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Brief Communication
Sex hormones in the risk of breast cancer:  
a two-sample Mendelian randomization study
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Abstract: Multiple evidence has suggested the essential role of sex hormones in the susceptibility of breast cancer. 
However, whether there exists a causal association and the effect direction remains controversial. To examine the 
causative role of hormones in the risk of breast cancer, we first estimated their genetic correlation, and then con-
ducted two-sample and multivariable Mendelian randomization analyses using summary statistics from genome-
wide association studies of major sex hormones including testosterone (N=230,454), estradiol (N=163,985) and 
progesterone (N=1,261), together with breast cancer (N=228,951). We further performed subtype analysis focus-
ing on estrogen receptor (ER)+ breast cancer (N=175,475) and ER- breast cancer (N=127,442), and conducted 
extensive sensitivity analyses. We identified significant positive genetic correlation between testosterone level and 
risk of breast cancer (genetic correlation: 0.09, P=1.10E-03). Genetically determined higher total testosterone level 
was associated with an increased risk of breast cancer (OR: 1.11, 95% CI: 1.06-1.16, P=4.55E-06). In the subtype 
analysis, higher total testosterone was associated with an increased risk of ER+ breast cancer (OR: 1.18, 95% CI: 
1.11-1.26, P=6.00E-08). In contrast, no association was identified between estradiol, progesterone and the risk 
of breast cancer. These results elucidated the causal role of major sex hormones in the risk of breast cancer, es-
pecially in ER+ breast cancer. Future development of preventive or therapeutic interventions in clinical trials could 
attach importance to this.
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Introduction

Breast cancer is the most frequent malignancy 
in women worldwide, mainly affecting women 
over the age of 50 [1]. Epidemiological studies 
have identified several risk factors for breast 
cancer such as aging, family history and life-
styles like alcohol consumption and dietary fat 
intake [2]. However, the identified risk factors 
explain only a limited amount of variance in the 
disease risk. Exploring novel factors influencing 
breast cancer could help better understand the 
pathogenesis of the disease, and provide care 
and therapeutic strategies for the patients and 
clinicians.

Discrepant steroid hormones between sexes 
and different ages might be one determinant 
based on evidence from previous epidemiologi-
cal and clinical studies. Sex hormones, mainly 
including estrogens, androgens and progesto-

gens, are molecules produced by the endocrine 
system that send messages to various parts of 
the body, and help regulate the body’s process-
es. Multiple evidence has suggested sex hor-
mones were involved in the etiology of breast 
cancer [3]. From the epidemiological perspec-
tive, the rates of breast cancer increase rapidly 
in the premenopausal years, while the rate of 
increase slows at menopause when endoge-
nous hormone levels decline. A retrospective 
study among 10,786 healthy women with a fol-
low-up of 13.5 years found that total and free 
testosterone levels were directly associated 
with increased breast cancer risk, while higher 
estradiol was associated with increased risk of 
human epidermal growth factor receptor 2 
(HER2)- cancer but reduced risk of HER2+ can-
cer [4]. Similarly, a collaborative analysis of 
seven prospective studies found that circulat-
ing estrogens and androgens were positively 
associated with the risk of breast cancer in pre-
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menopausal women [5]. In contrast, other func-
tional and epidemiological studies also report-
ed antiproliferative effects of estrogens [6] and 
androgens [7, 8]. These evidence suggested 
the essential role of sex hormones in the patho-
genesis of breast cancer. However, the obser-
vational studies might be biased by unavoid-
able confounding factors and small sample 
size, and cannot determine causation. There- 
fore, the causal association between sex hor-
mones and breast cancer is still elusive.

In this context, we performed a two-sample 
Mendelian randomization (MR) analysis to ex- 
plore the causal role of major sex hormones 
including estrogens measured by estradiol, 
androgens measured by testosterone, and pro-
gestogens in the risk of breast cancer. The MR 
approach is less susceptible to reverse causa-
tion or confounding factors which may distort 
the interpretations of conventional observa-
tional studies. We found that higher total tes-
tosterone was causally associated with higher 
risk of breast cancer.

