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Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Many 
ccRCCs are diagnosed at an advanced stage due to the lack of early symptoms, with a high mortality rate and a 
poor prognosis. The occurrence and development of ccRCC are closely related to metabolic disorders. This study 
aims to explore the relationship between metabolic genes and prognosis, immune microenvironment, and tumor 
development of ccRCC. Using data from TCGA, GEO, and ArrayExpress, we successfully established a risk model 
(riskScore) based on 4 metabolic genes (MGs) that can accurately predict the prognosis and immune microenviron-
ment of ccRCCs. In addition, we determined the role of PAFAH2 in suppressing tumor cell proliferation and migration 
in ccRCC in vitro. Our research may shed new light on ccRCC patients’ prognosis and treatment management.
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Introduction

Renal cell carcinoma (RCC) is a common tumor 
in the urinary system, ranking among the top 
ten cancer diagnoses in the world [1]. Clear cell 
renal cell carcinoma (ccRCC) is the most com-
mon histological subtype in RCC, accounting 
for about 80%. Survival outcomes of ccRCC  
are poor compared to other subtypes of RCC, 
including papillary renal cell carcinoma, chro-
mophobe renal cell carcinoma, and collecting 
duct carcinoma [2]. Due to the lack of obvious 
clinical symptoms, many patients are already  
in advanced stages at the time of diagnosis [3, 
4]. Targeted therapy has been the standard 
first-line treatment for advanced ccRCC for 
nearly a decade. However, almost all patients 
eventually develop drug resistance [5]. With  
the rise of immune checkpoint inhibitors thera-
py, renal cancer has entered a new era of im- 
mune-targeted therapy. Recent studies have 
shown that PD-1 inhibitors can alleviate the 
progression in some patients with advanced 
renal cancer [6, 7]. Unfortunately, there are still 
many patients who do not respond well to 
immunotherapy. Differences in the tumor 
microenvironment have been suggested as a 

possible reason for the heterogeneity of ccRCC 
responses to immunotherapy [8]. 

Glycolysis, fatty acid metabolism, tyrosine 
metabolism, nucleotide anabolism, and other 
metabolic pathways are necessary to maintain 
normal cell homeostasis [9, 10]. Many scien-
tists believe that abnormal metabolic process-
es could be a key factor in the development  
of cancer [11-13]. A typical feature of ccRCC is 
the presence of significant lipid, glycogen, and 
other metabolic pathways disorders. In breast 
cancer and colorectal cancer, abnormal meta-
bolic pathways have been reported to be asso-
ciated with poor prognosis [14, 15]. Due to the 
significant abnormal expression of metabolites 
in tumor tissues at different stages, Marin-
Rubio et al. suggested that metabolic genes 
(MGs) could be used as prognostic markers for 
cancer [16]. The prognostic value of MGs has 
been verified in a variety of cancers, including 
prostate cancer, lung adenocarcinoma, liver 
cancer, head and neck squamous cell carcino-
ma, and rectal cancer [17-21].

Von Hippel-Lindau (VHL), which encodes the E3 
ubiquitin ligase that recognizes hypoxia-induc-

http://www.ajcr.us


The role of metabolic genes in ccRCC

1388 Am J Cancer Res 2023;13(4):1387-1406

ible factor (HIF) proteins, is one of the genes 
closely related to the occurrence of ccRCC [22]. 
About 90% of cases have mutations in VHL 
[23]. Loss of VHL gene function will cause the 
accumulation and activation of HIF proteins in 
cancer cells, mistakenly sending hypoxia sig-
nals that activate angiogenesis and stimulate 
tumor growth [24, 25]. In addition, there are a 
lot of lipids and glycogen in the cytoplasm of 
ccRCC. The hypoxic response induced by the 
mutation of VHL and the pathology of ccRCC 
indicate that there is a disorder of the meta-
bolic environment in ccRCC. ccRCC has been 
demonstrated that it is usually accompanied by 
reprogramming of glucose metabolism, repro-
gramming of fatty acid metabolism, and repro-
gramming of the tricarboxylic acid cycle. The 
metabolism of tryptophan, arginine and gluta-
mine is also reprogrammed in many ccRCCs 
[26, 27]. Therefore, alterations in these meta-
bolic pathways provide new possibilities for 
ccRCC treatment strategies and biomarkers.  
In addition, metabolic disturbances in ccRCC 
may be associated with increased immune eva-
sion of tumor cells [28]. Which suggests that 
dysregulated MGs in ccRCC may be used to 
predict response to immune checkpoint inhibi-
tors therapy.

Our study aims to explore the relationship 
between MGs and prognosis, TME, and tumor 
development of ccRCC. 

Materials and methods

Acquisition and preparation of data

Transcriptome profiling data and related clini- 
cal information of ccRCCs were downloaded 
from The Cancer Genome Atlas (TCGA) Data 
Portal (https://tcga-data.nci.nih.gov/tcga/; ac- 
cessed January 2020), GEO database (https://
www.ncbi.nlm.nih.gov./geo/; GSE29609) and 
ArrayExpress database (https://www.ebi.ac.
uk/arrayexpress/; E-MTAB-1980). A total of 
944 genes related to metabolism were 
obtained from the KEGG gene sets of GS- 
EA database (https://www.gsea-msigdb.org/
gsea/downloads.jsp; accessed January 2020). 
In addition, R software used to process tran-
scriptome data. The “sva” package was used to 
correct the transcriptome data from different 
databases. The “Limma” package was used for 
further difference analysis.

Identification of MGs with prognostic value

Patients with less than 90 days of follow-up 
were first excluded. Then, the univariate cox 
regression analysis was used to identify prog-
nostic genes from differentially expressed 
MGs. “Survival” package in R software was 
used for univariate cox regression analysis.

