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Abstract: Patients with triple-negative breast cancer (TNBC) reportedly benefit from immune checkpoint blockade 
(ICB) therapy. However, the subtype-specific vulnerabilities of ICB in TNBC remain unclear. As the complex interplay 
between cellular senescence and anti-tumor immunity has been previously discussed, we aimed to identify markers 
related to cellular senescence that may serve as potential predictors of response to ICB in TNBC. We used three 
transcriptomic datasets derived from ICB-treated breast cancer samples at both scRNA-seq and bulk-RNA-seq lev-
els to define the subtype-specific vulnerabilities of ICB in TNBC. Differences in the molecular features and immune 
cell infiltration among the different TNBC subtypes were further explored using two scRNA-seq, three bulk-RNA-
seq, and two proteomic datasets. 18 TNBC samples were collected and utilized to verify the association between 
gene expression and immune cell infiltration by multiplex immunohistochemistry (mIHC). A specific type of cellular 
senescence was found to be significantly associated with response to ICB in TNBC. We employed the expression 
of four senescence-related genes, namely CDKN2A, CXCL10, CCND1, and IGF1R, to define a distinct senescence-
related classifier using the non-negative matrix factorization approach. Two clusters were identified, namely the 
senescence-enriching cluster (C1; CDKN2AhighCXCL10highCCND1lowIGF1Rlow) and proliferating-enriching cluster (C2; 
CDKN2AlowCXCL10lowCCND1highIGF1Rhigh). Our results indicated that the C1 cluster responds better to ICB and be-
haves with higher CD8+ T cell infiltration than the C2 cluster. Altogether, in this study, we developed a robust cellular 
senescence-related classifier of TNBC based on the expression of CDKN2A, CXCL10, CCND1, and IGF1R. This clas-
sifier act as a potential predictor of clinical outcomes and response to ICB.

Keywords: Immune checkpoint blockade, cellular senescence, triple-negative breast cancer, scRNA-seq, bioinfor-
matics

Introduction

Immune checkpoint blockade (ICB) has led to 
great success in treating patients with sev- 
eral types of solid tumors, such as melanoma 
[1] and lung cancer [2]. However, only about 
10-30% of patients benefit from it [3-5]. This 
observation highlights the importance of under-
standing molecular heterogeneity and biomark-

er research for identifying phenotypes that 
exhibit an improved response to ICB.

Combining ICB with chemotherapy has incre- 
ased the response rates to therapy in patients 
with triple-negative breast cancer (TNBC) [6, 7]. 
TNBC, with a high tumor mutational burden and 
high immune infiltration, responds better to ICB 
than luminal breast cancer [8, 9]. Nevertheless, 
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the benefits of ICB in TNBC are limited, and 
which TNBC subgroup may benefit the most 
from ICB has not yet been determined. Thus, 
precisely identifying biomarkers for patients 
with TNBC who respond well to ICB is crucial.

Cellular senescence is a permanent state of 
cell cycle arrest that plays a dual role in tumor 
immunity [10, 11]. On the one hand, senescent 
cells exhibit a protective effect against tumori-
genesis by enhancing immune clearance and 
tissue remodeling [12]. On the other hand, the 
senescence-associated secretory phenotype 
(SASP) factors released by the senescent cells 
suppress tumor immunity [13, 14]. Therefore, 
further comprehensively analyzing the associa-
tions between cellular senescence and tumor 
immunity in TNBC is essential.

Infiltration of CD3+ T cells and CD8+ T cells, 
PD-1/PD-L1 expression, and tumor mutation 
burden are important determinants of response 
to ICB. SASP could be utilized by senescent 
tumor cells to influence the effect of ICB. The 
combination of ICB and senolytic has been 
used to increase immune surveillance in some 
special cancer types such as KRAS-mutant 
pancreatic ductal adenocarcinoma [15], CDK4/
CDK6 inhibitor responsive melanoma [16], and 
brain metastatic breast cancer [17]. However, 
the relationship of senescence phenotype and 
response to ICB in TNBC is still unclear. As a 
result, exploring specific senescence-related 
biomarkers in TNBC patients may accurately 
identify patients who will benefit from ICB.

In this study, we aimed to define a distinct cel-
lular senescence-related classifier and identify 
potential subtype-specific vulnerabilities of ICB 

in TNBC by integrated analysis of three scRNA-
seq cohorts and multiple bulk RNA sequencing 
cohorts. The findings of our study may give aid 
to elucidate the senescence-related heteroge-
neity in TNBC at both the single-cell and bulk 
levels. 

Materials and methods

ICB cohorts

To investigate and verify the association 
between cellular senescence and tumor immu-
nity, breast cancer (BC) cohorts with ICB res- 
ponse or T cell expansion information and tran-
scriptomic data were analyzed at bulk and sin-
gle-cell levels. Data of the single-cell cohort 
(Bassez cohort 1) [18] were publicly available  
at http://biokey.lambrechtslab.org (Table 1). 
Data of the bulk cohorts were accessed through 
GEO accession numbers GSE173839 [19] and 
GSE124821 [20] (Table 1).

