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Abstract: The current standard front-line therapy for patients with diffuse large-B cell lymphoma (DLBCL)—rituximab 
plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)—is found to be ineffective in up to one-
third of them. Thus, their early identification is an important step towards testing alternative treatment options. In 
this retrospective study, we assessed the ability of 18F-FDG PET/CT imaging features (radiomic + PET conventional 
parameters) plus clinical data, alone or in combination with genomic parameters to predict complete response to 
first-line treatment. Imaging features were extracted from images prior treatment. Lesions were segmented as a 
whole to reflect tumor burden. Multivariate logistic regression predictive models for response to first-line treatment 
trained with clinical and imaging features, or with clinical, imaging, and genomic features were developed. For 
imaging feature selection, a manual selection approach or a linear discriminant analysis (LDA) for dimensionality 
reduction were applied. Confusion matrices and performance metrics were obtained to assess model performance. 
Thirty-three patients (median [range] age, 58 [49–69] years) were included, of whom 23 (69.69%) achieved long-
term complete response. Overall, the inclusion of genomic features improved prediction ability. The best perfor-
mance metrics were obtained with the combined model including genomic data and built applying the LDA method 
(AUC of 0.904, and 90% of balanced accuracy). The amplification of BCL6 was found to significantly contribute to 
explain response to first-line treatment in both manual and LDA models. Among imaging features, radiomic features 
reflecting lesion distribution heterogeneity (GLSZM_GrayLevelVariance, Sphericity and GLCM_Correlation) were pre-
dictors of response in manual models. Interestingly, when the dimensionality reduction was applied, the whole set 
of imaging features-mostly composed of radiomic features-significantly contributed to explain response to front-line 
therapy. A nomogram predictive for response to first-line treatment was constructed. In summary, a combination of 
imaging features, clinical variables and genomic data was able to successfully predict complete response to first-
line treatment in DLBCL patients, with the amplification of BCL6 as the genetic marker retaining the highest predic-
tive value. Additionally, a panel of imaging features may provide important information when predicting treatment 
response, with lesion dissemination-related radiomic features deserving especial attention.

Keywords: Diffuse large B-cell lymphoma, PET/CT, complete response, predictive models, imaging features, ra-
diomics, genomic alterations, BCL6 amplification, tumor burden, lesion dissemination

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the 
most common type of non-Hodgkin lymphoma 
(NHL) both in the United States and Western 
countries, accounting for around one-third of 
NHL cases [1, 2]. DLBCL is a highly heteroge-

nous disease at a clinical, pathological, and 
molecular level, showing different survival out-
comes [3]. Despite its aggressive disease 
course, approximately 50% to 70% of patients 
may be cured by current standard front-line 
therapy, an anti-CD-20-based chemoimmuno-
therapy consisting of rituximab plus cyclophos-
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phamide, doxorubicin, vincristine, and predni-
sone (R-CHOP) [4]. However, R-CHOP is found  
to be ineffective in up to one-third of patients, 
due to either primary refractoriness or relapse 
after reaching a complete response [5-7]. Thus, 
early identification of patients with poor prog-
nosis is an important step towards testing alter-
native treatment options.

The International Prognostic Index (IPI), a risk 
stratification system that encompasses five 
factors-age >60 years, elevated serum lactate 
dehydrogenase (LDH), Eastern Cooperative On- 
cology Group (ECOG) performance status ≥2, 
Ann Arbor stage ≥III, and >1 extranodal site-
remains the primary clinical tool for predicting 
outcome and for stratifying patients into clini-
cal trials [8, 9]. This index has been validated 
and refined in the modern rituximab era with 
the revised IPI (R-IPI) and the National Com- 
prehensive Cancer Network IPI (NCCN-IPI), al- 
lowing better discrimination performance [10-
12]. However, all three scoring systems fail to 
identify patients with less than a 50% chance 
of survival, who are usually patients with pri-
mary refractory disease after R-CHOP treat-
ment [9]. Consequently, additional predictors 
are needed to better characterize this high-risk 
group of patients requiring new treatment app- 
roaches.

On the other hand, molecular aberrations in 
tumor cells seem to also retain an important 
prognostic value. Thus, tumors harboring a 
MYC rearrangement concurrent with a rear-
rangement in B-cell lymphoma 2 (BCL2), or 
B-cell lymphoma 6 (BCL6), or both genes (also 
known as “double hit” and “triple hit” lympho-
ma, respectively) are associated with transcrip-
tional dysregulation of MYC and highly aggres-
sive clinical behavior with resistance to stan-
dard chemotherapy and extremely poor out-
come [13-18]. In addition to MYC, BCL2, and 
BCL6 translocations, other less frequent and 
not so well studied mutations may also affect 
these genes in DLBCL, such as copy number 
alterations (CNAs). Although results are contro-
versial, several studies suggest that MYC extra 
copy is an independent poor prognostic factor 
similar to MYC rearrangement [19]. A worse 
prognosis has been also related with increased 
BCL2 copy number [20, 21]. Likewise, patients 
with both MYC and BCL2 CNAs or with concur-
rent translocations and copy number gains in 
MYC, BCL2, and/or BCL6 have been reported 

to show similar outcomes to those with classic 
“double hit” and “triple hit” lymphoma [22, 23].  