Methods

Datasets

We obtained summary statistics of total te- 
stosterone levels (N=230,454) and bioavail-
able testosterone levels (N=188,507) in fe- 
males from a previous large genome-wide 
association study (GWAS) based on genotype 
and phenotype data from the UK Biobank [9]. 
Testosterone was measured by “one step com-
petitive analysis on a Beckman Coulter Unicel 
Dxl 800”. Summary statistics of estradiol in 
females (N=163,985) were from another GWAS 
based on data from the UK Biobank [10]. 
Estradiol was measured by “two step competi-
tive analysis on a Beckman Coulter Unicel Dxl 
800”. Summary statistics of progesterone in 
females (N=1,261) were from GWAS on ste- 
roid hormone levels based on individuals of 
European ancestry [11]. Progesterone was 
measured by liquid chromatography-tandem 
mass spectrometry. Details of the summary 
data from all GWAS were listed in Supplemen- 
tary Table 1. Single nucleotide polymorphisms 
(SNP) that passed the genome-wide signifi-
cance threshold (P<5E-08) were chosen as 
instrumental variables, which were then clum- 
ped based on the 1,000 Genomes Project link-
age disequilibrium (LD) structure. Index SNPs 
(R2<0.001 with any other associated SNP with-
in 10 Mb) with the minimum P value were kept.

We obtained GWAS summary statistics of 
breast cancer in females from a genome-wide 
association study (Ncase=122,977, Ncontrol= 
105,974) [12]. Summary statistics of estrogen 
receptor (ER)-negative (ER-) (Ncase=21,468, 
Ncontrol=105,974) and ER-positive (ER+) (Ncase= 
69,501, Ncontrol=105,974) breast cancer were 
also from this study. Harmonization was under-
taken to rule out strand mismatches and 
ensure alignment of SNP effect sizes.

Genetic correlation

We estimated the genetic correlation between 
sex hormones and breast cancer using LDSC 
[13] and GNOVA [14]. The LDSC method uses 
GWAS summary data to regress association 
test statistics of SNPs on their LD scores, which 
is defined as the sum of LD r2 measured with all 
other SNPs in the reference sample. Compared 
with LDSC, GNOVA provides greater statistical 
power and higher estimation accuracy, espe-
cially when the correlation is moderate [14]. We 
ran LDSC and GNOVA on SNPs in both traits 
together with reference data derived from the 
1000 Genomes Project European population 
using default parameters. A P value below 
4.17E-03 (0.05/12) was considered statistical-
ly significant after the Bonferroni correction.

Mendelian randomization analysis

We hypothesized that sex hormones as a risk 
factor could causally influence the risk of breast 
cancer, and the following assumptions were 
satisfied: the genetic variants used as instru-
mental variables are associated with sex hor-
mone levels; the genetic variants are not asso-
ciated with any confounders; the genetic 
variants are associated with risk of breast can-
cer through sex hormones (namely horizontal 
pleiotropy should not be present) (Supple- 
mentary Figure 1).

To evaluate the causative effect of sex hor-
mones on the risk of breast cancer, we per-
formed a two-sample MR analysis using the 
random effects inverse variance weighted 
(IVW) method, which is most widely used in MR 
studies and could provide robust causal esti-
mates under the absence of directional pleiot-
ropy. A P value below 4.17E-03 (0.05/12) was 
considered statistically significant after the 
Bonferroni correction. We further verified the 
results using the weighted median method, 
which generally has greater power with a posi-
tive causal effect, particularly as the proportion 
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Figure 1. Genetic correlation between sex hormones and breast cancer. (A-C) Genetic correlation estimated using 
the LDSC method for (A) breast cancer, (B) ER+ breast cancer, and (C) ER- breast cancer. (D-F) Genetic correlation 
estimated using the GNOVA method for (D) breast cancer, (E) ER+ breast cancer, and (F) ER- breast cancer. Error 
bars indicate 95% confidence intervals. ER, Estrogen Receptor.

of invalid instrumental variables increases. 
Furthermore, we used the PhenoScanner v2 
tool to check for variants associated with other 
phenotypes (P<5E-08) which might affect the 
risk of breast cancer independent of hormone 
levels [15].

