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Brief Communication
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Abstract: The purpose of this research is to develop a predictive model based on necroptosis-related genes to 
predict the prognosis and survival of lower grade gliomas (LGGs) efficiently. To achieve this goal, we searched for 
differentially expressed necrotizing apoptosis-related genes using the TCGA and CGGA databases. To construct a 
prognostic model, LASSO Cox and COX regression analyses were conducted on the differentially expressed genes. 
In this study, three genes were used to develop a prognostic model of necrotizing apoptosis, and all samples were 
split into high- and low-risk groups. We observed that patients with a high-risk score had a worse overall survival rate 
(OS) than those with a low-risk score. In the TCGA and CGGA cohorts, the nomogram plot showed a high capacity to 
predict overall survival of LGG patients. GSEA analysis revealed that the high-risk group was enriched for inflamma-
tory responses, tumor-related pathways, and pathological processes. Additionally, the high-risk score was associ-
ated with invading immune cell expression. In conclusion, our predictive model based on necroptosis-related genes 
in LGG was shown to be effective in the diagnosis and could predict the prognosis of LGG. In addition, we identified 
possible targets related to necroptosis-related genes for glioma therapy in this study. 
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Introduction

Malignant gliomas of the central nervous sys-
tem are typically aggressive and persistent [1]. 
Gliomas can be classified as either low-grade 
or high-grade according to criteria established 
by the World Health Organization (WHO) [2]. 
Despite the improved prognosis associated 
with low-grade gliomas (LGG), more than half of 
all LGG cases are deteriorated to high-grade 
gliomas after surgical resection and chemo-
therapy [3]. Even with vigorous combination 
treatment, LGGs have a dismal prognosis, par-
ticularly GBM, which has a median survival time 
(MST) of 14.6 months [4]. 

On the other hand, there is a better chance of 
survival from high-grade gliomas. Patients with 
the same grade of tumor can have drastically 
different survival rates and treatment respons-
es due to the wide variety of gliomas [5]. 
Importantly, these widely used biomarkers can-

not accurately predict the prognosis of glioma 
and cannot explain why patients with the same 
tumor grade have such varying outcomes [6]. 
Therefore, the discovery of significant and reli-
able glioma biomarkers is crucial for improving 
glioma diagnosis and therapy [7]. 

In comparison to autophagy, apoptosis, and 
pyroptosis, necroptosis stands out as a unique 
form of programmed cell death. In most cases, 
apoptosis is triggered by the activation of the 
proteins receptor interacting protein kinase 1 
(RIPK1), RIPK3, and mixed lineage kinase 
domain-like (MLKL) [8]. Historically, necroptosis 
has been observed in patients with infections 
[9], liver impairment due to alcohol or drugs 
[10], and spinal cord injuries [11]. Besides, a 
growing body of research suggested that it 
could play multiple roles in the initiation and 
dissemination of cancer [12]. Necroptosis 
genes could present in nearly all malignancies 
and correlate with a poor outcome in cancer 
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patients [13]. Necroptosis is a part of the 
inflammatory necrosis process [14], and there 
is mounting evidence that it may aid in the 
metastasis and invasion of certain cancers 
[15]. However, necroptosis’s mechanism and 
its ability to predict glioma outcome have not 
been widely explored. 

Necroptosis may either hinder or encourage 
the growth of cancers, depending on the kind 
and stage of the tumors [16]; However, the link 
between necroptosis-related genes and LGGs 
remains uncertain. In this study, genes involved 
in necroptosis were examined in gliomas and 
healthy brain tissue samples from the TCGA, 
CGGA, and GTEx databases to establish a 
model for predicting the LGGs outcome. 
Besides, we used bioinformatics analysis to 
demonstrate a relationship between LGGs and 
necroptosis in our research. 

Materials and method

Data collection and preprocessing

The Cancer Genome Atlas (TCGA, https://www.
tcga.org/) and the China Glioma Genome Atlas 
Project (CGGA, http://www.cgga.org.cn/) data-
bases were used to gather transcriptome pro-
files and clinical data for patients with LGGs 
(until November 2, 2021). The Genotype-Tissue 
Expression Project (GTEx, https://xenabrowser.
net/) database contains the transcriptome pro-
files of 1152 normal brain tissues. The TCGA 
database was queried for 523 patients with 
low-grade gliomas [17]. As a validation set,  
420 patients were gathered from the CGGA 
database. 