At present, positron emission tomography/
computed tomography (PET/CT) with fluorode-
oxyglucose (18F-FDG) is the standard-of-care 
imaging modality for patients with DLBCL. It is 
routinely used for disease staging and treat-
ment response evaluation, allowing personal-
ized therapeutic decision-making [24-27]. The 
standardized uptake value (SUV), a semiquanti-
tative measurement of uptake in tissue at sites 
of disease, is the parameter most frequently 
used in assessment [28]. Along with the total 
metabolic tumor volume (MTV), this semiquan-
titative interpretation method of 18F-FDG PET/
CT has been reported to have important prog-
nostic and predictive roles, and both have been 
associated with survival outcomes in patients 
with DLBCL [29-34]. However, the SUV may be 
easily affected by multiple factors (e.g. blood 
glucose level, body weight, scanning protocol, 
reconstruction parameters, and dose extrava-
sation) and can only provide information on 
tumor glycolysis [35, 36], while MTV values 
vary depending on measurement procedures 
and to date, no standardization exists [37]. 
Additionally, this parameter does not allow to 
assess the heterogeneity of the distribution  
of the lesions, an important factor in DLBCL, 
which often involves multiple disseminated no- 
dal sites possibly associated with extranodal 
sites, sometimes with genetic heterogeneity 
impacting outcome [38]. Consequently, novel 
PET-derived quantitative imaging biomarkers 
are required that may further help to individual-
ize lymphoma treatment.

In this sense, radiomics, a high-throughput 
quantitative imaging analysis method which 
extracts a large number of features from medi-
cal images [39], has emerged as a promising 
discipline. Indeed, high throughput radiomic 
features based on texture analysis allow to 
assess intra-tumoral heterogeneity, a pivotal 
prognostic factor in cancer progression, recur-
rence, and therapeutic resistance [40], impor-
tantly related to patient outcomes, tumor agg- 
ressiveness, metastasis, and molecular pro-
files [41, 42]. Interestingly, and depending on 
how lesion segmentation—a critical step in 
radiomics workflow—is performed, radiomic 
features could potentially reflect lesion hetero-
geneity and distribution, both structural and 
metabolic, an information especially relevant in 
non-solid tumors such as DLBCL. 
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Today, the evidence on the predictive value of 
radiomics in DLBLC is scarce. Some works have 
reported promising results in the prediction of 
treatment and/or survival outcomes based on 
radiomics thanks to machine learning or sta- 
tistical models, often demonstrating better 
results when radiomic features are combined 
with clinical information [43-47]. However, data 
about the potential of radiomics in combination 
with genomic information are lacking. 

The aim of this study was to assess the ability 
of 18F-FDG PET/CT imaging features (radiomic 
features + PET conventional parameters) plus 
clinical data, alone or in combination with ge- 
nomic information, all collected at baseline, to 
predict complete response to first-line treat-
ment in DLBCL patients. This work describes 
the development of two multivariate logistic 
regression predictive models for prognosis 
(model 1: imaging features [radiomic features + 
PET conventional parameters] + clinical data; 
model 2: imaging features + clinical data + 
genomic data) that will be further validated in 
future studies. 

Methods

Study design and patient population

This was a retrospective single-center observa-
tional study in accordance with the Declaration 
of Helsinki and approved by the local ethics 
committee. No written informed consent from 
patients was required. 

The Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) statement was followed for 
this work. 

Patients with newly diagnosed DLBCL between 
January 1st, 2015, and July 31st, 2018 at the 
University Clinic Hospital of Valencia were retro-
spectively reviewed. The inclusion criteria were: 
1) a diagnosis of aggressive non-Hodgkin lym-
phoma according to the WHO 2016 [48] includ-
ing diffuse large B-cell lymphoma and primary 
mediastinal B-cell lymphoma confirmed by tis-
sue biopsy; 2) available genomic status of MYC 
(8q24.1), BCL2 (18q21), and BCL6 (3q27) by 
FISH on diagnostic biopsy; 3) a 18F-FDG PET/CT 
scan before treatment; 4) an interval between 
the PET/CT scan and biopsy of less than 1 
month and 5) receiving a first-line chemoimmu-

notherapy (CHOP-R, CHOP-R-like or R-CODOX-
M/R-IVAC-based immunochemotherapy) accor- 
ding to standard clinical guidelines [49, 50]. 
Patients were excluded if they were lost to fol-
low-up, had incomplete clinical or immunohisto-
chemical data, or had a prior history of solid 
cancer or any other therapy-related malignancy 
diagnosed during follow-up.

Clinicopathological data, therapeutic response 
evaluation and follow-up

Clinical, demographic, and pathological infor-
mation, Lugano stage, R-IPI stage and histologi-
cal subtypes were collected from hospital med-
ical records and histologic reports. A complete 
response (CR) was defined according to Cheson 
criteria [25] as complete disappearance of all 
detectable clinical evidence of disease and 
disease-related symptoms if present before 
therapy, a score of 1–3 with or without a resid-
ual mass based on the Deauville 5-point scale 
[51, 52] and no evidence of FDG-avid or mor-
phological disease in bone marrow. Long-term 
CR was defined as CR longer than 3 years. After 
achieving complete metabolic response, clini-
cal follow-up with clinical history, physical ex- 
amination, and laboratory work-up was per-
formed every 3 to 4 months for the first 2  
years and every 6 months for the following 3 
years. From this point onwards, an annual clini-
cal follow-up was performed to assess poten-
tial late toxicity and development of second 
neoplasms.

Genomic alterations

Translocation, amplification or deletion events 
in MYC (8q24.1), BCL2 (18q21), and BCL6 
(3q27) were determined by FISH break-apart 
probes (MetaSystems) on Formalin-Fixed Pa- 
raffin-Embedded Tissue (FFPE) sections. Brie- 
fly, FFPE slides were deparaffinized and then 
pretreated using Tissue FISH Pretreatment Kit 
(MetaSystems) following the manufacturer’s 
instructions. Then, 10 µl of probe were added 
on the samples and the slides were covered 
with 22 × 22 mm2 coverslips. Samples were 
subjected to denaturation (80°C 5 min) and 
hybridization (37°C overnight) in a program- 
mable hybridizer. Following hybridization, co- 
verslips were removed and the slides were 
washed in 0.4 × SSC/0.3% NP-40 at 72°C for 2 
min and then placed into room temperature 2 × 
SSC/0.1% NP-40 for 30 sec. A total of 10 µl of 
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the MetaSystems DAPI/antifade were applied 
and the slides were overlayed with a 24 × 60 
mm2 coverslip. The samples were analyzed by  
a specialist under a fluorescence microscopy. 
The pictures were captured using imaging soft-
ware Ikaros (MetaSystems).