Protein-protein interaction (PPI) and cluster 
analysis of hub genes

STRING database (http://www.stringdb.org/) 
was used to construct a PPI network of prog-
nostic MGs. CytoHubba in Cytoscape software 
was used to explore hub genes in the PPI net-
work. In addition, MCODE was used to generate 
clusters of hub genes.

Establishment of an independent prognostic 
index (PI, riskScore) based on MGs in training 
cohort

Patients in TCGA cohort with complete clinical 
information such as age, gender, pathology 
stage, histological grade, and TMN stage were 
randomly divided into training cohort and test-
ing cohort by R software. The basic require-
ments of grouping include two aspects. First, 
we control the ratio of the number of people in 
training cohort to the number of people in test-
ing cohort to about 7:3. Then, from the per-
spective of the distribution of patients in vari-
ous clinical features, the patient composition in 
the training cohort and the patient composition 
in the testing cohort should be similar.

To further identify the key prognostic MGs, the 
lasso regression and the multivariate cox 
regression analysis were performed. The prog-
nostic model was established using the weight 
coefficients of each gene in the multivariate 
cox regression analysis. The PI was calculated 
using the following formula: β1 × gene1 expres-
sion + β2 × gene2 expression + · · · · · + βn × genen 
expression, where β corresponded to the 
weight coefficient. 

Validation of key genes at the protein level

The Human Protein Atlas (HPA) database 
(https://www.proteinatlas.org/) was used to 
verify the protein level of key MGs in the estab-
lished prognosis index.
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Evaluation of the prognostic index in the train-
ing cohort

According to our prognostic model, each patient 
would get a risk score. The median risk score 
was set as the cutoff value for dividing ccRCC 
patients into a high-risk group and a low-risk 
group. Kaplan-Meier (K-M) method was utilized 
to plot the survival curves. The log-rank test 
was performed to assess differences in the 
survival rates between the high-risk group and 
the low-risk group. The time-dependent receiv-
er operating characteristic curves (ROC) were 
created by the “survivalROC” package. The 
area under the curve (AUC) values were calcu-
lated to evaluate the specificity and sensitivity 
of the model. Decision Curve Analysis (DCA) 
was performed by the “ggDCA” package. The 
risk score distribution of patients, Survival sta-
tus scatter plots for patients in the prognostic 
model and the heatmap of prognosis-related 
MGs were also displayed. 

Verification of the prognostic ability of this 
model in the testing cohort and the entire co-
hort

To verify the performance of riskScore in the 
testing cohort, survival curves were plotted 
using the “survival” package and “survminer” 
package. A time-dependent ROC curve was 
also performed. We then repeated the verifica-
tion work in the entire cohort (including TCGA 
cohort and GEO cohort). 

In addition, the correlation between the prog-
nostic model (risk genes and riskScore) and 
each clinical feature was analyzed. 

To further evaluate whether our model could be 
used as an independent prognostic factor, we 
included age, gender, pathology stage, histo-
logical grade, T, M, N, and riskScore as inde- 
pendent variables. Univariate cox regression 
analysis and multivariate cox regression analy-
sis were then performed on changes in overall 
survival time and overall survival outcomes.

Verification of the prognostic ability of this 
model in the ArrayExpress cohort

According to our prognostic model, each patient 
in ArrayExpress cohort will get a risk score. 
Then, we use the cutoff value from training 
cohort to divide ccRCC patients into a high-risk 

group and a low-risk group. K-M method was 
utilized to plot the survival curves. And the log-
rank test was performed to assess differences 
in the survival rates between high-risk group 
and low-risk group. The time-dependent ROCs 
were created by the “survivalROC” package. 
The AUC values were calculated to evaluate  
the specificity and sensitivity of the model. 
Next, K-M survival curve analysis was used to 
assess the prognostic value of each risk gene.

Nomogram development and validation for 
prognostic risk prediction 

By “rms” package, a prognostic nomogram was 
also performed to visualize the relationship 
between individual predictors and overall sur-
vival rates in ccRCC patients based on the cox 
proportional hazard regression model.

GO and GSEA enrichment analysis 

The R packages “org.Hs.eg.db” and “clusterPro-
filer” were used for GO annotation and GO 
enrichment analysis of differential genes. 
Gene-set enrichment analysis (GSEA) was us- 
ed to explore the mechanisms that lead to dif-
ferent outcomes between patients in the high-
risk group and patients in the low-risk group.

Somatic variants analysis

To explore the differences in gene mutation fre-
quencies between patients in different groups, 
the somatic variants data of ccRCC patients in 
TCGA database were downloaded. The R pack-
age “maftools” was used to analyze mutation 
data.

Tumor immune analysis

Immune cell infiltration in ccRCC was explored 
by CIBERSORT, a method that has been widely 
used to evaluate immune cell infiltration in 
complex tissues [29]. Tumor Immune Dysfunc- 
tion and Exclusion (TIDE) is a module that  
predicts patient response to immunotherapy 
based on transcriptome data [30]. TIDE scores 
of ccRCC patients was obtained from an online 
application (http://tide.dfci.harvard.edu/).

Drug sensitivity prediction

We predicted the response of ccRCC patients 
to targeted drugs using the Genomics of  
Drug Sensitivity in Cancer (GDSC) database  
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(https://www.cancerrxgene.org). R package 
“pRRophetic” was used to estimate the half-
maximal inhibitory concentration (IC50).

Cell culture and siRNA transfection

Two ccRCC cell lines (786-O and 769-P) were 
purchased from the National Collection of 
Authenticated Cell Cultures (Shanghai, China). 
RPMI-1640 (Gibco, USA) medium containing 
10% FBS (Gibco, USA) was used for cell culture. 
All cells were cultured in a constant tempera-
ture incubator (Thermo, USA) at 37°C with 5% 
carbon dioxide concentration.

