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Abstract: Identification of the genomic features responsible for the progression of Multiple Myeloma (MM) cancer 
from its precancerous stage MGUS can improve the understanding of the disease pathogenesis and, in devising 
suitable preventive and treatment measures. We have designed an innovative AI-based model, namely, the Bio-
inspired Deep Learning architecture for the identification of altered Signaling Pathways (BDL-SP) to discover pivotal 
genomic biomarkers that can potentially distinguish MM from MGUS. The proposed BDL-SP model comprehends 
gene-gene interactions using the PPI network and analyzes genomic features using a deep learning (DL) architec-
ture to identify significantly altered genes and signaling pathways in MM and MGUS. For this, whole exome sequenc-
ing data of 1174 MM and 61 MGUS patients were analyzed. In the quantitative benchmarking with the other popular 
machine learning models, BDL-SP performed almost similar to the two other best performing predictive ML models 
of Random Forest and CatBoost. However, an extensive post-hoc explainability analysis, capturing the application 
specific nuances, clearly established the significance of the BDL-SP model. This analysis revealed that BDL-SP iden-
tified a maximum number of previously reported oncogenes, tumor-suppressor genes, and actionable genes of high 
relevance in MM as the top significantly altered genes. Further, the post-hoc analysis revealed a significant contri-
bution of the total number of single nucleotide variants (SNVs) and genomic features associated with synonymous 
SNVs in disease stage classification. Finally, the pathway enrichment analysis of the top significantly altered genes 
showed that many cancer pathways are selectively and significantly dysregulated in MM compared to its precursor 
stage of MGUS, while a few that lost their significance with disease progression from MGUS to MM were actually 
related to the other disease types. These observations may pave the way for appropriate therapeutic interventions 
to halt the progression to overt MM in the future.
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Introduction

Multiple Myeloma (MM) is a neoplasm of malig-
nant plasma cells in the bone marrow, preced-
ed by the precancerous stage of Monoclonal 
Gammopathy of Undetermined Significance 
(MGUS). Presently, the distinction between MM 
and its precursor states (MGUS and smoldering 
multiple myeloma (SMM)) is based on the clini-
cal symptoms and disease load including the 
percentage of aberrant plasma cells in the 
bone marrow, levels of monoclonal protein 
secreted by the aberrant plasma cells, and the 

extent of dysregulation of normal homeostasis. 
However, in clinical practice, distinction be- 
tween different stages is at times ambiguous. 
The role of an early treatment and the type of 
such treatment to prevent progression to MM 
or to reduce the associated morbidity is also 
not clear. Although survival in MM has improved 
notably over the last few years, myeloma 
remains an incurable disease with an overall 
median survival of 2 to 10 years, depending on 
the response to the treatment. Thus, it would 
be interesting to decipher genes, genomic bio-
markers and crucial pathogenic prognostic fac-
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tors that are representative of MGUS and MM 
in order to develop appropriate therapeutic 
interventions to halt the progression to overt 
MM.

Multiple studies involving exome data have 
been performed to understand the genomic 
abnormalities driving tumor progression in MM. 
Exome data analysis of MM patients has 
revealed that the primary events in MM are 
either hyperdiploidy, i.e., trisomy of chromo-
somes 3, 5, 7, 9, 11, 15, 17 and/or 21, or non-
hyperdiploidy involving translocations affecting 
the genes encoding immunoglobulin (Ig) heavy 
chains (IGH)-mainly t(4;14), t(6;14), t(11;14), 
t(14;16), and t(14;20) [1]. Primary events are 
then followed by multiple secondary events 
that are secondary translocations: t(8;14) 
linked with MYC overexpression, loss of he- 
terozygosity, copy number variations (CNV), 
acquired mutations, and epigenetic modifica-
tions [1], contributing to tumorigenesis. Initial 
deep sequencing studies on 38 whole-genome 
sequencing (WGS) and 23 whole-exome 
sequencing (WES) MM patients revealed fre-
quent mutations in NF-kB signaling pathway 
and activating mutations in the oncogene  
BRAF [2]. In another study based on the WES 
data of 84 MM patients, SP140, LTB, ROBO1, 
and EGR1 genes were identified as the novel 
drivers of MM [3]. Similarly, the analysis of 463 
WES data of MM patients revealed 15 recur-
rently mutated genes: IRF4, KRAS, NRAS, MAX, 
HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, 
DIS3, BRAF, LTB, CYLD, and FGFR3 [4]. Further, 
the analysis of same 463 MM samples report-
ed RAS and NF-Kappa-B pathways as most 
altered signaling pathways. Furthermore, the 
same study reported that the mutations in 
CCND1 and DNA repair pathway genes-TP53, 
ATM, and ATR, adversely impacted the overall 
survival, while the alterations in IRF4 and  
EGR1 were associated with a favorable overall 
survival.