Differentially expressed genes (DEGs) identifi-
cation

All datasets have their expression data and 
standardized to fragment per kilobase million 
(FPKM) values. Differential genes were found 
using online bioinformatics tools (GEPIA2, 
http://gepia2.cancer-pku.cn); we defined statis-
tically significant differential genes as those 
with |log2FC|>1, adjp0.05. A total of 59 necrop-
tosis-related genes were identified using Gene 
Set Enrichment Analysis (GSEA) (http://www.
gsea-msigdb.org/gsea/index.jsp). Additionally, 
the gene set M24779.gmt, containing eight 
necroptosis genes, was retrieved using the  
keyword “necroptosis”, yielding a total of 67 
necroptosis-associated genes. 

Additionally, to evaluate the link between these 
differentially expressed necroptosis-related 
genes, we constructed a PPI network using the 
interacting gene/protein search engine (String, 
http://www.string-db.org/); then, we calculated 
Pearson correlations between genes. 

Development and validation of the necropto-
sis-related gene prognostic mode

To examine the prognostic significance of local-
ized death-associated genes in LGGs, we used 
One-Way COX regression analysis on the train-
ing set to identify DEGs genes that were signifi-
cantly linked with overall survival (OS). Then, in 
order to minimize overfitting, we employed the 
least absolute shrinkage and selection opera-
tor (LASSO) penalized Cox proportional risk 
regression. The procedure described above 
was carried out using the R package “glmnet” 
and a minimum criterion to compute the  
penalty parameter [7]. Additionally, we used 
Kaplan-Meier survival analysis to clarify the 
relationship between DEGs genes and overall 
survival (OS). Kaplan-Meier survival analysis 
was performed to determine the best possible 
risk threshold for the TCGA cohort. The glioma 
patients in the TCGA cohort were divided into 
low- and high-risk score sub-groups based on 
the appropriate cutoff value. Patients with pri-
mary glioma had their survival predicted using 
the risk signature, and this accuracy was  
determined using Kaplan-Meier survival curves 
and receiver operating characteristic (ROC) 
curves. Necroptosis risk signature validity was 
assessed using data from two CGGA cohorts. 
On the basis of the findings of multifactor Cox 
regression analysis, prognostic models were 
created. Patients were classified as high- or 
low-risk based on the median of their risk 
scores. The calculation for the risk score was 
as follows: risk score = n iXi xYi (n: number of 
surviving genes after lasso regression; X: coef-
ficients; Y: gene expression level). The OS time 
was compared between the two groups using 
Kaplan-Meier analysis. At three and five years, 
ROC analysis was done using the “survivalROC” 
program, and the area under the curve (AUC) 
was also computed. The CGGA data set was uti-
lized as a validation set for calculating risk 
scores and performing Kaplan-Meier and 
Receiver Operating Characteristic Curve (ROC) 
analyses. 

On the other hand, to determine if the risk sig-
nature may be used as a biomarker for assess-
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ing glioma patients’ prognosis, univariate and 
multivariate studies were carried out. Afterward, 
we used stratified analysis to investigate the 
connection between the risk signature and a 
number of other types of clinical characteris-
tics. Additionally, we used univariate Cox analy-
sis to determine clinical features of prognostic 
value and create a nomogram based on the 
risk score. Calibration and ROC curves were 
used to assess the nomogram’s efficacy at 1, 
3, and 5 years. 

Functional enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclo- 
pedia of Genes and Genomes (KEGG) anno- 
tations were conducted using the R pack- 
age “ClusterProfiler” based on the difference 
between high and low risk groups (|log2FC|>1; 
P Value 0.05). In addition, analysis of KEGG 
(Kyoto Encyclopedia of Genes and Genomes) 
enrichment was also assessed [18]. 

Estimation of tumor-infiltrating immune cells 

Using the cell type identification analysis in the 
“CIBERSORT” R package [10], we computed the 
proportional number of immune infiltrating 
cells in all tumor samples based on the tran-
scriptional profile of LGGs in TCGA. The Wilcoxon 
rank sum test was performed to compare the 
immune infiltration levels between high- and 
low-risk groups. 

Statistical analysis all statistical analyses 

In this research were done using R program 
(version 3.6.3). The log-rank test was employed 
for the Kaplan-Meier survival analysis. Hazard 
ratios (HRs) and 95% confidence intervals (CIs) 
were given when appropriate. P value less than 
0.05 was consider as significant difference. 