In addition, we conducted comprehensive sen-
sitivity analyses to estimate potential violations 
of the model assumptions in the MR analysis 
(Supplementary Figure 2). We conducted Men- 
delian randomization pleiotropy residual sum 
and outlier (MR-PRESSO) analysis to detect 
outlier instrumental variables, which were re- 
moved step-by-step to reduce the effect of hori-
zontal pleiotropy. Cochran’s Q test was execut-
ed to check heterogeneity across the individual 
causal effects. MR-Egger regression was per-
formed to evaluate the directional pleiotropy of 

instrumental variables. To evaluate the strength 
of each instrumental variable, we computed 
the F-statistic of each SNP. The statistical 
power was calculated using an online tool  
at http://cnsgenomics.com/shiny/mRnd/ [16]. 
The statistical analyses were conducted using 
the R package TwoSampleMR 0.5.5 [17].

Results

We first estimated the genetic correlation 
between each sex hormone and the risk of 
breast cancer. We detected a significant posi-
tive genetic correlation between breast cancer 
and bioavailable testosterone (genetic correla-
tion: 0.11, P=4.75E-05), total testosterone 
(genetic correlation: 0.09, P=1.10E-03) (Figure 
1A, 1D). In the subtype analysis, similar results 
were identified between ER+ breast cancer and 
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Figure 2. Forest plot showing results from the Mendelian randomization analysis. (A-C) Results from the Mendelian 
randomization analysis to evaluate causal role of sex hormones in (A) breast cancer, (B) ER+ breast cancer, (C) and 
ER- breast cancer using the inverse variance weighted method. (D-F) Results from the Mendelian randomization 
analysis to evaluate causal role of sex hormones in (D) breast cancer, (E) ER+ breast cancer, and (F) ER- breast 
cancer using the weighted median method. Estimates are per 1 standard deviation (SD) increase in the trait. ER, 
Estrogen Receptor.

bioavailable testosterone (genetic correlation: 
0.14, P=2.61E-06), total testosterone (genetic 
correlation: 0.12, P=8.94E-05) (Figure 1B, 1E), 
while for ER- breast cancer no significant asso-
ciation was identified (Figure 1C, 1F).

We further analyzed the role of each hormone 
in the risk of breast cancer via the two-sample 
MR approach. Results showed that higher total 
testosterone level was associated with a higher 
risk of breast cancer (OR: 1.11, 95% CI: 1.06-
1.16, P=4.55E-06) (Figure 2A). In the subtype 
analysis, similar association was detected 
between total testosterone level and ER+ 
breast cancer (OR: 1.18, 95% CI: 1.11-1.26, 
P=6.00E-08), while for ER- breast cancer no 
association was identified (Figure 2B, 2C). 
Such results were further verified using the 
weighted median method (Figure 2D-F). The 
funnel plot displays a symmetric pattern of 
effect size variation around the point estimate 

(Supplementary Figures 3, 4, 5, 6, 7, 8, 9, 10, 
11). 