18F-FDG PET/CT image acquisition

18F-FDG PET/CT was routinely performed for 
staging purpose at diagnosis and at one 
months after therapy as per standard protocol. 
Serum glucose levels of all patients were con-
firmed to be less than 150 mg/dL after fasting 
for at least 6 hours. 18F-FDG PET/CT scans were 
performed with a 16-row hybrid PET/CT scan-
ner (Discovery IQ Gen 2, GE Healthcare, Mil- 
waukee, Wisconsin, USA). The Body Mass Index 
(BMI) was calculated for each patient and mul-
tiplicated by 0.3 to obtain the total amount  
(± 10%) of activity in miliCuries (mCi) of 18F-
FDG. The dose was injected intravenously 
50–80 minutes before PET/CT scanning. All 
patients were scanned in the supine position 
with arms elevated above the head. For each 
patient, an unenhanced CT was performed for 
anatomic information and attenuation correc-
tion (CT scanning parameters: 80 mA, 120 kVp, 
pixel spacing of 1.367 mm, slice thickness and 
spacing between slices of 2.5 mm, and a pitch 
of 1.375). CT images were reconstructed to a 
512 × 512 matrix. A three-dimensional (3D) 
PET scan of the same region was subsequent- 
ly obtained without any change in position. 
Emission data were acquired for 130 seconds 
per bed position, and a total of 4–8 bed posi-
tions were performed. PET images were recon-
structed in a 192 × 192 matrix and a Bayesian 
penalized likelihood (BPL) iterative PET recon-
struction with a penalization factor or β-value 
of q350 [53-55].

Image processing and standard imaging bio-
markers

All PET/CT images were reviewed by a radiolo-
gist and a nuclear medicine physician, both 
with more than 15 years of experience. The 
PET/CT images were transferred to the Quibim 
Precisionv2.8 platform (Quibim SL, Valencia, 
Spain) for reading performance and lesion  
segmentation. Considering the advanced Ann 
Arbor stage of the majority of the patients 
(Table 1), indicating a high spread of the dis-
ease, for each patient, all lesions were mea-

sured as a whole, thus trying to reflect their 
tumor burden. The measurement of conven-
tional PET parameters (SUV statistics, MTV, 
total lesion glycolysis [TLG]) and radiomic fea-
tures was subsequently performed. Physiolo- 
gical uptakes in organs and tissues like bowel, 
bladder, brain, injection site were manually 
removed. In the lesion’s volumetry analysis, 
MTV and TLG were calculated. The SUVmax and 
MTV were automatically generated by the 
Quibim platform after enclosing each lesion in 
a cropping sphere. MTV was defined as the vol-
ume of voxels with SUVs higher than the thre- 
shold of 41% × SUVmax [56].

Clinical and genomic features

The following clinical data were collected: sex, 
age, B symptoms, bulky disease, R-IPI, extra 
nodal sites, number of extranodal sites, LDH, 
Ann Arbor stage, human immunodeficiency 
virus (HIV) status and Easter Cooperative 
Oncology Group (ECOG). Age, extranodal sites, 
number of extranodal sites, LDH, Ann Arbor 
stage, and ECOG performance status were 
excluded from analyses because they provide 
redundant information already contained in 
R-IPI stage. Genomic features included MYC/ 
8q24 rearrangement, MYC/8q24 amplificati- 
on, BCL2/18q21 rearrangement, BCL2/18q21 
amplification, BCL6/3q27 rearrangement and 
BCL6/3q27 amplification.

Radiomics analysis

The radiomics features were obtained by the 
Texture Analysis plug-in available in Quibim 
Precision platform. For the extraction of ra- 
diomics features, first order histogram descrip-
tors (skewness, kurtosis, entropy, volume, and 
max-diameter), as well as second order fea-
tures were extracted after computing the Gray-
Level Co-occurrence Matrix (GLCM), Gray-Level 
Run Length Matrix (GLRLM), Gray-Level Size 
Zone Matrix (GLSZM), and the Neighboring 
Gray-Tone Difference Matrix (NGTDM). Radio- 
mic features calculated by this module com- 
ply with the Image Biomarker Standardization 
Initiative (IBSI) [57]. 