Non-ICB cohorts

To compare the immune cell infiltration and 
senescence heterogeneity between two clus-
ters, multiple cohorts without ICB information 
were analyzed at transcriptomic and proteo- 
mic levels. Transcriptomic data of The Cancer 
Genome Atlas-BRCA (TCGA-BRCA) cohort were 
downloaded from the UCSC Xena data portal 
(https://xenabrowser.net) [21], while those of 
the METABRIC cohort were downloaded from 
cBioPortal (https://www.cbioportal.org) [22-24] 
(Table 1). Data of the other transcriptomic 
cohorts at the bulk and single-cell levels were 
accessed through GEO accession numbers 
GSE58812 (bulk) [25], GSE75688 (single-cell) 

Table 1. Information of datasets used in this study
Datasets Available omics ICB Source
METABRIC cohort Transcriptomics No Curtis et al., 2012
TCGA-BRCA cohort Transcriptomics No Cancer Genome Atlas Network, 2012
GSE173839 cohort Transcriptomics Yes Pusztai et al., 2021
GSE58812 cohort Transcriptomics No Jezequel et al., 2015
GSE124821 cohort Transcriptomics Yes Hollern et al., 2019
Bassez cohort 1 ScRNA-seq Yes Bassez et al., 2021
GSE75688 cohort ScRNA-seq No Chung et al., 2017
GSE176078 cohort ScRNA-seq No Wu et al., 2021
PDC000120 cohort Proteomics No Krug et al., 2020
PDC000173 cohort Proteomics No Mertins et al., 2016
ICB, immune checkpoint blockade.
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[26], and GSE176078 (single-cell) [27] (Table 
1). Data from two proteomic cohorts were 
downloaded from the National Cancer Insti- 
tute’s Clinical Proteomic Tumor Analysis Con- 
sortium (CPTAC) portal (https://proteomic.data-
commons.cancer.gov/pdc/) through accession 
numbers PDC000120 [28] and PDC000173 
[29] (Table 1). Two proteomic cohorts were 
merged as an independent proteomic cohort, 
and “combat” was used to remove the batch 
effect.

scRNA-seq data analysis

Bassez cohort 1 and GSE75688 datasets con-
tain annotated cell types of each sample. Data 
of cancer cells from patients with TNBC were 
analyzed in the Bassez cohort 1 dataset, 
whereas those of cancer cells from all patients 
with BC were analyzed in the GSE75688 data-
set. In the GSE176078 dataset, data from 
patients with TNBC were analyzed using the 
Seurat package [30]. Epithelial cells could be 
recognized based on the following characteris-
tics: KRT19+ and PTPRC-. In contrast, CD4+ T 
cells, CD8+ T cells, naïve T cells, and Treg cells 
were classified and recognized by Uniform 
Manifold Approximation and Projection (UMAP) 
[31] based on CD4, CD8A, CCR7, and FOXP3 
expression, respectively. The “harmony” pack-
age was used to remove the batch effect [32]. 
UCell method was used to calculate the sub-
type score based on specific genes [33].

Transcriptomic and proteomic data analysis at 
the bulk level

The “limma” package [34] was used to identify 
differentially expressed genes (DEGs) between 
ICB-treated patients with pathological comple- 
te remission (pCR) and those without pCR in 
the GSE173839 dataset. Genes with |log fold 
change| ≥ 0.85 and false discovery rate < 0.05 
were regarded as DEGs. We used DEGs as input 
to perform the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis via Metascape 
online tools [35] (https://metascape.org/gp/
index.html#/main/step1) with minimum over-
lap = 5, minimum enrichment = 3, and P-value 
< 0.05. The senescence-related gene list com-
prised genes from hsa04218, GO: 0090398, 
and a core panel of frailty biomarkers [36] 
(Table S1). Transcriptomic data of the GSE- 
173839 dataset was used to define distinct 
senescence-related classifiers by the non-neg-

ative matrix factorization (NMF) approach [37]. 
Furthermore, transcriptomic data of the TCGA-
TNBC, METABRIC-TNBC, GSE58812, GSE756- 
88, GSE124821 datasets, and proteomic data 
were used to verify the classifiers. The “IOBR” 
package [38] was used to evaluate immune  
cell infiltration in the GSE173839, TCGA-TNBC, 
METABRIC-TNBC, GSE58812, and GSE75688 
datasets by performing CIBERSORT [39], ESTI- 
MATE [40], Xcell [41], MCPCounter [42], quan-
TIseq [43], EPIC [41], and TIMER [44] analysis. 
Gene Set Enrichment Analysis (GSEA) analysis 
[45] was employed to identify the cluster exhib-
iting senescence-enriched phenotypes in the 
TCGA-TNBC, METABRIC-TNBC, GSE58812, and 
proteomic datasets with the list of senescence-
related gene set downloaded from KEGG web-
site (Table S1: hsa04218). The immunophe-
noscores (IPS) of the TCGA-TNBC cohort used 
to predict the efficacy of ICB were downloaded 
from The Cancer Immunome Atlas database 
(https://tcia.at/home) [46, 47].

Patients and tissue microarray specimens

Formalin-fixed paraffin-embedded tissue blo- 
cks were collected from the Affiliated Hospital 
of Jining Medical University, China. Tissues 
were collected from patients with TNBC who 
received no chemotherapy or radiotherapy. For 
tissue microarray construction, all specimens 
were re-evaluated using hematoxylin and eosin 
staining, and the representative areas were 
selected and constructed into 2.0 mm tissue 
cores. In this study, a total of 18 cases were 
analyzed (Table S2). All of the research was 
reviewed and approved by the Ethics Commi- 
ttee of the Affiliated Hospital of Jining Medical 
University (approval number: 2021-08-C015). 
Informed consent was obtained from all sub-
jects involved in the study. 

mIHC assay development and staining

Tissue microarray slides were dewaxed in xy- 
lene and rehydrated by graded ethanol solu-
tions, followed by 1-hour baking at 65°C. 
Antigen retrieval was performed using a high-
pressure heat method with sodium citrate  
solution (pH = 6). After cooling down to room 
temperature, the slides were blocked and  
incubated with the IGF1R antibody (Abcam, 
ab263903, 1:600) at room temperature for  
1 h. Subsequently, secondary antibodies and 
Opal 520 fluorophores (NEL811001KT, Akoya) 
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were incubated at room temperature for 10 min 
after washing with TBST thrice. Slides stained 
using IGF1R-Opal 520 were retrieved by micro-
wave oven with sodium citrate solution (pH = 
6). After cooling down to room temperature, the 
slides were blocked and incubated with the 
other three antibodies and Opal fluorophores 
(CXCL10-Opal 690, PTG, 10937-1-AP, 1:300; 
CD3-570, PTG, 17617-1-AP, 1:1000; CD8-620, 
PTG, 66868-1-Ig, 1:6000). Staining was per-
formed using DAPI as per the standard proce-
dure. mIHC Slides were scanned by Vectra 
Polaris and pictures were captured by Vectra 
Polaris 1.0.10. The ratio of marker-positive 
cells was calculated by QuPath software [48].