Furthermore, we performed extensive sensitiv-
ity analyses to validate the causal association 
between sex hormones and breast cancer. The 
Cochran’s Q test did not detect the heterogene-
ity of effects across the instrumental variables 
(Supplementary Table 2). The F statistics of  
all the instrumental variables were above 10 
(ranging from 24 to 1656), indicating the 
absence of weakness in the selected instru-
mental variables. No apparent horizontal pleiot-
ropy was observed as the intercept of MR-Egger 
was not significantly deviated from zero. 
Meanwhile, no potential instrumental outlier 
was detected by the MR-PRESSO analysis. The 
leave-one-out results suggested that the caus-
al effect was not driven by a single instrumental 
variable (Supplementary Figures 3, 4, 5, 6, 7, 8, 
9, 10, 11).
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Lastly, we used the PhenoScanner tool to check 
if the SNPs used in the MR analysis were asso-
ciated with other phenotypes. As a result, sev-
eral instrumental variables such as rs454- 
46698, rs112635299 and rs4453027 were 
associated with body mass index (BMI), which 
was suggested to affect the risk of breast can-
cer [18]. Therefore, we further performed multi-
variable MR analysis to elucidate the causal 
relationship between sex hormones and the 
risk of breast cancer adjusting potential pleiot-
ropy due to BMI. The summary data of BMI was 
obtained from GWAS published by the Genetic 
Investigation of ANthropometric Traits (GIANT) 
consortium [19]. As a result, significant associ-
ation was still identified between testosterone 
level and breast cancer in the multivariable MR 
analyses adjusting from BMI (Supplementary 
Table 3).

Discussion

In the current study, we investigated the caus-
ative role of three major hormones in the risk of 
breast cancer using the MR approach. The 
results showed that total testosterone level 
was positively associated with the risk of breast 
cancer, especially ER+ breast cancer. These 
findings provided a better understanding of the 
role of sex hormones in the risk of breast can-
cer, and had clinical implications.

Testosterone is a male sex hormone, mainly 
produced in a woman’s ovaries in small am- 
ounts. Previous epidemiological studies have 
identified that higher testosterone level was 
associated with increased risk of breast cancer 
for women both before and after menopause 
[5, 20]. Similarly, another prospective cohort 
study found that estrogen plus testosterone 
therapies increased risk of invasive breast can-
cer compared with estrogen-only therapy [21]. 
These evidence suggested the close correla-
tion between testosterone and breast cancer. 
Consistent with these findings, we identified 
that higher testosterone was associated with 
an increased risk of breast cancer from the 
genetic perspective using the MR approach. 
The mechanism of how testosterone increased 
the risk of breast cancer is still unknown. One 
explanation is that testosterone can be aroma-
tized to estradiol, which increases proliferation 
and hence breast cancer risk. Notably, it was 
also reported that long term therapy with sub-

cutaneous testosterone in women presenting 
with symptoms of androgen deficiency did not 
increase the risk of invasive breast cancer [22], 
and might even reduce the risk of breast can-
cer [23]. Therefore, moderate levels of testos-
terone might also be beneficial in breast can-
cer. However, based on the current dataset, we 
could not evaluate whether there exists a 
U-shaped effect of testosterone on the risk of 
breast cancer. Therefore, further studies inves-
tigating testosterone in breast cancer could 
pay attention to the effect of extreme levels of 
testosterone. In contrast, we did not identify 
significant association between bioavailable 
testosterone and breast cancer, though the 
effect direction was the same. Simiarly, one 
previous prospective study identified that total 
but not free testosterone was positively asso-
ciatied with the risk of breast cancer [5], though 
such result was not consistent across studies 
[24]. Compared with total testosterone which 
has sex hormone binding globulin or albumin 
chemical receptors bound to it, unbound tes-
tosterone can act as receptors to any cell in the 
body. Therefore, the bound testosterone might 
play an important role in the pathogenesis of 
breast cancer. Nevertheless, we could not rule 
out the possibility that the failure to detect 
association might be due to the limited statisti-
cal power since the variance explained by the 
instrumental variables was relatively small 
(Supplementary Table 2). Future exploration 
based on summary data from GWAS with larger 
sample size was warranted to provide a more 
accurate estimate. In the subtype analysis, tes-
tosterone was associated with higher risk of 
ER+ breast cancer, but not ER- breast cancer. 
This result suggested the effect of testosterone 
was lower in ER- breast cancer, which does not 
have hormone receptors and won’t be affected 
by endocrine treatments aimed at blocking hor-
mones in the body.