Result

Identification of DEGs between normal and 
tumor tissues

We compared 67 necroptosis-related genes in 
low-grade glioma patients and healthy controls 
using the GEPIA2 (http://gepia2.cancer-pku. 
cn) database and identified 21 differentially 
expressed genes (Figure 1A), conditional on 
(|log2FC|>1; P Value 0.05). All 21 genes were 
up-regulated in this group. In low-grade glioma 
vs normal tissues, CDKN2A, EGFR, MYC, IDH1, 

and TNFRSF21 were differently multiplied by 
>4 (log2FC>2). We did Pearson correlation 
analysis on these genes and displayed the PPI 
network to further study their connections 
(Figure 1B). The correlation heat map demon-
strated that the majority of gene phases had 
substantial positive correlations, indicating 
that gene interactions were rather robust. The 
genes with the highest frequency of occurrence 
had a significant positive correlation to the 
IDH1 gene, followed by those with a high posi-
tive correlation to the DIABLO gene. The map of 
protein interaction networks revealed that the 
majority of genes interacted with the MYC gene. 
Three genes, SLC39A7, IPMK, and PANX1, were 
shown to be unrelated to other genes. 

Development of prognostic gene model in the 
training set and testing set 

We screened data from 388 patients to identify 
differentially expressed genes associated with 
scorched death using univariate Cox regres- 
sion analysis (P<0.01). We identified 15 genes 
(Figure 2A, 2B) through preliminary analysis of 
differentially expressed genes associated with 
scorched death using one-way Cox regression 
analysis (P<0.01). We then screened the char-
acteristic prognostic genes using LASSO re- 
gression analysis and Kaplan-Meier survival 
analysis (P<0.05), and the ten genes identified, 
SIRT1, SLC39A7, HAT1, MYCN, MYC, IDH1, 
TNFRSF21, TLR3, FADD, and STAT3, were 
included in the subsequent multifactor COX 
regression analysis, and a ten-gene prognostic 
model was developed. The minimum parame-
ter determined the penalty parameter (Figure 
2C, 2D). Figure 3 showed the KM curves of  
the potential genes in the TCGA. Figure 4 also 
depicts the risk score distribution, patient sur-
vival, and expression heat map for the ten prog-
nostic genes. The multifactorial COX analysis of 
the ten genes revealed that SIRT1, HAT1, and 
IDH1 had the ability to operate as independent 
prognostic variables, with SIRT1 (HR1) being 
beneficial for survival and HAT1 and IDH1 
(HR>1) being detrimental for survival. The 388 
patients were classified into low- and high-risk 
groups (Figure 4A) using the risk score formu-
la’s median score. To assess the prognostic 
model’s sensitivity, time-dependent subject 
operating characteristic (ROC) curves and 
Kaplan-Meier curves were shown (Figure 4C, 
4E). The findings indicated that the survival 
curves of the high-risk and low-risk groups dif-



Necroptosis-related genes in LGG

695 Am J Cancer Res 2023;13(2):692-708

fered significantly (P<0.001). AUC values were 
0.842, 0.809, and 0.713 at 1, 3, and 5 years, 
respectively. Additionally, we used 420 individ-
uals with low-grade glioma from the CGGA data-
base to verify the model (Figure 4B, 4D, 4F). 

Clinical evaluation of the prognostic risk model 
based on the training set

To test the clinical utility of prognostic evalua-
tion, we investigated the connection between 

risk scores and clinical variables using univari-
ate and multivariate COX approaches. In the 
univariate COX analysis, we discovered that 
patient age, grading, radiation, and risk score 
were all significantly linked with OS (Figure 5A, 
5B, P<0.001). Interestingly, a similar pattern 
was discovered in multifactor COX. As a result, 
necrotizing apoptosis is strongly related to the 
prognosis of low-grade gliomas. Meanwhile, we 
discovered variations in the age and grade dis-

Figure 1. Identification of DEGs between normal and tumor tissues. A. Box plot of between the normal and the tumor 
tissues (*P<0.1, *P<0.05, **P<0.01, ***P<0.001). B. PPI network showing the interactions of the DEGs (interac-
tion score = 0.9). C. Pearson correlation analysis. 
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tributions of patients in the low- and high-risk 
categories (Figure 5C). When combined with 
the findings of multivariate Cox regression anal-
ysis, the risk score may serve as an indepen-
dent predictor of LGG in the whole group. 
Meanwhile, when the risk score was paired with 
additional clinicopathological parameters, the 
ROC curve indicated that the AUC rose, sug-
gesting that the risk score was an independent 
predictive factor (Figure 5D-F). 