The Z-score of all imaging features was calcu-
lated, and a multivariate analysis was per-
formed after calculating the intra-class corre- 
lation coefficients (ICC) to reduce redundant 
variables.
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Table 1. Patient baseline characteristics and response to treatment
Characteristics, n (%) N = 33 Median [IQR] time (months)
Diagnosis according to the WHO classification [48]
    GCB DLBCL 13 (39.39)
    Non-GCB 7 (21.21)
    High-grade BCL, NOS 5 (15.15)
    T-cell rich large BCL 3 (9.09)
    Primary mediastinal large BCL 2 (6.06)
    Burkitt lymphoma 2 (6.06)
    High-grade BCL, with MYC and BCL2 and/or BCL6 translocations 1 (2.4)
B symptoms 22 (66.66)
LDH > ULN* 22 (66.66)
ECOG performance status >1 5 (15.15)
Bulky disease 14 (42.42)
Ann Arbor stage
    I 3 (9.09)
    II 7 (21.21)
    III 6 (18.18)
    IV 17 (51.52)
Extranodal involvement > one site 10 (30.3)
HIV+ 2 (6.06)
R-IPI risk
    Very good 14 (42.42)
    Good 16 (48.48)
    Poor 3 (9.09)
Front-line treatment
    Group 1
        R-CHOP or R-CHOP-like regimen 23 (68.43)
    Group 2
        High doses of chemotherapy 10 (29.04)
Lines of treatment
    1 22 (66.66)
    2 6 (18.18)
    >3 5 (15.15)
Autologous stem cell transplant 7 (21.21)
CAR T-cell therapy 2 (6.06)
Response to treatment
    Long-term complete response 23 (69.69) 72 [52–87]
    Late relapse 3 (11.54)** 69 [53–70]
    Partial response 2 (6.06) 40 [13–67]
    Stable or refractory disease 5 (15.15) 13 [0–82]
*UNL = 480 IU/L. **This percentage is out of the total number of patients who presented complete response at the end of 
treatment (n = 26). CAR-T, Chimeric Antigen Receptor; CBL, B-Cell Lymphoma; ECOG, Easter Cooperative Oncology Group; DL-
CBL, Diffuse Large B-Cell Lymphoma; GCB, Germinal Center B-Cell-Like; HIV, Human Immunodeficiency Virus; IQR, Interquartile 
Range; LDH, Lactate Dehydrogenase; NOS, Not Otherwise Specified; R-CHOP, Rituximab Plus Cyclophosphamide, Doxorubicin, 
Vincristine, and Prednisone; R-IPI, Revised International Prognostic Index; ULN, Upper Limit of Normal; WHO, World Health 
Organization. 

Outcome and predictors

Multivariate logistic regression predictive mod-
els for response to first-line treatment trained 

with clinical and imaging features (radiomic fea-
tures + PET conventional parameters), or with 
clinical, imaging, and genomic features were 
developed. All clinical and genomic variables 
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were included as possible predictors unless 
they provided redundant information as ex- 
plained, and/or contained missing values and 
were, therefore, highly unbalanced in the study 
population. For the selection of imaging fea-
tures, two different approaches were followed: 

• Manual variable selection: the most relevant 
features according to Mann Whitney Wilcoxon 
and simple logistic regression test results, and 
according to visual exploration in univariate 
analyses were selected.

• Supervised dimensionality reduction throu- 
gh linear discriminant analysis (LDA): a linear 
classifier generated by fitting the conditional 
densities of the data, as well as Bayes’ rule 
were used to reduce the input dimensionality 
towards the most discriminative direction de- 
pending on the evaluated response variable 
(response to first-line treatment).  

Statistical analysis

All statistical analyses were performed with 
Python v.3.8.12, R v.4.2.0 and RStudio. A uni-
variate analysis was conducted for an initial 
evaluation of the data. This assessment includ-
ed chi-squared, Fisher and Cramer’s V tests for 
clinical and genomic variables. The correlation 
of imaging features was analyzed through the 
Spearman test. Differences between respond-
ers and non-responders were evaluated with 
the Mann Whitney Wilcoxon test and the asso-
ciation of these variables with response to first-
line treatment was calculated with a simple 
logistic regression. 

To evaluate predictive model performance dif-
ferent metrics were calculated: area under the 
curve (AUC), sensitivity, specificity, balanced 
accuracy, accuracy, and confusion matrix. Mo- 
dels were compared by performing a DeLong 
test. 

A nomogram for prediction of response to first-
line treatment (binary outcome) was construct-
ed based upon the multivariate regression 
model using the statistically significant vari-
ables. Thus, the underlying logistic model is 
given by the equation:
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Beta coefficients were estimated for each 
covariate and converted to odds ratios as a 
measure of effect. To obtain the predicted 
probability of the event (response to first-line 
treatment), the above equation was calculated 
using patient’s individual characteristics and 
the beta coefficients derived from the model.

A P-value less than 0.05 was considered statis-
tically significant.

Results

Demographic, and clinical characteristics of 
patients

A total of 33 patients were eligible and included 
in the study. Of them, 17 (51.52%) were men 
and 16 women (48.48%), and their median 
[interquartile range] age at diagnosis was 58 
[49–69] years. 

Clinical characteristics are summarized in 
Table 1. The majority of patients were diag-
nosed with germinal center B-cell-like (GCB) 
DLBCL (n = 13, 39.39%) and had B symptoms 
(n = 22, 66.66%). Most patients were in 
advanced Ann Arbor stage IV (n = 17, 51.52%) 
and 10 (30.3%) had more than one extranodal 
disease site involvement. According to the R-IPI 
score, 14 (42.42%) patients were classified as 
“very good” risk group, 16 (48.48%) as “good” 
and 3 (9.09%) as “poor”. R-CHOP or R-CHOP-
like regimens were the most frequently admin-
istered front-line therapies (n = 21, 63.63%). 
Most patients only received first-line therapy  
(n = 23, 68.43%). 

Median [interquartile range] follow-up of the 
alive patients was 63, 5 [52–82] months. At the 
last follow-up, 23 (69.69%) patients achieved 
long-term complete response (Table 1).

Analysis of clinical, imaging and genomic vari-
ables

Firstly, categorical variables were analyzed. The 
distribution of clinical and genomic variables 
according to the presence or absence of com-
plete response, is shown in Table S1. Notably, 
only MYC/8q24 rearrangement was markedly 
unbalanced. Indeed, when the association for 
all categorical variables was measured, that 
variable resulted highly unstable, and was con-
sequently discarded in subsequent analyses 
(Figure S1). For the remaining variables, only 
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statistically significant differences were ob- 
served in BCL6/3q27 amplification (P = 0.049) 
and BCL2/18q21 amplification (P = 0.05) 
(Table S1). Notably, these two genomic featur- 
es showed moderate association with respon- 
se to treatment (0.25 and 0.45, respectively; 
Figure S1).