SiRNAs used to interfere with intracellular 
PAFAH2 expression levels were synthesized by 
genepharma (Shanghai, China). The sequences 
corresponding to the siRNAs used in this study 
were as follows: si-PAFAH2-1, 5’-GAAAGAAGA- 
CUAUAAUCAAUG-3’; si-PAFAH2-2, 5’-CGAGGA- 
CCUGUGUUCUUUAUC-3’. Lipofectamine 3000 
(Invitrogen, USA) and serum-free opti-MEM 
(Gibco, USA) medium were used to prepare 
transfection complexes.

RNA extraction, reverse transcription, and real-
time quantitative PCR detecting system (RT-
qPCR) assays

Total RNA from cells and tissues was extracted 
by using TRIzol reagent (Invitrogen, America). 
Total RNA was reverse transcribed into cDNA 
using a special reverse transcription kit (Vazy- 
me Biotech, China). RT-qPCR was performed 
according to the protocol of ChamQ SYBR  
qPCR Master Mix (Vazyme Biotech, China). In 
this study, β-actin was used as an endogen- 
ous control. The 2^(-ΔΔCT) method was used to 
analyze the relative expression levels of genes. 
The sequences of primers were as follows: 
PAFAH2, Forward primer 5’-GGGGCTGCTTCTG- 
AGGAATC-3’, Reverse primer 5’-GTCGAAAGAA- 
GCTCCCCTGG-3’; β-actin, Forward primer 5’- 
CTCCATCCTGGCCTCGCTGT-3’, Reverse primer 
5’-GCTGTCACCTTCACCGTTCC-3’.

Western blot and immunohistochemistry as-
says 

Total proteins from cells and tissues were 
extracted using RIPA lysis buffer containing 1% 
Phenylmethanesulfonylfluoride (PMSF) (Beyo- 
time, China). Protein concentration was deter-
mined using the BCA protein assay kit (Beyo- 

time, China). Then 10 μg of protein lysis buffer 
was used for Western Blot assay. In our study, 
10% resolving gels were used for SDS-PAGE. 
The proteins were then transferred to PVDF 
membranes (Millipore, USA). After blocking with 
5% non-fat milk for 2 hours at room tempera-
ture, the membranes were incubated with the 
corresponding primary antibodies for an addi-
tional 12 hours at 4°C (PAFAH2, 1:300, SAB, 
#37205, USA; β-actin, 1:2000, Proteintech, 
#60008-1-Ig, China). Following 4 times of be- 
ing washed with TBST, the membranes were 
incubated with HRP-conjugated secondary  
antibody (1:2500, Proteintech, #SA00001-2, 
China) for 2 hours at room temperature. Finally, 
ECL reagents (Millipore, USA) were used to visu-
alize proteins on membranes.

Paraffin-embedded tissue slides of ccRCC were 
stained using an immunohistochemical detec-
tion kit (Absin, China). The primary antibody to 
PAFAH2 was diluted 1:200 (SAB, #37205, USA).

CCK-8 and EDU assays

The CCK-8 Cell Counting Kit (Vazyme Biotech, 
China) and BeyoClick™ EdU Cell Proliferation 
Kit with Alexa Fluor 555 (Beyotime, China) were 
used to measure the proliferation ability of 
ccRCC cells. For CCK-8 assays, 100 ul of medi-
um containing 2*103 cells was added to each 
well of a 96-well plate. Before measuring, the 
medium in the wells to be tested was replaced 
with fresh medium containing 10% CCK-8, and 
then placed in an incubator for 2 hours. Then  
a microplate reader was used to measure the 
OD of the wells to be tested at a wavelength of 
450 nm.

For EDU assays, 2*104 cells per well of a 24- 
well plate were incubated in a 37°C, 5% CO2 
incubator for 22 hours, then incubated with  
1X EDU solution for 2 hours. Afterwards, cells 
were fixed, reacted, stained, and photographed 
according to standard protocols.

Transwell and wound healing assays

For transwell assays, 2*104 cells transfected 
with si-PAFAH2 for 48 hours were injected into 
a transwell chamber containing serum-free 
medium. RPMI-1640 containing 10% FBS was 
added to the bottom of the chamber. The cham-
bers were then placed in a 37°C incubator  
with 5% CO2 for 24 hours. Then, the migrated 

Table 1. Clinical information of included patients

Clinical parameters Variables TCGA 
cohort

GEO 
cohort

ArrayExpress 
cohort

Survival status Dead 145 16 23
Alive 275 23 78

Age (years) < 65 262 20 52
> 65 or = 65 158 19 49

Gender Male 277 NR 77
Female 143 NR 24
NR 0 39 0

Pathology stage I 215 NR NR
II 44 NR NR
III 95 NR NR
IV 66 NR NR
NR 0 39 101

Histological grade G1 7 NR 13
G2 185 NR 59
G3 164 NR 22
G4 57 NR 5
GX 5 NR 0
NR 2 39 2

Abbreviations: NR, not recorded.
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cells in the chambers were fixed, stained, and 
counted.

For wound healing assays, cells transfected 
with si-PAFAH2 for 48 hours were transferred  
to a 6-well plate. When the cells covered the 
entire well, a 200 ul sterile pipette tip was used 
for trace labeling, and the medium was replaced 
with fresh serum-free medium. Photographs 
were then taken at 0 hours and 16 hours.