Estradiol is a major regulator of growth for the 
subset of breast cancers that express the 
estrogen receptor. Previous prospective stud-
ies found that estrogens were positively associ-
ated with the risk of breast cancer in premeno-
pausal women [5]. However, another cohort 
study also reported that estrogen was associ-
ated with lower incidence of invasive breast 
cancer among 10,739 postmenopausal wo- 
men in a median follow-up of 11.8 years [25]. 
Therefore, the role of estradiol in breast cancer 
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was still elusive. Biologically, previous clinical 
findings suggested that after long-term oestro-
gen deprivation, adaptive changes in mammary 
tumor gene expression profiles render tumors 
paradoxically susceptible to oestrogen-induced 
apoptosis [26, 27]. However, as estrogen is a 
recognized mitogen that usually stimulates 
mammary cell proliferation through activation 
of the oestrogen receptor, too high levels of 
estrogen might be harmful as well. In the cur-
rent study, we did not identify association 
between estradiol level and risk of breast can-
cer. However, only a few instrumental variables 
were available for estrodiol in the MR analysis, 
which limited the statistical power. Therefore, 
further replication with larger sample size was 
still necessary. 

Progesterone is essential for normal breast 
development during puberty and in preparation 
for lactation and breastfeeding. A previous 
observational study found that estrogen plus 
progesterone use was associated with in- 
creased incidence of breast cancer among 
41,449 postmenopausal women (HR=1.55, 
95% CI=1.41-1.70, P<0.001) [28]. In the cur-
rent study, we did not identify causal associa-
tion between progesterone and breast cancer. 
This might be due to the limited effect of pro-
gesterone on breast cancer. However, we can-
not exclude the possibility that we failed to 
detect association due to the insufficiency of 
current sample sizes as the effect might be 
relatively modest. In addition, breast cancer 
mainly affected women over the age of 50. 
Subgroup analysis on individuals of different 
ages might provide additional insight.

In conclusion, our results demonstrated that 
higher total testosterone level was associated 
with increased risk of breast cancer, particu-
larly ER+ breast cancer. These findings help 
better understand the role of hormones in 
breast cancer, and will facilitate therapeutic 
management and drug discovery in future clini-
cal trials.
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Supplementary Table 1. Summary data from all GWAS used in current study
Phenotype Cases Controls Number of SNPs PMID
bioavailable testosterone 188,507 - 16,585,745 32042192
total testosterone 230,454 - 16,580,850 32042192
estradiol 37,461 126,524 7,870,546 34255042
progesterone 1,261 - n.a. 31169883
breast cancer 122,977 105,974 11,792,542 29059683
ER+ breast cancer 69,501 105,974 10,643,737 29059683
ER- breast cancer 21,468 105,974 10,643,737 29059683
SNP, single nucleotide polymorphism; GWAS, genome-wide association study; PMID, PubMed ID; ER+, estrogen receptor posi-
tive; ER-, estrogen receptor negative; n.a., not available.