A total of 108 imaging features at diagnosis 
were analyzed (105 radiomic variables + three 
PET conventional parameters [SUVmax, MTV and 
TLG]). The most representative ones corre-
sponded to radiomic features and are graphi-
cally presented in Figure 1. The analysis re- 
vealed significant differences especially in vari-

ables related with shape and size, such as 
sphericity (P = 0.024) and major axis length  
(P = 0.033). 

Model development

All clinical variables were included in the predic-
tive models. For models including genomic vari-
ables, all of them, except for MYC/8q24 rear-
rangement were considered. As detailed in the 
Methods section, for the selection of imaging 
variables, an additional simple logistic regres-
sion to measure their association with response 
to treatment was performed. Variables showing 
remarkable differences between responders 

Figure 1. Box plot graphic representation of ra-
diomic features with the lowest p-values in Mann 
Whitney test analysis, including those <0.05.  



Predictive value of genetic and imaging features in diffuse large B cell lymphoma

516	 Am J Cancer Res 2023;13(2):509-525

and non-responders (even not statistically sig-
nificant) as previously described, as well as 
those that were able to explain at least 5% 
response to treatment according to their pseu-
do R2 values were finally considered for predic-
tive models. All of them were radiomic features 
(Table 2). 

To train the models developed based on the 
data from the 33 participants included in the 
study, the following steps were followed:

1) Elimination of multicollinearity.

2) Creation of a first logistic regression to iden-
tify possible influential records and subse-
quently remove them from the model by the 
residual analysis of the fit.

3) Feature selection by minimizing prediction 
error (Akaike information criterion [AIC]) with 
the stepwise method.

4) Selection and evaluation of the final model:

- Hosmer-Lemeshow test to assess the good-
ness of fit.

- Durbin Watson test to measure residual 
independence.

- Obtention of an optimal classification thres- 
hold.

- Calculation of performance metrics.

Model specification and performance

Predictive model including clinical and imaging 
features: Table S2 summarizes main perfor-
mance metrics of the clinical + imaging predic-
tive model built by either applying a manual 
variable selection process or by applying the 
LDA reduction method. Overall, metrics were 
better for the LDA model, which also showed a 
lower prediction error (AIC = 27.309). As ob- 
served in Table 3, two radiomic features, GL- 
SZM_GrayLevelVariance and Sphericity, con-
tributed to explain response to first-line treat-
ment in the manual model (P = 0.048, and P = 
0.027, respectively), while in the LDA model, 
statistical significance was reached by a vari-
able (named as LDA) resulting from the dimen-
sional reduction of all imaging features (P = 
0.034). Confusion matrices are shown in Figure 
2A.

Predictive model including clinical, imaging, 
and genomic features: As observed in Table S3, 
both manual and LDA models trained with clini-

Table 2. Radiomic features finally included in predictive models

Variable Feature type Mann Whitney Wilcoxon
P-value

Logistic regression
Pseudo R2

Elongation Shape 0.063 0.115
Flatness Shape 0.033 0.166
MajorAxisLength Shape 0.022 0.116
Maximum2DDiameterRow Shape 0.063 0.103
Maximum2DDiameterSlice Shape 0.104 0.034
MinorAxisLength Shape 0.122 0.083
Sphericity Shape 0.024 0.140
SurfaceVolumeRatio Shape 0.142 0.018
Maximum First order 0.027 0.171
Correlation GLCM 0.164 0.040
LongRunLowGrayLevelEmphasis GLRLM 0.337 0.087
RunVariance GLRLM 0.281 0.057
GrayLevelVariance GLSZM 0.052 0.127
HighGrayLevelZoneEmphasis GLSZM 0.203 0.069
LowGrayLevelZoneEmphasis GLSZM 0.337 0.075
SizeZoneNonUniformityNormalized GLSZM 0.048 0.119
LargeDependenceLowGrayLevelEmphasis GLSZM 0.400 0.085
GLCM, Gray-Level Co-occurrence Matrix; GLDM, Gray-Level Dependence Matrix; GLRLM, Gray-Level Run Length Matrix; GLSZM, 
Gray-Level Size Zone Matrix.
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cal, imaging, and genomic features were able  
to predict response with a balanced accuracy 
superior to 80%, although metrics for the LDA 
model were generally better, achieving a 90% 

balanced accuracy, a sensitivity of 100% and a 
specificity of 80% with a lower prediction error 
(AIC = 27.451). Table 4 summarizes the main 
characteristics of both models. In both of them, 

Table 3. Main characteristics of predictive models trained with clinical and radiomic variables and 
built with manual variable selection or by applying the linear discriminant analysis reduction method

Variable
Predictive model (Manual selection) Predictive model (LDA)

OR 95% CI P-value OR 95% CI P-value
Intercept 2.29 0.51–13.2 0.074 3.45 0.87–26.58 0.136
B symptoms 13.33 1.08–507.76 0.085 - - -
GLSZM_GrayLevelVariance 0.23 0.037–1.26 0.048 - - -
Maximum2DDiameterSlice 4.61 0.93–52.98 0.121 - - -
Sphericity 14.74 2.16–301.87 0.027 - - -
Bulky - - - 6.52 0.65–164.02 0.151
LDA - - - 10.69 2.23–223.63 0.034
Validation
    Hosmer-Lemeshow test (P-value) - - 0.839 - - 0.957
    Durbin Watson test (P-value) - - 0.838 - - 0.802
    Classification threshold - - 0.529 - - 0.426
CI, Confidence Interval; GLSMZ: Gray-Level Size Zone Matrix; LDA, Linear Discriminant Analysis; OR, Odds Ratio. Bold statisti-
cally significant results.