Developing and validating a nomogram that 
incorporates clinical features

In the TCGA cohort, we incorporated clinical 
information to construct a Nomogram plot. A 
total score for each patient was calculated by 
adding the results for each prognostic criterion. 
Patients with greater overall scores showed 
worse clinical outcomes (Figure 6), with the 
predicted and actual survival rates agreeing 
perfectly. 

Figure 2. DEGs with univariate Cox regression. Identification of prognostic signatures in the training set. A, B. Uni-
variate COX analysis of DEGs. C. Cross-validation for tuning parameter screening in the LASSO regression model. D. 
Coefficient profiles in the LASSO regression model. 
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Figure 3. The log-rank test of KM curves of the selected genes in the risk model in TCGA. 

Functional analyses based on the risk model

We extracted DEGs using the “limma” R tool to 
further investigate subgroup-related pathways 
defined by the risk model. Between the low- 
and high-risk categories in the TCGA cohort, a 
total of 28 DEGs were found (Figure 7A). There 
were 19 up-regulated genes and 9 down-regu-
lated genes among them. We conducted GO 
enrichment and KEGG pathway analyses based 
on differences between high and low risk 
groups (Figure 7B and 7C). The most enriched 
pathways are those associated to iron bioengi-
neering and Alzheimer’s disease. 

Immune cell infiltration, tumor somatic muta-
tion, and tumor microenviro-nment character-
istics of riskscore in TCGA-LGGs cohort 

The difference in somatic mutation distribution 
between the high-risk and low-risk groups 
(Figure 8A and 8B) was displayed using the R 
package “maftools”. The mutation rates were 
comparable across the high-risk (48.82%) and 
low-risk (48.82%) groups (46.06%). The cell 
stromal cell score, immune cell score, and  
composite score were calculated using the 
ESTIMATE method (Figure 9A and 9B), and the 
relative number of 22 immune cell types in 
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Figure 4. Risk score analysis, survival analysis, and prognostic performance of a risk-score model based on differ-
ential expression of iron metabolism-related genes in patients with LGG. Risk score and survival time distributions, 
and heatmaps of gene-expression levels of the iron-metabolism signature in the TCGA (A) and CGGA (B) cohorts.  
KM curves of the risk score model for predicting OS in the TCGA (C) and CGGA (D) cohorts. ROC curves and AUC 
values of the risk score model for predicting the 1-, 3-, and 5-year OS times in the TCGA (E) and CGGA (F) cohorts. 
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Figure 5. Univariate analysis and Multivariate analysis for hazard ratio values of risk score and clinical characters in 
the training set. Confidence interval (A and B). (C) The relationship between prognostic gene expression and clinical 
factors. (D-F) ROC analysis of clinical factors to predict the prognosis of TCGA LGG patients.

each LGGs patient was calculated using the 
CIBERSORT algorithm. A correlation study of 
risk ratings and immune cell infiltration revealed 
that the majority of immune cells were infiltrat-
ed considerably differently across the two  
subtypes (Figure 9C and 9D). Among them, the 
high-risk group had substantially more activat-
ed CD4 memory T cells and M2 type macro-
phages (P<0.05). 

Additionally, to get a better understanding of 
immune cell features and their link to DEGs, we 
analyzed the association between immune cell 
abundance and nine prognostic genes using 
the TIMER database (Figure 10). LGGs were 
shown to be adversely linked with CD8+ T cells 
and neutrophils (P = 0.047 and 0.020, respec-
tively). Gls2 expression was inversely connect-
ed with CD8+ T cells and neutrophils (P = 0.025 
and 0.025, respectively) and positively corre-
lated with B cells (P = 0.013, emC2 [a.k.a. 
TTC35]) had a negative correlation with B cells, 
CD4+ T cells, and neutrophils (P<0.001). (P = 
0.038, 0.006, and 0.027, respectively). 

Discussion

In the current study, three genes were used to 
develop a prognostic model of necrotizing 
apoptosis, and all patients were split into high- 
and low-risk groups. Patients with a high-risk 
score had a worse overall survival rate (OS) 
than those with a low-risk score. The area under 
the curve (AUC) of the receiver operating char-
acteristic (ROC) curve was used to evaluate and 
confirm this feature’s predictive ability. In the 
TCGA and CGGA cohorts, the nomogram plot 
showed a high capacity to predict overall sur-
vival of LGG patients. GSEA analysis revealed 

that the high-risk group enriched for inflamma-
tory responses, tumor-related pathways, and 
pathological processes. Additionally, the high-
risk score was associated with invading 
immune cell expression. 