Statistical analysis

Statistical analyses of all data were completed 
by R software (version 3.5.1, https://www.r-
project.org/), SPSS 20.0 (IBM), and PRISM 8.0 
(GraphPad software). When the difference met 
a joint satisfaction of FDR < 0.05 and |log2fold 
changes (FC)| > 1, it was regarded to be statis-
tically significant. Student’s t test was used for 
continuous variables, while categorical vari-
ables were compared with the chi-square (χ2) 
test. Wilcoxon rank-sum test was utilized to 
compare ranked data with two categories. One-
way ANOVA was used to analyze CCK-8 assay 
results. The Pearson coefficient was used to 
assess the correlation between two continuous 
variables. The Kruskal-Wallis test was utilized 
for comparisons among three or more groups. 

through the “Limma” package. Then, 479 dif-
ferentially expressed MGs were identified, 
including 196 up-regulated genes and 283 
down-regulated genes (Figure S1A, S1B). By 
univariate Cox regression analysis, a total of 
187 differentially expressed MGs were consid-
ered as prognostic MGs. A PPI network was 
plotted to display the top 30 most associated 
proteins (Figure S2A). Six clusters were identi-
fied by MCODE, and the top 2 clusters with high 
connectivity were shown in Figure S2B, S2C.

To construct a prognostic model index, the 
patients in TCGA database were divided into a 
training cohort and a testing cohort. The 
patients in TCGA database and the patients in 
GEO database were merged as the entire 
cohort. 

After excluding patients with a follow-up surviv-
al time of less than 90 days (n = 15) and ex- 
cluding patients with incomplete clinical infor-
mation (n = 11), we divided the remaining 
TCGA-ccRCC patients into two groups with  
similar composition ratios (296 patients for 
training cohort, 124 patients for testing co- 
hort). Table 1 shows the clinical characteristics 
of patients included in the study.

Table 1. Clinical information of included patients

Clinical parameters Variables TCGA 
cohort

GEO 
cohort

ArrayExpress 
cohort

Survival status Dead 145 16 23
Alive 275 23 78

Age (years) < 65 262 20 52
> 65 or = 65 158 19 49

Gender Male 277 NR 77
Female 143 NR 24
NR 0 39 0

Pathology stage I 215 NR NR
II 44 NR NR
III 95 NR NR
IV 66 NR NR
NR 0 39 101

Histological grade G1 7 NR 13
G2 185 NR 59
G3 164 NR 22
G4 57 NR 5
GX 5 NR 0
NR 2 39 2

Abbreviations: NR, not recorded.

If AUC > 0.60, the model was consid-
ered to have certain predictive value. 
If AUC > 0.75, the prediction model 
was considered to have good predic-
tive value. All statistical tests were 
two-sided and P < 0.05 was statisti-
cally significant.

Results

Construction a prognostic model in-
dex based on differentially expressed 
prognostic MGs

The transcriptome profiling data of 
446 ccRCC tissues and 63 normal 
kidney tissues were downloaded from 
TCGA database. Then, mRNA expres-
sion data of 39 ccRCC patients from 
the GSE29609 dataset were com-
bined with the TCGA cohort. 

After correcting and normalizing the 
data, we obtained the differentially 
expressed gene profile between the 
ccRCC group and the normal group 
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Immediately afterwards, the lasso regression 
and the multivariate Cox regression analysis 
were performed in the training cohort to identi-
fy key risk genes (Figure S1C, S1D). Finally,  
four optimal risk genes (P4HA3, PAFAH2, ALAD, 
and ETNK2) were identified as key risk genes. 
Among these 4 risk genes, P4HA3 was con- 
sidered as predictors of poor prognosis. The 
higher the expression of P4HA3, the worse the 
prognosis of patients. Three other genes, 
ETNK2, PAFAH2, and ALAD, were protective 
factors. According to the results of multivariate 
Cox regression analysis, we obtained the risk 
coefficient of these 4 risk genes and then con-
structed a prognostic model index. The 4 prog-
nostic MGs related PI formula was as follows: 
(P4HA3 expression) * (0.07090771) + (ETNK2 
expression) * (-0.0497429) + (PAFAH2 expres-
sion) * (-0.1753559) + (ALAD expression) * 
(-0.0880467).

Evaluation of the prognostic model index in 
the training cohort and the testing cohort

First, the expression differences of the risk 
genes at the protein level were validated in the 
HPA database (Figure S1E). This indicates that 
our model is credible to a certain extent.

Then, we plotted K-M curves based on the log-
rank test to visualize the prognostic value of 
our model in the training cohort and in the test-
ing cohort (Figures S3A, S4A). We found that 
whether in the training cohort or in the testing 
cohort, patients in the high-risk group have 
worse prognosis than those in the low-risk 
group (HR = 1.1, 95% CI = 1.1-1.2, P < 0.001; 
HR = 1.1, 95% CI = 1.1-1.2, P < 0.001). Figures 
S3B and S4B respectively show the time-
dependent ROC curves of riskScore in predict-
ing the prognosis of training cohort patients 
and testing cohort patients. In the training 
cohort, the AUC of the prognostic model at 1 
year, 3 years, and 5 years were 0.709, 0.719, 
and 0.708 respectively. In the testing cohort, 
the AUC of the prognostic model at 1 year, 3 
years, and 5 years were 0.781, 0.769, and 
0.703 respectively. In addition, DCA analysis 
also demonstrated that riskScore showed the 
best net beneft for overall survival (Figures 
S3C, S4C). Figures S3D and S4D show the 
results of risk classification of patients in  
the training cohort and in the testing cohort 
according to riskScore respectively. From 
Figures S3E and S4E, we found that as the risk 
score increases, the number of dead patients 

increases. The expression patterns of the risk 
genes in the high-risk group and the low-risk 
group are shown in Figures S3F and S4F, from 
which we found that whether in the training 
cohort or in the testing cohort, P4HA3 was  
up-regulated in the high-risk group, down-regu-
lated in the low-risk group. The expression  
patterns of ETNK2, PAFAH2, and ALAD were 
opposite.