Statistical analysis 

Statistical analyses were generated using R 
v4.1.3 (https://www.r-project.org) or GraphPad 
Prism 9 (https://www.graphpad.com/). A com-
parison of immune cell infiltration scores and 
expression of SASP factors between two groups 
was analyzed using two-sided Wilcoxon tests. 
Categorical variables were compared between 
two groups or more than two groups using  
the Chi-square test or Fisher’s exact test. The 
receiver operating characteristic (ROC) curve 
was used to evaluate predictive performance. 
Kaplan-Meier plots of OS, progression-free 
interval (PFI), and metastasis-free survival 
(MFS) were performed using GraphPad Prism 
9. Values of P < 0.05 using the Gehan-Breslow-
Wilcoxon test were used to define differences 
in survival time.

Results

Identifying core senescence-related genes that 
correlated with response to ICB 

To investigate the biomarkers for ICB, we iden- 
tified DEGs between data of patients who 
responded to ICB and those who did not 
respond to ICB in the GSE173839 dataset 
(Figure 1A). For analysis of pathway enrichment 
using DEGs as input, pathways such as IL17 
signaling pathway, p53 signaling pathway, che-
mokine signaling pathway, and cellular senes-
cence that had been reported to regulate the 
immune system and inflammatory response  
in the progressive of various diseases were 
enriched (Figure 1B). As reported before, cellu-
lar senescence was mediated by the p53 signal 
pathway [49, 50] and SASP was mediated by 

the IL17 signaling pathway [51, 52] and the 
chemokine signaling pathway [53, 54]. Alth- 
ough the senescence-related pathway is not 
the most significantly enriched in the list, the 
other pathways are connected with the cellular 
senescence signal pathway closely. As a result, 
the association between cellular senescence 
and ICB response was further explored. The  
six most significant senescence-related DEGs 
(Figure 1C) were selected for further validation 
in the scRNA-seq cohort (Figure 1D). Among 
them, the expression of CDKN2A, CXCL10, 
CCND1, and IGF1R in the TNBC cancer cells 
was associated with T cell expansion (Figure 
1E). UCell score based on the four genes of 
each cancer cell was remarkablely different 
between the TNBC samples with (E group) and 
without (NE group) T cell expansion (Figure 1F). 
This result demonstrated that the E group had 
a higher four-gene score than the NE group 
(Figure 1G).

Defining and verifying a classifier of TNBC 
based on CDKN2A, CXCL10, CCND1, and 
IGF1R expression

Consensus clustering analysis of the NMF algo-
rithm was used to identify distinct senescence 
pattern clusters based on the expression of 
CDKN2A, CXCL10, CCND1, and IGF1R in the 
GSE173839 dataset. Two clusters were identi-
fied as k = 2 when the magnitude of the cophe-
netic correlation coefficient began to decrease, 
including 41 cases in cluster C1 and 30 cases 
in cluster C2 (Figure 2A). The heatmap plot 
exhibited the consensus matrix of NMF cluster-
ing results using transcriptomic data in the 
GSE173839 dataset (Figure 2B). The C1 clus-
ter exhibited higher expression of CDKN2A  
and CXCL10 and lower expression of CCND1 
and IGF1R than the C2 cluster (Figure 2C). 
Meanwhile, the proportion of patients with pCR 
was higher in the C1 cluster than in the C2 clus-
ter (Figure 2D). The immune infiltration score 
calculated using ESTIMATE (Figure 2E) and 
xCELL (Figure 2F) indicated that the C1 cluster 
had more immune activity than the C2 cluster. 
For further validation, three transcriptomic data 
samples of the TNBC cohorts were used to ver-
ify the senescence pattern clusters construct-
ed based on the GSE173839 cohort. The 
results indicated that the C1 cluster had higher 
expression of CDKN2A and CXCL10 and lower 
expression of CCND1 and IGF1R than the C2 
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Figure 1. Identification of genes correlated with immune checkpoint blockade response. A. Volcano plot depicted 
the differentially expressed genes (DEGs) between patients in the pathological complete regression (pCR) group 
and that in the non-pCR group using transcriptomics data from the GSE173839 dataset. B. Bubble plot of Kyoto 



A senescence-related biomarker of TNBC

574	 Am J Cancer Res 2023;13(2):569-588

Encyclopedia of Genes and Genomes analysis using DEGs as input showed that cellular senescence pathway was 
enriched. C. Six senescence-related genes, including CDKN2A, CXCL10, CCND1, IGF1R, CXCL8, and CCNE, were 
identified as DEGs in the GSE173839 dataset. D. Uniform Manifold Approximation and Projection (UMAP) plot of 
cancer cells between triple-negative breast cancer (TNBC) patients with T cell expansion (E) and TNBC patients 
without T cell expansion (NE) using scRNA-seq data from Bassez cohort 1. E. UMAP plot showed that the expres-
sions of CDKN2A, CXCL10, CCND1, and IGF1R were significant difference between cancer cells in the E group and 
cancer cells in the NE group. F. UMAP plot of UCell score based on the expressions of CDKN2A, CXCL10, CCND1, and 
IGF1R in cancer cells derived from TNBC patients. G. Cancer cells in the E group had stronger UCell scores based 
on the expressions of CDKN2A, CXCL10, CCND1, and IGF1R than cancer cells in the NE group. DEGs, differentially 
expressed genes; pCR, pathological complete regression; Uniform Manifold Approximation and Projection, UMAP; 
triple-negative breast cancer, TNBC; ****P < 0.0001.