Figure 2. Confusion matrices for manual selection and LDA predictive models trained with clinical and radiomic 
variables (A) or with clinical, radiomic and genomic variables (B). FN, False Negative; FP, False Positive; LDA, Linear 
Discriminant Analysis; TN, True Negative; TP, True Positive.
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BCL6 amplification significantly contributed to 
explain response to first-line treatment, indicat-
ing that patients harboring that mutation are 
less likely to respond. Additionally, imaging vari-
ables also retained prediction ability, with a sta-
tistically significant contribution of the radio- 
mic GLCM_Correlation variable in the manual 
model (P = 0.05), and of the LDA variable in the 
LDA model; a variable resulting from the di- 
mensional reduction of all imaging features (P 
= 0.008). Overall, classification was good with 
both models (Figure 2B).

Table 5 summarizes the performance metrics 
for all the models developed, as well as the 
comparisons between them. Overall, for both 
the models trained without genomic features 

and for those including them, the LDA dimen-
sionality reduction approach led to better met-
rics, with higher AUC and accuracy values, 
although no statistical differences were found 
between them. Importantly, the inclusion of 
genomic features clearly improved the predic-
tive ability of the models, being the LDA model 
trained with clinical, imaging and genomic fea-
tures, the one yielding the highest performance 
metrics, with an AUC of 0.904, a balanced 
accuracy of 90%, a sensitivity of 100% and a 
specificity of 80%. A nomogram utilizing the 
BCL6 amplification and LDA variable results in 
the prediction of treatment response was cre-
ated, with BCL6 amplification and LDA variable 
as additive cofactors and their contribution to 
the prediction based upon the coefficients of 

Table 4. Main characteristics of predictive models trained with clinical, radiomic and genomic vari-
ables and built with manual variable selection or by applying the linear discriminant analysis reduc-
tion method

Variable
Predictive model (Manual selection) Predictive model (LDA)

OR 95% CI P-value OR 95% CI P-value
Intercept 5.75 1.92–23.10 0.005 12.02 2.61–121.51 0.008
BCL6 amplification 0.06 0.0033–0.46 0.018 0.08 0.0042–0.73 0.045
GLCM_Correlation 0.34 0.094–0.88 0.05 - - -
LDA - - - 0.21 -0.046–0.53 0.008
Validation
    Hosmer-Lemeshow test (P-value) - - 0.773 - - 0.253
    Durbin Watson test (P-value) - - 0.244 - - 0.150
    Classification threshold - - 0.424 - - 0.424
CI, Confidence Interval; GLCM: Gray-Level Co-occurrence Matrix; LDA, Linear Discriminant Analysis; OR, Odds Ratio. Bold statis-
tically significant results.

Table 5. Summary of performance metrics for all the predictive models and comparisons between 
models

Metrics

Manual selection LDA

P-value*
Model 1

(clinical + 
radiomic 
features)

Model 2
(clinical + ra-

diomic + genomic 
features)

Model 1
(clinical + radiomic 

features)

Model 2
(clinical + radiomic 
+ genomic features)

AIC 35.697 27.309 34.816 27.451
AUC 0.598 0.757 0.891 0.904
Sensitivity 69.6% 95.2% 91.3% 100.0%
Specificity 50.0% 50% 70.0% 80.0%
Balanced accuracy 59.8% 72.6% 80.7% 90.0%
Accuracy 63.6% 80.6% 84.9% 93.9%
Comparisons 
    Manual selection vs LDA (model 1) 0.6344
    Manual selection vs LDA (model 2) 0.2242
    Model 1 vs Model 2 (manual selection) 0.2815
    Model 1 vs Model 2 (LDA) 0.8305
*DeLong test of ROC curve of models. AIC, Akaike Information Criterion; AUC, Area Under the Curve; LDA, Linear Discriminant Analysis.
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the logistic regression model developed follow-
ing the LDA approach (Figure 3). 

Discussion

After treatment onset, 10%–15% of DLBCL pa- 
tients have primary refractory disease within 3 
months, and early relapse occurs in a further 
20%–35% of them [58], even if they achieved 
complete response after first-line immunoche-
motherapy [59]. It is therefore necessary to 
early identify patients who are unlikely to be 
cured with the standard front-line therapy, so 
that they could benefit from alternative the- 
rapeutic approaches. Several clinical risk index-
es built with clinical and biological variables 
have been proposed to identify those refracto-
ry patients, but neither of them fully the identi-
fication of this high-risk group. In this study, we 
demonstrated that a combined model including 
clinical, imaging, and genomic features was 
able to successfully predict response to first-
line treatment, retaining a higher predictive 
ability than a model trained only with clinical 
and imaging variables. 

Gene rearrangements involving MYC, BCL2 
and/or BCL6 are common in DLBCL patients, 
observed in 8%–14%, about 20% and up to 
30% of the cases, respectively [48]. Important- 
ly, they have been identified as poor prognostic 

ed its predictive value in terms of survival and 
disease progression. Thus, when treated with 
standard chemotherapy, patients with copy 
number gains had a significantly worse overall 
survival (OS) and recurrence free survival (RFS) 
compared with all other patients (double or tri-
ple hit DLBCL or patients with no significant 
alterations). In agreement with this study, our 
results highlight that the presence of a BCL6 
amplification is associated with an absence of 
response to front-line therapy in DLBCL pa- 
tients. The robustness of this result is support-
ed, not only by its statistical significance, but 
also by its relevance when the patient popula-
tion is analyzed in detail. Thus, in our cohort 
less than a half of the patients (n = 11/33, 
33%) had BCL6 amplification, of whom only five 
(15.15%) responded to treatment. Among th- 
ose five patients, in two of them BCL6 amplifi-
cation was the only genomic alteration detect-
ed. Overall, this stresses the potent contribu-
tion of this amplification to the predictive model 
despite the relative low presence of patients 
harboring this mutation in the study population. 
This is also in agreement with the study by 
Willenbacher et al. [64], in which patients with 
copy number gains accounted for 10% of the 
total, 25% of which presented BCL6 ampli- 
fication.