Evaluation of the prognostic model index in 
the entire cohort

Figure 1 shows the preliminary validation 
results of the performance of the prognostic 
model in all patients. A K-M curve, a DCA  
curve, and a ROC curve of multiple prognostic 
indicators were created to visualize the prog-
nostic value of our model in the entire cohort 
(Figure 1A-E). The overall survival rate of ccRCC 
patients in the low-risk group was significantly 
better than that in the high-risk group (HR = 
1.1, 95% CI = 1.1-1.2, P < 0.001, Figure 1A). 
DCA suggested that within the risk threshold 
range of 0.21-0.73, riskScore showed the best 
net benefit compared to age, stage, and grade 
(Figure 1B). In addition, the AUC of the pro- 
gnostic model at 3 year, 5 years, and 10 years  
were 0.757, 0.803, and 0.894 respectively, 
while the AUC of stage at 1, 3, and 5 years was 
0.761, 0.712, and 0.641, respectively (Figure 
1C-E). Figure 1F shows the result of risk clas-
sification of patients according to riskScore. 
Figure 1G shows as the risk score increases, 
the number of deaths increases. The expres-
sion patterns of the risk genes in the high-risk 
group and the low-risk group are shown in 
Figure 1H.

Evaluation of the prognostic model index in 
the ArrayExpress cohort

To verify whether our model was reliable, we 
evaluated the prognostic value of riskScore in 
the external cohort from ArrayExpress data-
base (E-MTAB-1980). The external cohort con-
tained 101 patients with ccRCC. Similarly, we 
calculated the risk score of each patient based 
on riskScore. Then we divided the patients into 
a high-risk group and a low-risk group accord-
ing to the cutoff value we obtained in the train-
ing cohort. A K-M curve and a time-depedent 
ROC curve were created (Figure 2A and 2B). 
The AUC values of riskScore were 0.763 for 
1-year-OS, 0.808 for 3-year-OS, and 0.752 for 
5-year-OS. In addition, we further investigated 
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Figure 1. Prognostic analysis of the prognostic model in entire cohort. A. Kaplan-Meier curve analysis of the high-risk and low-risk groups. B. DCA analysis of differ-
ent variables in the TCGA cohort. C. ROC curve analysis of different variables in the TCGA cohort at three years. D. ROC curve analysis of different variables in the 
TCGA cohort at five years. E. ROC curve analysis of different variables in the TCGA cohort at ten years. F. Risk score distribution of patients in the prognostic model. 
G. Survival status scatter plots for patients in the prognostic model. H. Expression patterns of risk genes in the prognostic model.
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Figure 2. Prognostic analysis of the prognostic model in ArrayExpress cohort. A. Kaplan-Meier curve 
analysis of the high-risk and low-risk groups. B. Time-dependent ROC curve analysis of the prognostic 
model. C. Kaplan-Meier survival curve analysis in the high P4HA3 expression group and low P4HA3 
expression group. D. Kaplan-Meier survival curve analysis in the high ETNK2 expression group and 
low ETNK2 expression group. E. Kaplan-Meier survival curve analysis in the high PAFAH2 expression 
group and low PAFAH2 expression group. F. Kaplan-Meier survival curve analysis in the high ALAD 
expression group and low ALAD expression group.
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whether each risk gene is related to the pro- 
gnosis of ccRCC. Figure 2C-F show that risk 
genes are significantly related to prognosis. 
Among them, the higher the expression of 
P4HA3, the worse the prognosis of patients. 
ETNK2, PAFAH2, and ALAD all show the role of 
protective prognostic factors, which is consis-
tent with the conclusions we have obtained 
before.

Clinical correlation analysis

Based on the information of all ccRCC patients 
from TCGA database, the correlation between 
risk factors in the prognostic model (riskScore 
and each component gene) and clinical charac-
teristics such as age, gender, pathology stage, 
histological grade, and TMN was analyzed. 
Figure 3 shows that riskScore was significantly 
correlated with gender, pathology stage, histo-
logical grade, T, and M (Figure 3A).

Independent prognostic factor evaluation 

To further evaluate whether our model could be 
used as an independent prognostic factor, we 
included some key clinical characteristics con-
taining age, gender, pathology stage, histologi-
cal grade, TMN, and riskScore as independent 
variables. Our model showed significant prog-
nostic value in both univariate and multivariate 
cox regression analyses (both P < 0.001, Table 
2). In addition, the results of multivariate Cox 
regression analysis also showed that histologi-
cal grade and M could be used as independent 
prognostic indicators (both P < 0.05).

Nomogram development and validation

To better predict the 1-year OS, 3-year OS, and 
5-year OS of ccRCC patients, we constructed a 
new Nomogram based on the results of the 
multivariate Cox regression analysis of inde-
pendent prognostic factors (Figure 4A). The 
C-index of the nomogram for OS prediction  
was 0.763 (95% CI = 0.701-0.825), while the 
C-index of riskScore for OS prediction was 
0.722 (95% CI = 0.659-0.785) (Figure 4B). 
Figure 4C shows the Calibration curves of the 
nomogram for the probability of OS at 1, 3, and 
5 year. 

Function enrichment analysis and exploration 
of immune landscape

To further explore the possible mechanisms 
that caused different outcomes in the high-risk 

group and the low-risk group, GO enrichment 
analysis and GSEA were performed. GO enrich-
ment indicated that the differential genes 
between the two groups were enriched in some 
humoral immunity-related GO terms (Figure 
5A). Figure 5B plots enriched pathways in the 
high-risk group, while Figure 5C plots enriched 
pathways in the low-risk group. The results of 
GSEA suggested that most of the differentially 
expressed genes in the low-risk group were 
genes related to metabolic pathways. These 
results indicate that riskScore can not only 
reflect the situation of metabolic pathways, but 
may also be related to some tumor immune 
events.