A senescence-related biomarker of TNBC

575	 Am J Cancer Res 2023;13(2):569-588

cluster in protein level in the TCGA-TNBC, 
GSE58821, and METABRIC-TNBC cohorts (Fig- 
ure 3A-C). Similarly, the C1 cluster displayed 
higher immune infiltration levels than the C2 
cluster in three cohorts (Figure 3D-I). Moreover, 
patients in the C1 cluster had better OS (Figure 
3J) and PFI (Figure 3K) than those in the C2 
cluster in the TCGA-TNBC cohort. Furthermore, 
patients in the C1 cluster had better OS (Figure 
3L) and MFS (Figure 3M) than those in the C2 
cluster in the GSE58821 cohort. 

Verifying the classifier of TNBC at the single-
cell level

Eleven primary BC tumor samples in the 
GSE75688 cohort were subjected to bulk RNA-
seq and scRNA-seq. Firstly, we continuously 
divided these 11 patients into C1 and C2 clus-
ters by NMF using data at the bulk level (Figure 
4A). The C1 cluster was also found to contain a 
higher expression of CDKN2A and CXCL10, a 
higher immune score, and a lower expression 
of CCND1 and IGF1R than those in the C2 clus-
ter (Figure 4A and 4B). Secondly, we evaluated 
the expression of four genes and the four-gene 
score of the same patients using data at the 
single-cell level (Figure 4C-E). The four-gene 
score was calculated by UCell algorithm which 
is the more appropriate method for evaluating 
the pathway or multiple-gene score when using 
data at the single-cell level. The patients with a 
higher four senescence-related gene score 
may be closer to patients with a senescence 
phenotype as well as patients in the C1 cluster. 
Our results demonstrated that cancer cells in 
the C1 cluster have a higher four-gene score 
than those in the C2 cluster at the single-cell 
level (Figure 4F), which further validated the 
robustness of our classifier.

CD8+ T cell infiltration difference between 
patients with TNBC in C1 and C2 clusters

CIBERSORT, MCPCounter, quanTIseq, EPIC, 
and TIMER analysis were used to evaluate the 
infiltration abundance of CD8+ T cells in the 
TCGA-TNBC, GSE58812, and METABRIC-TNBC 
cohorts at the bulk level. Our results indicated 

that the C1 cluster had a higher proportion of 
CD8+ T cells than the C2 cluster in the TCGA-
TNBC (Figure 5A), GSE58812 (Figure 5B), and 
METABRIC-TNBC (Figure 5C) cohorts. TNBC 
data in the GSE176078 cohort was analyzed at 
the single-cell level (Figure 6A). We first calcu-
lated the four-gene score of each PTPRC-
KRT19+ epithelial cell based on the expression 
of CDKN2A, CXCL10, CCND1, and IGF1R by the 
UCell algorithm (Figure 6A-C). The cells with a 
four-gene score > 0 were regarded as senes-
cence-positive cells and patients with a propor-
tion of senescence-positive cells in total epi-
thelial cells > 50% were categorized to the C1 
cluster, whereas others were categorized to the 
C2 cluster (Figure 6C). We then classified and 
recognized CD4+ T cells, CD8+ T cells, naïve T 
cells, and Treg cells from total CD3+ T cells of 
patients in the C1 and C2 clusters (Figure 6D 
and 6E). The results indicated that patients 
with TNBC in the C1 cluster had a higher infiltra-
tion abundance of CD8+ T cells than those in 
the C2 cluster at the single-cell level (Figure 
6F).

Essentially, mIHC staining was conducted to 
verify the co-expression of CXCL10 and IGF1R 
with CD3 and CD8 in 18 TNBC PPFE samples. 
Here, CXCL10 was marked red, IGF1R was 
marked green, CD3 was marked orange, CD8 
was marked yellow, and DAPI was marked blue 
(Figure 7A). Results indicated that the patient 
with CXCL10highIGF1Rlow had stronger staining 
intensity of CD3 and CD8 than the patient with 
CXCL10lowIGF1Rhigh (Figure 7A). In addition, we 
found the ratio of CXCL10-positives cells is pos-
itively correlated with the ratio of CD3-positive 
cells (Figure 7B) and CD8-positive cells (Figure 
7C). However, the ratio of IGF1R-positive cells is 
negatively correlated with the ratio of CD3-
positive cells (Figure 7D) and CD8-positive cells 
(Figure 7E).

Senescence-enriching phenotype of the C1 
cluster

We identified biomarkers between epithelial 
cells from patients in the C1 cluster and epithe-
lial cells from patients in the C2 clusters in the 

Figure 2. Development of senescence-related classifier by Non-negative Matrix Factorization Approach (NMF) us-
ing data from the GSE173839 dataset. A. NMF rank survey indicated the number of clusters should be equal to 2. 
B. The heatmap plot exhibited the consensus matrix of NMF clustering results. C. The heatmap plot exhibited the 
expressions of CDKN2A, CXCL10, CCND1, and IGF1R between C1 and C2. D. The bar plot showed the percent of 
patients with pathological complete regression (pCR) in C1 was higher than that in C2. E. The bar plot showed pa-
tients in C1 had higher ESTIMATE immune scores than that in C2. F. The bar plot showed patients in C1 had higher 
xCell immune scores than that in C2. NMF, Non-negative Matrix Factorization Approach; pCR, pathological complete 
regression; ***P < 0.001.
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Figure 3. Validation of the senescence-related classifier using data from three transcriptomics datasets at the bulk 
level. (A-C) The heatmap plot exhibited the expressions of CDKN2A, CXCL10, CCND1, and IGF1R between C1 and 
C2 using data from the TCGA-TNBC (A), GSE58812 (B), and METABRIC-TNBC (C) dataset, respectively. (D, E) The bar 
plot showed patients in C1 had higher ESTIMATE immune scores (D) and xCell immune scores (E) than that in C2 
using data from the TCGA-TNBC dataset. (F, G) The bar plot showed patients in C1 had higher ESTIMATE immune 
scores (F) and xCell immune scores (G) than that in C2 using data from the GSE58812 dataset. (H, I) The bar plot 
showed patients in C1 had higher ESTIMATE immune scores (H) and xCell immune score (I) than that in C2 using 
data from the METABRIC-TNBC dataset. (J, K) The Kaplan-Meier curve plot showed patients in C1 had longer overall 
survival (OS) (J) and progress free survival (K) than that in C2 using data from the TCGA-TNBC dataset. (L, M) The 
Kaplan-Meier curve plot showed patients in C1 had longer OS (L) and metastasis free survival (M) than that in C2 
using data from the GSE58812 dataset. TNBC, triple-negative breast cancer; OS, overall survival.
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GSE176078-TNBC cohort (Figure 8A). KEGG 
analysis using these markers as input showed 