Supplementary Figure 1. Assumptions in Mendelian randomization analysis. Broken lines represent potential pleio-
tropic or direct causal effects between variables that would violate Mendelian randomization assumptions.
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Supplementary Figure 2. Schematic analysis workflow.
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Supplementary Figure 3. Mendelian randomization analysis results for total testosterone on risk of breast cancer. A. 
Scatter plot of SNP effects on total testosterone and breast cancer. The 95% CI for the effect size on breast cancer 
is shown as vertical lines, while the 95% CI for the effect size on total testosterone is shown as horizontal lines. The 
slope of fitted lines represents the estimated MR effect per method. B. Funnel plot showing the estimation using the 
inverse of the standard error of the causal estimate with each individual SNP as a tool. The vertical line represents 
the estimated causal effect. C. Forest plot of the association of individual SNPs with total testosterone and breast 
cancer, together with pooled estimates. D. Forest plot of the results of the leave-one-out sensitivity analysis, where 
each SNP was iteratively removed from the instrumental variables. SNP, single nucleotide polymorphism.
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Supplementary Figure 4. Mendelian randomization analysis results for total testosterone on risk of ER+ breast 
cancer.
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Supplementary Figure 5. Mendelian randomization analysis results for total testosterone on risk of ER- breast 
cancer.
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Supplementary Figure 6. Mendelian randomization analysis results for free testosterone on risk of breast cancer.
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Supplementary Figure 7. Mendelian randomization analysis results for free testosterone on risk of ER+ breast 
cancer.
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Supplementary Figure 8. Mendelian randomization analysis results for free testosterone on risk of ER- breast can-
cer.
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Supplementary Figure 9. Mendelian randomization analysis results for estradiol on risk of breast cancer.
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Supplementary Figure 10. Mendelian randomization analysis results for estradiol on risk of ER+ breast cancer.
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Supplementary Figure 11. Mendelian randomization analysis results for estradiol on risk of ER- breast cancer.
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Supplementary Table 2. Heterogeneity and horizontal pleiotropy analyses between hormone traits 
and breast cancer

hormone trait
Heterogeneity Horizontal pleiotropy MR-PRESSO

IVW
Q

IVW
Q df

IVW
P

Egger
intercept SE P value P value Beta

breast cancer as outcome
    bioavailable
        testosterone 14.89 10 0.14 7.41E-03 6.15E-03 0.26 0.12 0.17
        total testosterone 178.32 149 0.05 -2.17E-03 1.46E-03 0.14 0.05 0.05
        oestradiol 10.56 6 0.10 -3.23E-03 1.14E-02 0.79 0.09 0.34
        progesterone 1.46 3 0.69 -6.11E-03 2.23E-02 0.81 0.71 0.07
ER+ breast cancer as outcome
    bioavailable
        testosterone 55.72 42 0.08 -4.69E-03 4.37E-03 0.29 0.09 0.11
        total testosterone 143.26 119 0.06 -3.01E-03 1.92E-03 0.12 0.05 0.06
        oestradiol 7.79 6 0.25 2.40E-03 1.22E-02 0.85 0.25 0.39
        progesterone 0.88 3 0.83 -4.80E-03 2.66E-02 0.87 0.84 0.08
ER- breast cancer as outcome
    bioavailable
        testosterone 39.62 30 0.11 -2.99E-03 6.70E-03 0.66 0.12 0.18
        total testosterone 240.04 204 0.04 -7.80E-04 2.06E-03 0.71 0.05 0.08
        oestradiol 15.12 8 0.06 1.73E-02 1.69E-02 0.34 0.04 0.45
        progesterone 8.69 3 0.03 3.80E-03 8.52E-02 0.97 0.05 0.12
IVW, Inverse variance weighted; Q, Cochran’s Q test estimate; df, Cochran’s Q test degrees of freedom; SE, standard error. 
Beta denotes the effect sizes can be detected with the power of 0.8 given the sample size, proportion of cases and variance 
explained by the instrumental variables.

Supplementary Table 3. Mendelian randomization estimates between sex hormone level and risk of 
breast cancer adjusting for body mass index
outcome exposure beta SE P value
Breast cancer Bioavailable testosterone 0.13 0.06 0.02

Total testosterone 0.13 0.03 1.24E-05
Estradiol 0.05 0.50 0.93

ER+ breast cancer Bioavailable testosterone 0.19 0.06 8.23E-04
Total testosterone 0.17 0.03 1.65E-07
Estradiol 0.18 0.60 0.76

ER- breast cancer Bioavailable testosterone -0.06 0.08 0.41
Total testosterone -0.02 0.4 0.61
Estradiol -0.49 0.61 0.42

ER+, estrogen receptor positive; ER-, estrogen receptor negative.