In addition, we explored the relationship 
between riskScore and some immune-related 
activities. We found that chemokine receptors 
(CCR), parainflammation, MHC class I, immune 
checkpoints, T cell co-stimulation, cytolytic 
activity, and inflammation-promoting were sig-
nificantly different between high-risk group  
and low-risk group (Figure 5D). Meanwhile, no 
significant differences in somatic mutations 
were observed between high-risk group and 
low-risk group (Figure 5E). CIBERSORT results 
showed that activated memory CD4+ T Cells, 
regulatory T cells (Tregs), and M0 Macroph- 
ages were highly expressed in the high-risk 
group, while Monocytes, M1 Macrophages, M2 
Macrophages, resting Dendritic cells, and rest-
ing Mast cells were highly expressed in the  
low-risk group (Figure 5F). Correlation analysis 
showed that riskScore was positively correlat-
ed with activated memory CD4+ T Cells, Tregs, 
and M0 Macrophages, and negatively correlat-
ed with Monocytes, M1 Macrophages, M2 
Macrophages, resting Dendritic cells, and rest-
ing Mast cells (Figure 5G). Besides, patients in 
the high-risk group had significantly higher TIDE 
scores than those in the low-risk group (Figure 
5H).

Drug sensitivity prediction

To explore whether riskScore can guide the 
selection of treatment strategies for patients, 
we used the GDSC database to predict the 
response of different subgroups to 8 common 
targeted drugs (Figure S5). A total of 3 target- 
ed drugs showed a significant difference in 
IC50 between high-risk and low-risk groups 
(Sunitinib, Axitinib, and Lapatinib).
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Figure 3. Relationships of the variables in the model with the clinical characteristics of patients in the TCGA cohort. A. riskScore and clinical variables. B. Expression 
of risk genes and age. C. Expression of risk genes and gender. D. Expression of risk genes and grade. E. Expression of risk genes and stage. F. Expression of risk 
genes and T. G. Expression of risk genes and M. H. Expression of risk genes and N. Abbreviations: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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The role of PAFAH2 in ccRCC

Among the 4 key MGs, PAFAH2 (with the high-
est weight coefficient) was selected for further 
functional exploration. Firstly, we verified that 
the mRNA level of PAFAH2 is downregulated  
in cancer tissues (Figure 6A). At the protein 
expression level, CPTAC database analysis, 
Western Blot, and IHC results indicated that 
PAFAH2 was down-regulated in cancer tissues 
(Figure 6B-D).

To reveal the function of PAFAH2 in ccRCC cells, 
we knocked down PAFAH2 in ccRCC cells by 
transfecting siRNAs. Figure 6E shows that 
mRNA levels of PAFAH2 were reduced by 60%-
70% in 786-O cells. Western Blot also yielded 
consistent results (Figure 6F). The proliferation 
ability of 786-O cells and 769-P cells was sig-

nificantly improved after knockdown of PAFAH2 
(Figure 6G, 6H). Similar results were obtained 
in Edu assays (Figure 6I, 6J). In addition, com-
pared with negative control cells, 786-O cells 
and 769-P cells migrated more easily after 
knockdown of PAFAH2. This phenomenon was 
confirmed in transwell assays and wound heal-
ing assays (Figure 6K-M).

Discussion

In recent years, the incidence of asymptomatic 
ccRCC has been increasing. Advanced ccRCC 
patients are prone to poor prognosis and high 
mortality, which brings new challenges to early 
clinical detection and treatment [31]. It is well 
known that chemotherapy and radiotherapy are 
not ideal for the treatment of ccRCC. Although 
targeted drug therapy can inhibit the metasta-

Table 2. Univariate and multivariate cox regression analyses of OS in the TCGA cohort

Variables
Univariate Cox Multivariate Cox

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 
Age 1.014 (0.996-1.032) 0.132 1.027 (1.005-1.049) 0.015
Gender 1.168 (0.728-1.876) 0.519 1.667 (0.978-2.842) 0.060
Histological grade 2.336 (1.692-3.226) < 0.001 1.497 (1.017-2.204) 0.041
Pathological stage 1.831 (1.488-2.254) < 0.001 1.029 (0.520-2.039) 0.934
T 1.952 (1.508-2.527) < 0.001 1.164 (0.595-2.278) 0.658
M 4.382 (2.670-7.192) < 0.001 3.811 (1.314-11.054) 0.014
N 2.701 (1.235-5.908) 0.013 1.503 (0.373-2.972) 0.922
Riskscore 1.134 (1.085-1.184) < 0.001 1.114 (1.053-1.179) < 0.001

Figure 4. Nomogram for the predictions of prognosis at one, three, and five years in the TCGA cohort. A. Nomogram 
for OS. B. Concordance index of the prognostic predictions. C. Calibration curves at 1, 3, and 5 years. 
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Figure 5. Function enrichment analysis and exploration of immune landscape. A. GO enrichment analysis of genes that are differentially expressed between high-
risk and low-risk groups. B. Gene-set enrichment analysis in high-risk group. C. Gene-set enrichment analysis in low-risk group. D. Differences in ssGSEA scores of 
immune cells and immune function between high-risk and low-risk groups. E. Differences in somatic mutation between high-risk and low-risk groups. F. Differences 
in immune cell infiltration between high-risk and low-risk groups. G. Immune infiltrating cells significantly correlated with riskScore. H. Differences in TIDE scores 
between high-risk and low-risk groups. Abbreviations: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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sis and development of advanced tumors to a 
certain extent, drug resistance is inevitable 
[32, 33]. At present, immune checkpoint (PD-1, 
PD-L1, CTLA4, etc.) inhibitors have been used 
for the treatment of advanced ccRCC [34, 35]. 
However, only partial patients can benefit from 
it [6, 7, 36, 37]. Existing studies have shown 
that some commonly used predictors, such as 
tumor mutational burden (TMB), PD-1/PD-L1 
expression, and CD8+ T cell infiltration, cannot 
well predict the response of ccRCC to immune 
checkpoint inhibitors [38, 39]. Therefore, bio-
logical indicators of ccRCC prognosis and 
immunotherapy response have become the 
focus of research in recent years [40, 41].