that the cellular senescence pathway was 
enriched at the single-cell level (Figure 8B). The 

Figure 4. Validation of the senescence-related classifier using transcriptomics data at the single-cell level. A. The 
heatmap plot exhibited the expressions of CDKN2A, CXCL10, CCND1, and IGF1R between C1 and C2 using bulk-
RNA-seq data from the GSE75688. B. The bar plot showed patients in C1 had higher ESTIMATE immune scores 
than that in C2 using bulk-RNA-seq data from the GSE75688. C. Uniform Manifold Approximation and Projection 
(UMAP) plot of cancer cells between C1 cluster and C2 cluster using scRNA-seq data from the GSE75688. D. UMAP 
plot showed the expressions of CDKN2A, CXCL10, CCND1, and IGF1R in cancer cells. E. UMAP plot of UCell score 
based on the expressions of CDKN2A, CXCL10, CCND1, and IGF1R in cancer cells. F. Cancer cells in C1 cluster had 
stronger UCell scores based on the expressions of CDKN2A, CXCL10, CCND1, and IGF1R than cancer cells in C2 
cluster. UMAP, Uniform Manifold Approximation and Projection; ****P < 0.0001.
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GSEA analysis using data from the TCGA-TNBC, 
GSE58812, and METABRIC-TNBC cohorts re- 
vealed that the C1 cluster exhibited a senes-
cence-enriching phenotype at the bulk level 
(Figure 8C). Similarly, data from one merged 
proteomic cohort were analyzed. We found  
that the C1 cluster exhibited a senescence-
enriching phenotype and higher expression of 
CDKN2A and CXCL10 and lower expression of 
CCND1 and IGF1R than the C2 cluster at the 
protein level (Figure 8D).

MMP12 were higher in the C1 cluster than in 
the C2 cluster (Figure 8F). Meanwhile, the 
expression of the growth factor IGFBP4 was 
lower in the C1 cluster than in the C2 cluster at 
the transcriptomic and proteomic levels (Figure 
8E and 8F).

Sensitivity of CDKN2AhighCXCL10highCCND1lowIG-
F1Rlow patients with TNBC to ICB

To validate the reliability of our classifier in pre-
dicting ICB efficacy, the IPS score of TCGA-TNBC 

Figure 5. Exploration of the infiltration of CD8+ T cells between C1 and C2 using bulk-RNA-seq data by MCPcounter, 
quanTiseq, CIBERSORT, EPIC and TIMER methods. A. The violin plot showed samples in C1 had higher infiltration 
level of CD8+ T cells than that in C2 using data from the TCGA-TNBC dataset. B. The violin plot showed samples in 
C1 had higher infiltration level of CD8+ T cells than that in C2 using data from the GSE58812 dataset. C. The violin 
plot showed samples in C1 had higher infiltration level of CD8+ T cells than that in C2 using data from the METABRIC-
TNBC dataset. TNBC, triple-negative breast cancer.
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samples and a mouse transcriptomic dataset 
(GSE124821) containing information on ICB 
treatment were analyzed. Our results showed 
that samples in the C1 cluster had higher IPS 
scores than those in the C2 cluster using  
data from the TCGA-TNBC cohort, indicating 
that the C1 cluster patients received more  
benefits from ICB than the C2 cluster patients 
(Figure 9A). Moreover, we found that the ICB-
sensitive samples exhibited higher expression 
of Cdkn2a and Cxcl10 and lower expression of 
Ccnd1 and Igf1r than the ICB-resistant sam-
ples (Figure 9B) in the GSE124821 cohort. 
Besides, we divided samples into the C1 clus-

ter (Cdkn2ahighCxcl10high) and the C2 cluster 
(Ccnd1highIgf1rhigh) by NMF based on the mRNA 
expression of the four senescence-related 
genes in the GSE124821 cohort (Figure 9C). 
Our result demonstrated that a higher propor-
tion of samples sensitive to ICB was seen in  
the C1 cluster than in the C2 cluster (Figure 
9D). Then we performed ROC analysis using 
“pROC” package. In detail, the senescence-
related cluster status (C1 or C2) and status  
of response to ICB (sensitive or resistant) of 
these samples were used for performing ROC 
analysis and calculating the area under the 
curve (AUC) value. The ROC analysis indicated 

Figure 6. Exploration of the infiltration of CD8+ T cells between C1 and C2 using scRNA-seq data from the GSE176078 
dataset. A. Uniform Manifold Approximation and Projection (UMAP) plot of epithelial cells derived from TNBC pa-
tients. B. UMAP plot of UCell scores based on the expressions of CDKN2A, CXCL10, CCND1, and IGF1R in epithelial 
cells. C. The TNBC patients were divided as C1 and C2 clusters according to the percent of UCell-score-positive cells. 
D. UMPA plot of CD3+ T cells derived from TNBC patients in C1 cluster. E. UMPA plot of CD3+ T cells derived from 
TNBC patients in C2 cluster. F. The bar plot showed TNBC patients in C1 cluster had higher infiltration level of CD8+ T 
cells than that in C2 using data at the single-cell level. UMAP, Uniform Manifold Approximation and Projection; TNBC, 
triple-negative breast cancer.
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that the classifier based on four senescence-
related genes predicts the efficacy of ICB re- 
markably well (area under curve value = 0.79, 
95% confidence interval: 0.84-0.74; Figure 9E). 
Similarly, the C1 cluster exhibited a senes-
cence-enriching phenotype and higher expres-
sion of SASP factors, such as IL1a, IL1b, IL6, 
CCL5, and CCL8 than the C2 cluster in the 
GSE124821 cohort (Figure 9F and 9G).

