
    Irregular 13 (13) 5 (13) 9 (20) 2 (12)
Lobulation 0.928 0.740
    Absent 24 (23) 6 (16) 10 (22) 5 (29)
    Present 79 (77) 32 (84) 35 (78) 12 (71)
Tumor-lung interface 0.235 0.242
    Smooth 13 (13) 5 (13) 5 (11) 4 (24)
    Rough 90 (87) 33 (87) 40 (89) 13 (76)
Spiculation 0.024 0.992
    Absent 32 (31) 4 (11) 14 (31) 6 (35)
    Present 71 (69) 34 (89) 31 (69) 11 (65)
Bronchial cut-off sign 0.712 0.591
    Absent 65 (63) 22 (58) 29 (64) 9 (53)
    Present 38 (37) 16 (42) 16 (36) 8 (47)
CT value (Hu) 30.27 (15.39, 39.98) 37.65 (23.51, 42.28) 0.025 28.62 (9.78, 44.29) 28.00 (18.00, 37.32) 0.067
Vacuole 0.623 0.432
    Absent 64 (62) 26 (68) 25 (56) 12 (71)
    Present 39 (38) 12 (32) 20 (44) 5 (29)
Lymph node enlargement 0.009 0.440
    Absent 99 (96) 31 (82) 39 (87) 13 (76)
    Present 4 (4) 7 (18) 6 (13) 4 (24)
Vascular convergence 0.006 1
    Absent 37 (36) 4 (11) 16 (36) 6 (35)
    Present 66 (64) 34 (89) 29 (64) 11 (65)
RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe; LUL = left upper lobe; LLL = left lower lobe; CEA = carcinoembryonic antigen; NSE = neuron-specific enolase; 
CYFRA21-1 = cytokeratin 19 fragment antigen 21-1; SCCA = squamous cell carcinoma antigen.
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Figure 3. Radiomics characteristics selection using LASSO logistic regression. A. Cross-validation curve. Choice of 
optimum log lambda (λ) in the lasso model. B. LASSO coefficient profiles radiomics characteristics. Optimum λ (the 
dotted vertical line) selected 11 non-zero coefficients. C. The histogram shows the 11 selected optimum radiomics 
characteristics’ contribution to the signature construction.

Figure 4. Radscore of patients in the training (A) and test (B) cohorts. Yellow indicates VPI positive patient and blue 
indicates VPI negative patient. Radscore, which was calculated by 11 optimum radiomic characteristics for each 
patient, showed significant differences between VPI positive and negative patients in both the training and test 
cohorts (P < 0.05).

and 0.775, 0.771, and 0.837 in the test cohort, 
respectively (Figure 6). The results showed th- 
at the nomogram had better VPI discrimination 
than the radiomics model and the clinical 
model (P < 0.05). The accuracy, sensitivity, and 
specificity of the three models are shown in 
Table 2.

The calibration curve of the nomogram reflect-
ed a high consistency between the predictions 

and the actual observed values (Figure 7). The 
DCA manifested that the net benefit level of the 
nomogram was superior to the other two mod-
els, with threshold probability between 0 to 
34%, 38% to 59% and 63% to 96% (Figure 8).

Discussion

This research established a CT-based radio- 
mics nomogram to predict VPI in T1-sized  
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Figure 5. A radiomics nomogram based on radscore and two conventional CT features (tumor pleura relationship 
and lymph node enlargement) for the prediction of VPI in the training cohort.

Figure 6. Comparison of the performance of three models. Receiver operating characteristic (ROC) curves of clinical 
model, radiomics model, and combined model (radiomics nomogram) in the training (A) and test (B) cohorts.

Table 2. Performances of the Three Models on Predicting VPI
Models AUC ACC SEN SPE
Radiomics nomogram Training cohort 0.877 0.752 0.789 0.738

Test cohort 0.837 0.758 0.706 0.778
Clinical model Training cohort 0.696 0.759 0.184 0.971

Test cohort 0.775 0.710 0.235 0.889
Radiomics model Training cohort 0.819 0.723 0.816 0.689

Test cohort 0.771 0.758 0.647 0.800
VPI = visceral pleural invasion; AUC = area under the curve; ACC = accuracy; 
SEN = sensitivity; SPE = specificity.

solid lung adenocarcinoma. This  
nomogram combining radscore  
and two CT features (tumor  
pleura relationship and lymph 
node enlargement) achieved 
good prediction ability for VPI.  
Furthermore, it exhibited high 
precision and application value  
in terms of its calibration curves 
and DCA.
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Figure 7. The calibration curves of the radiomics nomogram were used to evaluate the consistency between predic-
tion probability and observations in the training (A) and test (B) cohorts.

Figure 8. Decision curve analysis (DCA) for the prediction of VPI in periph-
eral T1-sized solid lung adenocarcinoma for each model. The X-axis repre-
sents the threshold probability, and the Y-axis represents the net benefit. 
The DCAs showed that the net benefits of the nomogram (red line) were 
superior to those of the radiomics model (yellow line) and the clinical model 
(blue line) between 0 to 34%, 38% to 59% and 63% to 96%.