Changes in metabolic pathways exist in many 
diseases, including tumors. Metabolic repro-
gramming is very important to maintain abnor-
mal proliferation of tumor cells [42]. More and 
more cancer researchers are focusing their 
attention on the mechanism of tumor metabol-
ic changes. A recent study pointed out that  
the heterogeneity of metabolic reprogramming 
within tumors is clearly related to the tumor 
outcome [43]. Novel cancer therapies targeting 
metabolic pathways are being investigated in 
many tumors. Mucin 1 (MUC1), a global regula-
tor of glucose metabolism, has recently been 
identified as a therapeutic target for pancreatic 
cancer. After knocking out MUC1 in pancreatic 
cancer cells, Fu et al. found that metabolic 
activity of the cancer cells was significantly 
reduced and that cancer cells became more 
sensitive chemotherapy [44]. Similarly, in soft 
tissue sarcoma, targeting glutamine metabo-
lism can well inhibit tumor growth [45]. In addi-
tion, drugs that inhibit glucose and lipid metab-
olism can be used to treat lung cancer [46]. 
Recently, some researchers have considered 
that ccRCC is a metabolic disease [27]. They 
suggested that alterations in some metabolic 
pathways could serve as therapeutic targets 
and potential biomarkers for diagnosis and 
prognosis. Lucarelli et al. pointed out that the 

abnormal expression of MGs is closely related 
to the occurrence and development of tumors. 
They further determined that NADH dehydroge-
nase (ubiquinone) 1 alpha subcomplex 4-like 2 
(NDUFA4L2) plays an important role in the 
occurrence and development of ccRCC [47]. 
However, few studies have investigated the 
potential value of MGs in predicting ccRCC 
prognosis and response to immunotherapy.

In this study, we screened and validated the 
prognostic MGs of ccRCC from the TCGA, GEO, 
and ArrayExpress database. Finally, we suc-
cessfully established a risk model (riskScore) 
based on 4 MGs, which can accurately predict 
the prognosis of ccRCC. The scientific model 
construction methods, comprehensive evalua-
tion of prognostic value, and validation in mul-
tiple databases make the riskScore highly reli-
able. According to the riskScore, patients with 
different survival outcomes can be accurately 
distinguished. In addition, GO and GSEA analy-
sis results suggest that the disorder of meta-
bolic pathways and immune-related activities 
plays a very important role in ccRCC. Whether 
metabolic disturbances in ccRCC lead to altera-
tions in TME? Recent studies have shown that 
the TME of ccRCC is closely related to the 
response to immune checkpoint inhibitors  
[48, 49]. Therefore, we further explored the 
relationship between riskScore and TME. Our 
study found that riskScore was significantly 
positively correlated with the infiltration of  
activated memory CD4+ T Cells, Tregs, and M0 
Macrophages. This may be because higher risk 
scores indicate worse metabolic disorders. 
Intratumoral metabolic disorders are often 
accompanied by elevated lactate levels and 
abnormal chemokine receptor (CCR) expres-
sion, leading to the recruitment of macrophag- 
es and tregs, and the construction of immuno-
suppressive TME [28, 50-52]. This also explains 
why patients in the high-risk group have higher 
TIDE scores.

Figure 6. PAFAH2 is lowly expressed in ccRCC and can inhibit the proliferation and migration of ccRCC cells. (A) 
Relative mRNA expression levels of PAFAH2 in ccRCC tissues (32 pairs). (B) Protein expression levels of PAFAH2 in 
ccRCC tissues (CPTAC database). (C) Protein expression levels of PAFAH2 in 4 ccRCC tissues (Western Blot). (D) IHC 
staining of PAFAH2 protein in ccRCC patient tumors and matched paracancerous tissues. (E, F) The effect of PAFAH2 
siRNAs in 786-O cells was assessed by qRT-PCR (E) and Western Blot (F). (G, H) CCK-8 assays showed that knock-
down of PAFAH2 levels increased the proliferation of ccRCC cells (G: 786-O, H: 769-P). (I, J) EDU assays suggested 
that knockdown of PAFAH2 levels increased the proliferation of ccRCC cells (I: 786-O, J: 769-P). (K) Transwell assays 
indicated that knockdown of PAFAH2 levels increased the migratory ability of ccRCC cells. (L, M) Wound healing as-
says showed that ccRCC cells with low levels of PAFAH2 moved more rapidly (L: 786-O, M: 769-P). Abbreviations: *, 
P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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P4HA3, ETNK2, PAFAH2, and ALAD are the four 
risk MGs we identified. Among them, P4HA3 
was considered as predictors of poor progno-
sis. The higher the expression of P4HA3, the 
worse the prognosis of patients. Three other 
genes, ETNK2, PAFAH2, and ALAD, were pro-
tective factors. P4HA3, encoding a component 
of prolyl 4-hydroxylase, can catalyze a 4-hydrox-
ylation on prolines in collagen. Studies have 
shown that P4HA3 can promote the invasion 
and metastasis of tumors by stabilizing colla-
gen [53]. In melanoma, P4HA3 promotes the 
proliferation and invasion of melanoma cells 
[54]. In addition, P4HA3 has been shown to be 
closely related to the poor survival outcomes  
of breast cancer and gastric cancer [55, 56]. 
Therefore, the mechanism of P4HA3 overex-
pression in the occurrence and development of 
ccRCC needs further research and exploration. 
ETNK2 (Ethanolamine Kinase 2) is involved in 
phosphatidylethanolamine biosynthesis II and 
Glycerophospholipid biosynthesis. Disorders of 
phospholipid metabolism have been found to 
be related to tumor progression in a variety of 
cancers, including glioblastoma, lung cancer, 
liver cancer and kidney cancer [57, 58]. The 
decreased expression of ETNK2 is related to 
the progression of prostate cancer [59]. PAFA- 
H2 is closely related to ether lipid metabolism. 
Kono et al. revealed that PAFAH2 is involved in 
the metabolism of esterified 8-isoprostaglan-
din F (2alpha) and protects tissue from oxida-
tive stress-induced injury [60]. However, the 
relationship between PAFAH2 and the progno-
sis of ccRCC remains unclear. This research 
suggests that high expression of PAFAH2 is 
associated with better prognosis in ccRCC. 
Experiments in vitro (786-0 cells and 769-P 
cells) also showed that PAFAH2 has a tumor 
suppressor effect. ALAD Catalyzes an early 
step in the biosynthesis of tetrapyrroles. ALAD 
has been found to be related to the favorable 
survival outcome of breast cancer patients. 
Overexpression of ALAD can inhibit the prolif-
eration and invasion of breast cancer cells [61]. 