Discussion

Novel biomarkers identified or validated using 
gene expression data at single-cell resolution 
may perform better than those using the tradi-
tional RNA-seq data at the bulk level. Our stu- 
dy focused on identifying cellular senescence-
related biomarkers for TNBC with different ICB 
responses at both single-cell and bulk levels. 

Figure 7. Multiplex immunofluorescence staining analysis of CXCL10 and IGF1R co-expression with CD3 and CD8 
in 18 triple-negative breast cancer samples. A. Two cases of multiplex immunofluorescence staining of CXCL10, 
IGF1R, CD3 and CD8. B. Correlation of CD3 with CXCL10. C. Correlation of CD8 with CXCL10. D. Correlation of CD3 
with IGF1R. E. Correlation of CD8 with IGF1R.
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Figure 8. Identification of C1 cluster as a senescence-enriching phenotype. A. Uniform Manifold Approximation and 
Projection (UMAP) plot and volcano plot depicted the differentially expressed genes (DEGs) between epithelial cells 
in C1 cluster and epithelial cells in C2 cluster using scRNA-seq data from the GSE176078 dataset. B. Bubble plot of 
Kyoto Encyclopedia of Genes and Genomes analysis using DEGs as input also showed that cellular senescence path-
way was enriched. C. Gene Set Enrichment Analysis (GSEA) plot showed cellular senescence pathway was enriched 
in C1 cluster using bulk-RNA-seq data from the TCGA-TNBC, GSE58812, and METABRIC-TNBC dataset, respectively. 
D. The heatmap plot exhibited the proteomics expression levels of CDKN2A, CXCL10, CCND1, and IGF1R between 
C1 and C2, and GSEA plot showed cellular senescence pathway was enriched in C1 cluster at the protein level. E. 
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GSEA plot showed cellular senescence pathway was enriched in C1 cluster using data from the merged CPTAC BRCA 
dataset. F. The heatmap plot exhibited that the transcriptomics expression levels of some senescence-associated 
secretory phenotype (SASP) factors, such as CCL5, CCL8, IL1B, IL7, MMP7, ICAM1, ICAM3, TNFRSF1B etc., was 
higher in C1 cluster than that in C2 cluster using data from the TCGA-TNBC and GSE58812 dataset, respectively. G. 
The violin plot showed the proteomics expression levels of some SASP factors, such as CXCL10, IL18, ICAM1, and 
MMP12, was higher in C1 cluster than that in C2 cluster using data from the merged CPTAC BRCA dataset. UMAP, 
Manifold Approximation and Projection; DEGs, differentially expressed genes; GSEA, Gene Set Enrichment Analysis; 
TNBC, triple-negative breast cancer; SASP, senescence-associated secretory phenotype.

On the one hand, cellular senescence promotes 
immunosuppression and decreases the effica-
cy of immunotherapy in glioblastoma [55]. On 
the other hand, interferon-dependent and cyto-
kine-induced senescence lead to self-sustain-
ing senescence surveillance of melanoma, and 
patients with metastatic melanoma that lost 
senescence-inducing genes and amplificated 
senescence inhibitors progressed rapidly after 
receiving ICB therapy, suggesting that senes-
cence may play a critical role in killing cancer 
cells that escape from ICB therapy [56, 57]. 
Although the interaction between cellular 
senescence and anti-tumor immunity is com-
plex [10, 11, 58], mounting evidence has high-
lighted the necessity of understanding the 
senescent heterogeneity in cancer, which may 
help to identify biomarkers of ICB [58, 59]. 

In this study, we developed a robust cellular 
senescence-related classifier that divided 
TNBC patients into two clusters (C1 cluster  
vs C2 cluster) based on the expression of 
CDKN2A, CXCL10, IGF1R, and CCND1 using 
non-negative matrix factorization (NMF) app- 
roach. Patients in the C1 cluster have high 
expression levels of CDKN2A and CXCL10 and 
low expression levels of IGF1R and CCND1, 
which was a senescence phenotype and pre-
dicted a sensitive response to ICB. On the con-
trary, patients in the C2 cluster expressed low 
levels of CDKN2A and CXCL10 and high levels 
of IGF1R and CCND1, which was a proliferation 
phenotype and predicted a resistant response 
to ICB.

P16, a tumor suppressor and classical media-
tor of cellular senescence coded by CDKN2A, 
was associated with a better prognosis in 
human BC [60]. Loss of p16(Ink4a) has been 
shown to render BC resistant to endocrine-
based therapies [61, 62]. Our study showed 
that DEGs between ICB responder and non-
responder groups (Figure 1B) or between 
patients in cluster C1 and cluster C2 (Figure 
8B) were enriched in KEGG-endocrine-resistant 
pathways. This finding indicates that there is 

complex crosstalk between endocrine-based 
therapy and ICB. However, research on the 
association of CDKN2A and anti-tumor immu-
nity is limited. Our results demonstrated that 
both CDKN2A and CXCL10, as SASP factors, 
were positively correlated with the infiltration 
abundance of CD8+ T cells, which were the 
main cells involved in anti-tumor immunity. 