Figure 3. Nomogram for response to first-line treatment in diffuse large B-cell 
lymphoma (DLBCL) based on BCL6 amplification and LDA variable results 
provided by the model combining imaging, clinical and genomic features and 
developed following the LDA approach. As an example, a patient with no am-
plification in BCL6 will receive a score of 30; if their LDA variable result is 0.5, 
this will produce a score of approximately 45, resulting in a total score of 75. 
On the lower 2 panels, a total of 75 points is estimated to give rise to around 
85% probability of response to first-line treatment. Note on the nomogram, 
BCL6 amplification 1 corresponds to presence of this mutation and BCL6 
amplification 0 corresponds to amplification of this gene not detected.

factors in the disease, espe-
cially for MYC when occurring 
in combination with BCL2 
and/or BCL6 [15-17, 60-62]. 
In a similar way, although still 
controversial, some studies 
suggest that the amplification 
of at least MYC and BCL2, 
could also predict poor prog-
nosis in DLBCL [21, 22, 63]. 
Interestingly, in our series, 
and regardless of the app- 
roach followed to build the 
model, we have identified the 
amplification of BCL6 gene as 
one of the main features help-
ing to predict response to 
first-line treatment. To date, 
the available evidence about 
the impact of this genomic 
alteration on patient’s outco- 
mes is scarce [19, 63, 64]; 
only one study by Willenbach- 
er et al. [64] has demonstrat-
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Radiomics is a quantitative approach experi-
encing a rapid growth in the last decade, and 
whose potential in diagnosis and treatment 
outcome prediction in oncology is unquestion-
able [65]. This is supported by several studies 
in which radiomic-based models allow predic-
tion of different clinical outcomes (e.g., OS, 
progression-free survival [PFS], and recurren- 
ce) in various cancer types [65]. Specifically in 
DLBCL, several studies have demonstrated the 
predictive value of radiomics. Thus, a prelimi-
nary work carried out by our group [66] already 
evidenced how the addition of radiomics fea-
tures to a predictive model based on the con-
ventional IPI evaluation of patients, significantly 
increased the performance to identify patients 
requiring more than one treatment lines or like-
ly to respond to treatment. Other authors have 
also assessed the performance of radiomics 
for predicting response, evidencing that tu- 
mor textural heterogeneity is associated with 
treatment failure [47, 67]. Here, we have con-
firmed the predictive value of radiomics throu- 
gh conventional pre-treatment 18F-FDG PET/CT 
scans; the standard of care imaging modality 
for DLBCL patients [24-27]. Regardless of the 
approach followed, among imaging features, 
only radiomic variables significantly contribut-
ed to explain treatment response even more 
than clinical variables, which were not even 
included in the models as important predic- 
tive factors when genomic characteristics were 
considered. Additionally, conventional PET pa- 
rameters did not retain any predictive value, 
and no differences were found between res- 
ponders and non-responders in the exploratory 
analysis either. When applying the manual va- 
riable selection method, shape- and heteroge-
neity-related radiomic features, GLSZM_Gray- 
LevelVariance and Sphericity (in the clinical + 
imaging model) and GLCM_Correlation (in the 
clinical + imaging + genomic model), resulted 
statistically significant, in line with previous 
reports. However, according to the lesion seg-
mentation and assessment process followed  
in this study, reflecting tumor burden instead  
of individual lesions, these results would be 
indicative of lesion dissemination rather than 
of tumor heterogeneity. Thus, lower values of 
GLSZM_GrayLevelVariance and a higher sphe-
ricity in the group of responders, as observed in 
our cohort, would suggest both a lower lesion 
distribution and a lower metabolic heterogene-
ity within lesions, with a more homogeneous 

radiotracer uptake, which would consequently 
favor response to treatment. Indeed, the dis-
tance between the two lesions that are the fur-
thest apart (Dmax), a simple imaging feature 
measured from FDG PET scans that reflects 
lesions dissemination has been recently intro-
duced in DLBCL patients [44]. Hence, large 
lesion dissemination measured with this pa- 
rameter has been found to be a strong prog-
nostic factor for shorter PFS and OS in DLBCL 
patients, stressing the importance of capturing 
lymphoma extension. Here, we provide evi-
dence on radiomic features as potential imag-
ing biomarkers to measure lesion dissemina-
tion, and subsequently to predict treatment 
response. In addition, our results demonstrate 
that the potential of radiomics is far beyond the 
predictive value of some specific features. As 
observed, by applying a dimensionality reduc-
tion approach, we found that the resulting vari-
able (referred as LDA), reflecting the whole set 
of imaging variables analyzed, mainly com-
posed of radiomic features, significantly con-
tributed to explain treatment response, both in 
the model excluding and including genomic fea-
tures, and in both cases showing better perfor-
mance metrics than the manual models. This 
strongly suggests that a panel of imaging fea-
tures and especially of radiomic features, could 
potentially serve to guide therapeutic strategy 
in the future. 

Importantly, our study stresses the relevance 
of genomic features when predicting treatment 
response. Thus, the highest AUC, balanced ac- 
curacy, sensitivity, and specificity (0.904, 90%, 
100% and 80%, respectively) was achieved 
when these variables were combined together 
with clinical and imaging features in a LDA 
model. We believe that the lack of statistical 
significance when model comparisons were 
performed may be due to the limited size of our 
study population. However, it is important to 
note that these comparisons only take AUC val-
ues into account, and that overall, performance 
metrics, as explained, were superior for LDA-
based models. To date, only one congress 
abstract published in 2021 has assessed the 
utility of 18F-FDG PET/CT radiomics features in 
combination with genomic data in identifying 
DLBCL patients at high risk for relapse [68]. 
The authors concluded that the positive predic-
tive value increased when radiomics features 
were added to the clinical and genetic parame-
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ters. The optimal combined model included 
MYC status, WHO performance status, LDH, 
and different conventional PET features includ-
ing Dmax. It is worth mentioning that PET con-
ventional parameters and dissemination vari-
ables were considered as radiomic features in 
this study, not matching the concept as defined 
by Pyradiomics website [69] and widely used in 
the literature. Additionally, gene amplifications 
were not quantified. Although methodological 
differences impede us to make comparisons, 
the results of this study clearly strengthen the 
notion of combined models as powerful tools to 
predict treatment response, again highlighting 
the importance of lesion dissemination. 