Previous research has revealed necroptosis-
associated genes as independent prognostic 
markers for a number of tumor types. In this 
work, we examined 21 DEGs linked with necrop-
tosis. After performing Lasso and COX regres-
sion analyses, a predictive model comprised of 
three genes (IDH1, SIRT1, and HAT1) was uti-
lized to categorize LGGs into high-risk and low-
risk categories. Subsequent analysis using KM 
curves, ROC curves, and risk mapping demon-
strated that the risk signature performed well 
in terms of risk groups for the major LGG in  
the TCGA and CGGA datasets. Additionally, we 
developed a predictive Nomogram plot model 
based on genes associated with necroptosis to 
predict OS in LGG patients. The risk score, as 
defined by the WHO, was included into the 
Nomogram plot model. The nomogram plot and 
receiver operating characteristic analyses dem-
onstrate the line graph’s ability to predict OS 
accurately in the TCGA and CGGA cohorts. The 
line plot model may be used to assist in deter-
mining subsequent treatment of patients. 

The IDH2 gene encodes citrate dehydrogenase 
2 [19]. Numerous investigations have shown 
that tumor tissues with changed levels of IDH1 
expression and gene alterations [20, 21]. Over 
60% of IDH1 gene mutations are found in low-
grade gliomas or secondary glioblastomas, as 
well as in primary glioblastomas [22]. Addi- 
tionally, IDH mutations may be present early in 
the illness, since IDH1 mutations have been 
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Figure 6. Prognostic nomogram for the 1-, 3-, and 5-year OS times of LGG patients. (A) Independent risk factors screened by multivariate Cox regression in the TCGA 
cohort were integrated into the nomogram model. (B-D) Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS in the TCGA.  
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reported in some individuals with glioblastoma, 
which often develops from low-grade gliomas 
[15]. LGGs are further characterized in the new 
glioma classification as IDH wild-type or IDH 
mutant. LGGs are further divided into IDH wild 
type or mutant type gliomas, which are further 
classified as oligodendrogliomas with co-dele-
tions of 1p/19q or diffuse astrocytomas with 
intact 1p/19q patterns but enriched in ATRX 
and TP53 mutations [23]. Patients with mutat-
ed IDH1 had significantly longer survival and 
progression-free survival than patients with 
wild-type IDH1 (wild type IDH1) [24]. After cor-
recting for the impact of traditional prognostic 
variables, IDH1 status was the sole meaningful 
prognostic factor. 

SIRT1 is a sirtuin-family histone deacetylase of 
class III. Sirtuins have been implicated in a vari-
ety of processes including genomic stability, 
stress responses, and cancer [17-21]. SIRT1 
enhances the viability of glioma tumor cell lines 
and suppresses apoptosis [22]. In addition, Yu 
et al. showed that SIRT1 may be an initiator of 
glioma genesis via the PTEN/PI3K/AKT signal-
ing pathway [23]. In comparison, the gene for 
which we searched, HAT1, has seldom been 
related to low-grade gliomas in prior research. 
This presents a novel direction for further 
research. In conclusion, we created and vali-
dated a risk score system for prognosis and 
risk stratification using necroptosis-associated 
genes from the TCGA and CGGA datasets. This 

Figure 7. The enriched item in Kyoto Encyclopedia of Genes and Genomes analysis. (A) Different genes Between the 
low- and high-risk categories in the TCGA cohort. (B) The enriched item in gene ontology analysis. (C) The enriched 
item in Kyoto Encyclopedia of Genes and Genomes analysis. 
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Figure 8. The mutation profile in high- and low-risk groups. A. High-risk group. B. Low-risk group. 
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prognostic model demonstrated a high degree 
of predicted accuracy. Our exploratory work 
offers a theoretical foundation for further inves-

tigation into the role of necroptosis genes in 
glioma. There are still caveats due to the fact 
that this study was based on the bioinformatics 

Figure 9. Immune features of risk score. The difference of stromal risk score (A), immune score (B), and estimate 
score (C). Boxplot indicating the levels of immune cell infiltration in high-risk and low-risk LGG patient (D and E). 
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research. The records were from freely avail-
able sources. There is a need for more mecha-
nistic and fundamental experimental research 
to verify our model and strengthen the founda-
tion of our work, and there is also a need for 
further research into the clinical prediction 
capabilities of our model. Finally, necroptosis’s 
significance in gliomas has to be studied in 
more depth. 

Conclusion

Our predictive model based on necroptosis-
related genes in LGG was shown to be effective 
in the diagnosis and prediction of LGG out-
come. In addition, we identified possible tar-
gets related to necroptosis-related genes for 
glioma therapy in this study. 
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