CCND1 is a key regulator of cell cycle and prolif-
eration, and overexpression of CCND1 pro-
motes tumorigenesis, cell proliferation, tamoxi-
fen resistance, and recurrence of BC [63-65]. 
IGF1/IGF1R signaling regulates cell growth and 
promotes growth effects in TNBC cells [66]. 
IGF1R inhibition enhances the effects of che-
moimmunotherapy combined with ICB by initi-
ating autophagy and enhancing CD8+ T cell infil-
tration [67]. In this study, cluster C2 exhibited a 
high expression of CCND1 and IGF1R, low-
immune activity, rare CD8+ T cell infiltration and 
worse prognosis, which indicated that IGF1R 
inhibition combined with chemoimmunothera-
py, and ICB and might help prolong the OS of 
TNBC patients.

Our study found that cluster C1 which exhibited 
a senescence-enriching phenotype and was 
characterized by high expression of CDKN2A 
and CXCX10 had high CD8+ T cell infiltration 
and responsiveness to ICB in multiple datasets 
at both single-cell and bulk levels. We found 
that cluster C1 significantly increased the 
expression of inflammatory factors, including 
IL-1 and IL-6, and the expression of chemo-
kines, including CCL5 and CCL8, and decreased 
the expression of growth regulators such as 
IGFBP4. The activity of IL-1 links innate and 
adaptive immunity and can therefore be clini-
cally translated into the context of preventive 
and therapeutic strategies by promoting T cell 
immunity [68]. Similarly, CCL5 and CCL8 were 
associated with T cell infiltration and response 
to ICB [69, 70]. The abnormal expression of 
these regulators in tumor tissues presumably 
determines the difference in both prognosis 
and response to ICB between patients in clus-
ters C1 and C2.
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Figure 9. Identification of C1 cluster as the subtype with well response to ICB. A. The bar plot showed samples in C1 
cluster had higher immunophenoscores (IPS) than that in C2 cluster using data from the TCGA-TNBC. B. The heat-
map plot showed that samples sensitive to immune checkpoint blockade (ICB) had a higher expression of Cdkn2a, 
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However, our study has some limitations. First, 
data of all patients with BC in the GSE75688 
cohort were analyzed regardless of molecular 
subtype owing to a limited number of sam- 
ples and single tumor cells. Second, although 
we performed a multi-immunohistochemistry 
assay in human TNBC specimens and found 
the expression of CDKN2A and CXCL10 to  
be positively associated with CD3 and CD8,  
the underlying molecular mechanism remains 
unclear and needs further investigation.

Conclusion 

As the subtype-specific vulnerabilities of ICB in 
TNBC are unclear, we aimed to identify markers 
related to cellular senescence that could poten-
tially serve as predictors of ICB response in 
TNBC. Here, we succeeded in developing a 
robust cellular senescence-related classifier of 
TNBC based on the expression of CDKN2A, 
CXCL10, CCND1, and IGF1R by analyzing data 
at both single-cell and bulk levels. The expres-
sion of these genes was found to be relevant to 
clinical outcomes and response to ICB across 
multiple cohorts.
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Table S1. List of senescence related genes
KEGG GO Frailty biomarkers*

hsa04218 GO:0090398 Core panel
hsa04218 TGFB1 TERF2 IL6
TGFB1 TGFB2 CDK2 CXCL10
TGFB2 TGFB3 MAPK10 CX3CL1
TGFB3 TGFBR1 BRCA2 GDF15
TGFBR1 TGFBR2 H2AFX FNDC5
TGFBR2 SMAD2 MAPKAPK5 VIM
SMAD2 SMAD3 TP53 PLAU
SMAD3 CDKN2B CDKN1B AGT
CDKN2B CDK4 ATM BDNF
CDK4 CDK6 ARNTL FGF23
CDK6 CCND1 SMC5 FGF21
CCND1 CCND2 NSMCE2 RGN
CCND2 CCND3 OPA1 CALR
CCND3 RB1 LMNA AGRN
RB1 RBL1 MIF GRN
RBL1 RBL2 TBX3 KL
RBL2 E2F1 PLA2R1 LEP
E2F1 E2F2 SMC6 AHCY
E2F2 E2F3 TBX2 KRT18
E2F3 E2F4 ULK3
E2F4 E2F5 CDKN1A
E2F5 PIK3CA PML
PIK3CA PIK3CD WNT16
PIK3CD PIK3CB DNAJA3
PIK3CB PIK3R1 MAP2K6
PIK3R1 PIK3R2 SIRT1
PIK3R2 PIK3R3 HMGA1
PIK3R3 FOXO1 CITED2
FOXO1 FOXO3 IGF1R
FOXO3 CDKN1A KAT5
CDKN1A CDK2 PRELP
CDK2 CCNE1 MAGEA2B
CCNE1 CCNE2 KAT6A
CCNE2 HLA-A MAP3K5
HLA-A HLA-B NPM1
HLA-B HLA-C MAPK11
HLA-C HLA-F ID2
HLA-F HLA-G C2orf40
HLA-G HLA-E PRMT6
HLA-E KIR2DL4 SPI1
KIR2DL4 KRAS MAPK14
KRAS NRAS CDKN2B
NRAS RRAS CDKN2A
RRAS RRAS2 HMGA2
RRAS2 MRAS CALR
MRAS HRAS ABL1
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HRAS AKT1 NUP62
AKT1 AKT2 TP63
AKT2 AKT3 ZMIZ1
AKT3 TSC1 MAP2K3
TSC1 TSC2 MAP2K4
TSC2 RHEB MAPK9
RHEB MTOR MAPK8
MTOR PTEN WRN
PTEN SIRT1 MAP2K7
SIRT1 CCNA2 SRF
CCNA2 CCNA1 MAP2K1
CCNA1 MYBL2 HRAS
MYBL2 LIN9 PRKCD
LIN9 LIN37 MNT
LIN37 LIN52
LIN52 LIN54
LIN54 RBBP4
RBBP4 FOXM1
FOXM1 MYC
MYC CDKN2A
CDKN2A MDM2
MDM2 TP53
TP53 RASSF5
RASSF5 BTRC
BTRC FBXW11
FBXW11 HIPK3
HIPK3 HIPK1
HIPK1 HIPK2
HIPK2 HIPK4
HIPK4 PPP1CA
PPP1CA PPP1CB
PPP1CB PPP1CC
PPP1CC RAF1
RAF1 MAP2K1
MAP2K1 MAP2K2
MAP2K2 MAPK1
MAPK1 MAPK3
MAPK3 ETS1
ETS1 MAP2K3
MAP2K3 MAP2K6
MAP2K6 MAPK11
MAPK11 MAPK12
MAPK12 MAPK13
MAPK13 MAPK14
MAPK14 GADD45A
GADD45A GADD45B
GADD45B GADD45G
GADD45G CDK1
CDK1 CCNB1
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CCNB1 CCNB2
CCNB2 CCNB3
CCNB3 MRE11
MRE11 RAD50
RAD50 NBN
NBN ATM
ATM CHEK2
CHEK2 RAD9A
RAD9A RAD9B
RAD9B RAD1
RAD1 HUS1
HUS1 ATR
ATR CHEK1
CHEK1 CDC25A
CDC25A SQSTM1
SQSTM1 GATA4
GATA4 TRAF3IP2
TRAF3IP2 NFKB1
NFKB1 RELA
RELA IL1A
IL1A IL6
IL6 CXCL8
CXCL8 IGFBP3
IGFBP3 SERPINE1
EIF4EBP1 MAPKAPK2
MAPKAPK2 ZFP36L1
ZFP36L1 ZFP36L2
ZFP36L2 CACNA1D
CACNA1D TRPV4
TRPV4 TRPM7
TRPM7 CAPN1
CAPN1 CAPN2
CAPN2 CALML3
CALML3 CALM2
CALM2 CALM3
CALM3 CALM1
CALM1 CALML6
CALML6 CALML5
CALML5 CALML4
CALML4 PPP3CA
PPP3CA PPP3CB
PPP3CB PPP3CC
PPP3CC PPP3R1
PPP3R1 PPP3R2
PPP3R2 NFATC1
NFATC1 NFATC2
NFATC2 NFATC3
NFATC3 NFATC4
NFATC4 ITPR1
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ITPR1 ITPR2
ITPR2 ITPR3
ITPR3 SLC25A4
SLC25A4 SLC25A5
SLC25A5 SLC25A6
SLC25A6 SLC25A31
SLC25A31 PPID
PPID VDAC1
VDAC1 VDAC2
VDAC2 VDAC3
VDAC3 MCU
MCU
*Refence (PMID: 30071357).
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Table S2. The clinical information of patients and results of multiplex immunofluorescence assay