Finally, we were able to construct a nomogram 
that, by the combination of BCL6 amplification 
and LDA variable as additive cofactors, was 
able to successfully predict the probability of 
response to first-line treatment. Despite its 
good results and promising application, further 
testing along with the general model validation 
is required and will be performed in future 
studies. 

However, this study has also some limitations. 
Firstly, it was a single-center study with limited 
number of patients included and its appli- 
cation to data/patients from larger series in 
other institutions should be further explored. 
Secondly, given the unbalance of the dataset in 
terms of MYC rearrangements, it was impossi-
ble to include this relevant genomic feature in 
DLBCL in the analysis. Thirdly, regarding predic-
tive models, it is important to note that all met-
rics provided correspond to training metrics, as 
the adjusted models were developed including 
all available data given the limited cohort size. 
Consequently, our results must be interpreted 
cautiously; the predictive ability of our models 
with new datasets will need to be further vali-
dated. Finally, we are aware that the presence 
of different treatments and disease subtypes 
may be affecting the outcomes. Regrettably, 
because of the small sample size, we were 
unable to run independent analyses for each  
of the different subtypes. We will address all 
these limitations in future studies. 

In conclusion, our study demonstrates that a 
combination of clinical, imaging and genomic 
features enables to successfully predict res- 
ponse to first-line therapy in DLBCL patients, 
with the amplification of BCL6 as the genetic 

marker retaining the highest predictive value. 
Additionally, a panel of imaging features, and in 
particular of radiomic data, extracted from a 
routinely PET/CT scan at baseline may provide 
important information when predicting treat-
ment response, with lesion dissemination-rela- 
ted radiomic features deserving especial atten-
tion. This consideration might be particularly 
interesting for those hospitals and health cen-
ters where costs may limit genetic assess-
ments. In summary, the combination of molec-
ular and imaging characteristics at diagnosis 
could lead to a more accurate selection of 
patients, to increase tailor therapy. A nomo-
gram could be helpful in the identification of 
high-risk patients for new therapeutic app- 
roaches.
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Table S1. Clinical and genomic variables according to response to treatment

Variables Responders
(n = 23)

Non-responders
(n = 10)

Total
(N = 33) P-value

Clinical features, n (%)
    Sex
        Male 12 (52.17) 5 (50) 17 (51.52) 1.0
        Female 11 (47.82) 5 (50) 16 (48.48)
    B symptoms
        Yes 11 (47.82) 5 (50) 16 (48.48) 1.0
        No 12 (52.17) 5 (50) 17 (51.52)
    Bulky disease
        Yes 12 (52.17) 7 (70) 19 (57.58) 0.497
        No 11 (47.82) 3 (30) 14 (42.42)
    R-IPI
        Very good 7 (30.43) 7 (70) 14 (42.42) 0.086
        Good 13 (56.52) 3 (30) 16 (48.48)
        Poor 3 (13.04) 0 (0) 3 (9.09)
Genomic features, n (%)
    MYC/8q24 rearrangement
        Yes 2 (8.70) 0 (0) 2 (6.06) -
        No 21 (91.30) 10 (100) 31 (93.94)
    MYC/8q24 amplification
        Yes 5 (21.74) 4 (40) 9 (27.27) 0.400
        No 18 (78.26) 6 (60) 24 (72.73)
    BCL6/3q27 rearrangement
        Yes 5 (21.74) 3 (30) 8 (24.24) 0.673
        No 18 (78.26) 7 (70) 25 (75.76)
    BCL6/3q27 amplification
        Yes 5 (21.74) 6 (60) 11 (33.33) 0.049
        No 18 (78.26) 4 (40) 22 (67.67)
    BCL2/18q21 rearrangement
        Yes 7 (30.43) 0 (0) 7 (21.21) 0.073
        No 16 (69.57) 10 (100) 26 (78.79)
    BCL2/18q21 amplification
        Yes 5 (21.74) 8 (80) 13 (39.39) 0.005
        No 18 (78.26) 2 (20) 20 (60.61)
R-IPI, Revised International Prognostic Index.
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Table S2. Predictive models trained with clinical and radiomic variables and built with manual vari-
able selection or by applying the linear discriminant analysis reduction method

Metrics
Predictive models (Logistic regression)

Manual selection LDA
AIC 35.697 27.309
AUC 0.598 0.891
Sensitivity 69.6% 91.3%
Specificity 50.0% 70.0%
Balanced accuracy 59.8% 80.7%
Accuracy 63.6% 84.9%
AIC, Akaike Information Criterion; AUC, Area Under the Curve; LDA, Linear Discriminant Analysis.

Table S3. Predictive models trained with clinical, radiomic and genomic variables and built with 
manual variable selection or by applying the linear discriminant analysis reduction method

Metrics
Predictive models (Logistic regression)

Manual selection LDA
AIC 34.816 27.451
AUC 0.757 0.904
Sensitivity 95.2% 100%
Specificity 50% 80%
Balanced accuracy 72.6% 90%
Accuracy 80.6% 93.9%
AIC, Akaike Information Criterion; AUC, Area Under the Curve; LDA, Linear Discriminant Analysis.

Figure S1. Association between clinical and genomic variables through Cramer’s V test. R-IPI, Revised International 
Prognostic Index.