This research suggests that changes in the 
expression of some MGs are closely related to 
the prognosis, and TME of ccRCCs. Considering 
that alterations in metabolic pathways and 
MGs play important roles in the occurrence, 
development, and prognosis of ccRCC, we won-
dered whether some metabolic biomarkers  
can be used to improve the early diagnosis rate 

of ccRCC, which requires further research to 
explore. In addition, our research also sheds 
new light on the treatment of ccRCC.

However, our study still has some limitations: 
The results of our study were only validated in 
the TCGA, GEO, and ArrayExpress database. 
More data support from clinical patients is 
needed. In addition, the mechanism by which 
MGs affect the prognosis of patients with 
ccRCC needs to be further explored through in 
vivo and in vitro experiments.

Conclusions

All in all, we have successfully established a 
risk model (riskScore) based on 4 MGs, which 
could accurately predict the prognosis of cc- 
RCCs and help to screen patients suitable for 
immune checkpoint inhibitors therapy. We also 
preliminarily verified the tumor suppressor 
effect of the key gene PAFAH2 in ccRCC. Our 
research may shed new light on ccRCC pati- 
ents’ prognosis and treatment management. 
However, further experiments are also required 
to validate our findings.
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Figure S1. Identification of differentially expressed MGs and further analysis of the prognostic differentially ex-
pressed MGs in the training cohort. A. Heat map of MGs; the blue to red spectrum indicates low to high gene expres-
sion. B. Volcano plot of MGs; the blue dots represent downregulated MGs, the red dots represent upregulated MGs 
and the black dots represent MGs that were not significantly differentially expressed. C, D. Prognostic differentially 
expressed MGs selected through Lasso regression. E. Validation of risk genes at the protein level by The Human 
Protein Atlas database (IHC). a. Expression of P4HA3 in normal kidney tissue and renal cancer tissue (40×). b. Ex-
pression of PAFAH2 in normal kidney tissue and renal cancer tissue (40×). c. Expression of ALAD in normal kidney 
tissue and renal cancer tissue (40×). d. Expression of ETNK2 in normal kidney tissue and renal cancer tissue (40×). 
In normal tissues, there are two types of IHC. The former refers to the staining state of cells in glomeruli, the latter 
refers to the staining state of cells in tubules. Abbreviations: L, Low; Med, Medium; H, High; ND, not detected; W, 
Weak; Mod, Moderate; S, Strong; N, None.
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Figure S2. The protein-protein interaction (PPI) network of top 30 hub genes, as well as top 2 modules were con-
structed. A. The PPI network of the intersects genes. B, C. Top 2 hub modules were identified by MCODE.
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Figure S3. Prognostic analysis of the prognostic model in training cohort. A. Kaplan-Meier curve analysis of the high-risk and low-risk groups. B. Time-dependent 
ROC curve analysis of the prognostic model. C. DCA analysis of different variables in training cohort. D. Risk score distribution of patients in the prognostic model. 
E. Survival status scatter plots for patients in the prognostic model. F. Expression patterns of risk genes in the prognostic model.
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Figure S4. Prognostic analysis of the prognostic model in testing cohort. A. Kaplan-Meier curve analysis of the high-risk and low-risk groups. B. Time-dependent 
ROC curve analysis of the prognostic model. C. DCA analysis of different variables in testing cohort. D. Risk score distribution of patients in the prognostic model. E. 
Survival status scatter plots for patients in the prognostic model. F. Expression patterns of risk genes in the prognostic model.
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Figure S5. The drug sensitivity of eight common targeted compounds. A. IC50 of sunitinib in the high-risk and low-risk groups. B. IC50 of axitinib in the high-risk 
and low-risk groups. C. IC50 of pazopanib in the high-risk and low-risk groups. D. IC50 of sorafenib in the high-risk and low-risk groups. E. IC50 of lapatinib in the 
high-risk and low-risk groups. F. IC50 of eriotinib in the high-risk and low-risk groups. G. IC50 of gefitinib in the high-risk and low-risk groups. H. IC50 of rapamycin 
in the high-risk and low-risk groups.