Patient CXCL10 IGF1R CD3 CD8 DAPI CXCL10/
DAPI

IGF1R/
DAPI

CD3/
DAPI

CD8/
DAPI age Sex

Patho-
logical 

diagnosis

Patho-
logical 
grade

Tumor 
size 

stage

Lymphnode 
metastatic 

stage

TNM 
stage ER PR HER2/

ERBB2

Mo-
lecular 
subtype

P1 211 451 181 4 15429 0.013676 0.029231 0.011731 0.000259 44 Female IDC II T2 N2 T2N2M0 - - - TNBC

P2 76 195 1010 48 16500 0.004606 0.011818 0.061212 0.002909 37 Female IDC II T1 N2 T1N2M0 - - - TNBC

P3 3849 7113 1283 157 15769 0.244086 0.451075 0.081362 0.009956 37 Female IDC III T1 N0 T1N0M0 - - - TNBC

P4 3898 16 6114 3519 27035 0.144183 0.000592 0.226151 0.130165 47 Female IDC III T1 N0 T1N0M0 - - - TNBC

P5 1091 6083 1790 207 17669 0.061747 0.344275 0.101307 0.011715 66 Female IDC II T2 N1 T2N1M0 - - - TNBC

P6 5857 20 2766 566 12918 0.453398 0.001548 0.21412 0.043815 69 Female IDC II-III T2 N2 T2N2M0 - - - TNBC

P7 2783 5521 1642 513 19007 0.14642 0.290472 0.086389 0.02699 51 Female IDC II-III T1 N0 T1N0M0 - - - TNBC

P8 4600 5983 310 163 22366 0.205669 0.267504 0.01386 0.007288 48 Female IDC II-III T1 N1 T1N1M0 - - - TNBC

P9 2202 699 705 416 13452 0.163693 0.051963 0.052409 0.030925 52 Female IDC II-III T2 N0 T2N0M0 - - - TNBC

P10 4279 21 3554 1155 21003 0.203733 0.001 0.169214 0.054992 38 Female IDC II T2 N0 T2N0M0 - - - TNBC

P11 4501 370 1429 527 14484 0.310757 0.025545 0.098661 0.036385 48 Female IDC III T2 N0 T2N0M0 - - - TNBC

P12 4649 6973 819 353 15131 0.30725 0.460842 0.054127 0.02333 62 Female IDC III T2 N0 T2N0M0 - - - TNBC

P13 2945 274 476 176 19408 0.151742 0.014118 0.024526 0.009068 48 Female IDC III T1 N0 T1N0M0 - - - TNBC

P14 1931 5758 14 10 8687 0.222286 0.66283 0.001612 0.001151 42 Female IDC II T4 N3 T4N3M0 - - - TNBC

P15 1736 153 526 139 2572 0.674961 0.059487 0.20451 0.054044 45 Female IDC II T2 N1 T2N1M0 - - - TNBC

P16 513 4502 136 92 18513 0.02771 0.24318 0.007346 0.004969 39 Female IDC III T2 N1 T2N1M0 - - - TNBC

P17 9451 47 4795 463 15766 0.599455 0.002981 0.304135 0.029367 47 Female IDC III T2 N0 T2N0M0 - - - TNBC

P18 1065 8330 76 5 18635 0.057151 0.447008 0.004078 0.000268 64 Female IDC III T2 N0 T2N0M0 - - - TNBC