Referring to previous studies 
[11, 13], we divided the tumor 
pleura relationship into four 
types. Results showed that 
types III and IV tumor pleura 
relationships were indepen-
dent risk factors for VPI in 
T1-sized solid adenocarcino-
ma. None of type I and only 
8.2% of type II tumor pleura 
relationship led to VPI, consis-
tent with previous findings [11]. 
About 40.9% of type III tumor 
pleura relationship led to VPI, 
similar to Hsu et al.’s study 
[11]. However, the study of Hsu 
et al. did not involve type IV, 
and we found that type IV 
tumor pleura relationship was 
also a risk factor for VPI, with 
38.5% VPI incidence for T1- 
sized solid adenocarcinoma. 
Zhao et al. found no pGGNs 
occurred VPI after microscopi-
cally observing, even in pGGNs 
with pleural attachment [20]. 
Considering the heterogeneity 
of adenocarcinoma, the proba-
bility of VPI and its risk factors 
vary among the different sub-
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styles of adenocarcinoma according to CT den-
sity [21]. Other relationships between tumor 
and pleura such as, pleural indentation and 
tumor pleura contact length, have been report-
ed as risk factors for VPI among different stud-
ies [10, 12, 13, 21]. Our univariate analysis 
found that tumor pleura contact length, tumor 
pleura distance, and pleural indentation statis-
tically varied between the VPI positive and neg-
ative groups in peripheral T1-sized solid adeno-
carcinoma, but no statistical differences were 
identified in multivariate logistic analysis. The 
discrepancy may be due to the different study 
objects and included factors among our study 
and previous ones [10, 12, 13, 21].

Our work demonstrated that lymph node en- 
largement on CT was a risk factor for VPI in 
peripheral T1-sized solid adenocarcinoma, sim-
ilar to previous studies [12]. Pleurae are rich in 
communicating lymphatic networks that drain 
into the mediastinal lymph nodes [12]. Ac- 
cordingly, tumor cells can easily metastasize to 
the mediastinum lymph nodes through the lym-
phatic networks when VPI occurs. Previous 
research has shown that VPI is concerned with 
mediastinal lymph node metastasis [10], and 
lymph node enlargement on CT is a hazard for 
metastasis in solid lung cancer [26]. Thus, 
lymph node enlargement on CT also becomes 
an independent risk factor for VPI. In univariate 
analysis, our study showed statistical differ-
ences in tumor size, CT value, vascular conver-
gence, and spiculation between the VPI posi-
tive and negative groups (P < 0.05). However, 
they were not identified as independent risk 
factors for VPI in peripheral T1-sized solid ade-
nocarcinoma in multivariate analysis. 

Radiomics can high-dimensionally extract mas-
sive invisible characteristics from CT images to 
quantify the intrinsic heterogeneity of tumors 
[13]. Up to 1409 radiomics characteristics 
were extracted from CT images of each tumor 
in our study. After assessing intraobserver and 
interobserver reproducibility, Variance Thre- 
sholding, SelectKBest, and LASSO selection, 
11 optimum radiomics characteristics were 
retained to calculate radscore. The nomogram 
(combined model) combining radscore and two 
CT features (tumor pleura relationship and 
lymph node enlargement) showed superior per-
formance for VPI prediction than the radiomics 
model and clinical model (P < 0.05). Our study 

confirmed that radiomic characteristics are 
essential supplements to conventional CT fea-
tures for VPI prediction in peripheral T1-sized 
solid adenocarcinoma. The 11 quantitative 
radiomics characteristics finally retained were 
all high-order characteristics originating from 
primary images. Therefore, the high-order sta-
tistical characteristics were more valuable for 
VPI prediction in peripheral T1-sized solid ade-
nocarcinoma than the other features. Wei et al. 
constructed a joint VPI prediction model com-
bining CT texture features and conventional CT 
features [18]. The predictive performance of 
their model is higher than ours (AUC: 0.894 vs. 
0.837). However, their study object was NSCLC, 
which included a variety of lung cancer patho-
logical types. Zuo et al. constructed a nomo-
gram containing texture features to predict the 
VPI of lung adenocarcinoma [17]. Zha et al. con-
structed a nomogram combining radiomics and 
CT features for the VPI prediction of lung adeno-
carcinoma [27]. Their models exhibited high 
classification property, with a C-index of 0.864 
and AUC of 0.89, which are slightly higher than 
ours. Unlike our study objects of pure solid ade-
nocarcinomas, Zuo et al.’s study objects includ-
ed subsolid and solid adenocarcinomas. Zha  
et al.’s study objects were part solid and  
pure solid adenocarcinomas. Although we used 
the semblable research method, most clinical 
predictive factors and radiomics characteris-
tics of the models varied between our studies. 
This finding indicated the heterogeneity of the 
adenocarcinoma among different subgroups 
on CT.

Previous studies have confirmed that the prog-
nosis differs among various subgroups of ade-
nocarcinoma based on CT [22, 28]. The pro- 
gnosis of adenocarcinoma with ground glass 
component is better than that of pure solid ade-
nocarcinoma [28]. Some researchers have 
demonstrated that VPI negatively influences 
T1-sized pure solid tumors but not part solid 
tumors. They further proposed that the upgrade 
in the T stage due to VPI in T1-sized lung cancer 
may be suitable only for pure solid tumors [22, 
23]. Unlike previous studies on VPI prediction 
using the radiomics method [27], our research 
objects were only T1-sized pure solid adenocar-
cinomas. The radiomics nomogram in our study 
achieved good predictive ability for VPI, indicat-
ing its clinical value. 
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Limitations

The present research has the following limita-
tions. First, it is a retrospective study and divid-
ed the training and test cohorts according to 
the CT machines used, so that selection bias 
may exist. Second, this is a single-center study 
with a small sample size, so multi-center re- 
search with a larger sample size is needed to 
confirm the model reliability in the next step. 
Finally, all features were extracted from non-
contrast enhanced chest imaging, and in future 
studies, contrast-enhanced CT imaging is need-
ed to provide more information.

Conclusion

In summary, the CT-based radiomics nomo-
gram can serve as a crucial reference for VPI 
prediction in T1-sized solid lung adenocarcino-
ma and may be used to guide clinical treatment 
decisions.
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