Another study on the exome data analysis of 
203 MM patients demonstrated tumor hetero-
geneity with subclonal pattern of mutations 
and multiple mutations within the same path-
way in the same patient [5]. A recent study on 
62 newly diagnosed MM (NDMM) patients 
reported the association of changes in the cel-
lular prevalence of mutations with disease pro-
gression [6]. Another study explored oncogenic 
dependencies between mutations in driver 

genes, hyperdiploidy events, primary transloca-
tions, and copy number alterations in MM 
patients [7]. Associations were established 
between t(4;14) and mutations in FGFR3, DIS3, 
and PRKD2; t(11;14) and mutations in CCND1 
and IRF4; t(14;16) and mutations in MAF,  
BRAF, DIS3, and ATM; and hyperdiploidy with 
gain 11q and mutations in FAM46C, and MYC 
rearrangements [7]. A recent study demon-
strated the co-occurrence of mutations within 
the same or a different clone and the clonal 
shifts in the co-occurring and mutually exclu-
sive mutations with progression in MM [8]. 
Similar phenomena may be occurring from the 
stage of MGUS to overt MM and require to be 
evaluated. Analysis of WES data of unpaired 
samples of MGUS and MM has been carried 
out by several groups [9-12]. These studies 
have demonstrated a less complex genomic 
architecture in MGUS compared to MM with 
fewer mutations and lower TMB in MGUS. In a 
landmark study, the analysis of paired samples 
of MGUS and MM reaffirmed the clonal hetero-
geneity and presence of majority of genomic 
changes at MGUS stage [13]. The existence of 
the majority of genomic abnormalities seen in 
MM at the MGUS stage poses a challenge in 
distinguishing MM from MGUS based on the 
genomic signatures and in defining critical 
genomic events responsible for the progres-
sion of MGUS to MM [9-13]. 

The early diagnosis of MM and the identifica-
tion of relevant differentiating genomic bio-
markers between MGUS and MM present  
several challenges at the genomic-level and  
the subject-level. The unavailability of paired 
sequencing data (that is, sequencing data of 
MGUS and MM from the same sample), 
because all the MGUS subjects do not progress 
to MM, and the unavailability of reliable work-
flows for analyzing a pool of a large mutational 
information to decipher accurate and reliable 
genomic information, biomarkers, and signifi-
cantly altered pathways pose key challenges at 
the genomic-level. Moreover, at the subject-
level, limited information in the studies about 
the time intervals of a subject’s treatment and 
death times pose key challenges in pursuing 
disease progression and a reliable identifica-
tion of critical genes, genomic features, and 
signaling pathways for targeted therapeutics. 

With advancements in bioinformatics and 
increasing inclination toward machine learning 
(ML) or deep learning (DL), newer methods are 
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being developed for deducing salient informa-
tion from the genomics data. For example, ML 
models have been developed to predict the sur-
vival outcome and treatment sensitivity in mul-
tiple myeloma [14, 15]. Similarly, AI-assisted 
risk stratification models for the prediction of 
survival and deciding the treatment regimen 
have been developed for the newly diagnosed 
multiple myeloma patients [16, 17]. Pathway 
enrichment analysis and classification has 
been shown to improve with the imputation of 
missing values in the microarray data of blood 
cancers via ML methods [18, 19]. ML/DL meth-
ods have also been proposed to detect somatic 
mutations from whole exome sequencing data 
[20, 21], prediction of copy number variants 
from whole exome data [22-24], driver genes in 
cancer [25-29] and, prediction of the survival-
outcome and treatment-sensitivity in MM [14, 
15]. 

However, the multi-dimensional analysis of 
exonic mutational profiles from exome sequenc-
ing data with gene-gene interaction has not yet 
been explored. This can be a promising direc-
tion for detecting key biomarkers in any cancer 
type. In recent years, geometric deep learning 
(GDL) has emerged to incorporate graph struc-
tures into a deep learning framework. Graph 
Convolutional Networks (GCNs) [30, 31], a type 
of GDL, can learn gene regulatory networks and 
do disease classification based on the network 
topology and disease-associated features, 
enabling an integration of graph-based data 
with genomic profiles [32]. The protein-protein 
interaction (PPI) network captures the physical 
interactions between proteins in an organism. 
Since the level of proteins and their interplay 
govern the molecular, cellular, and signaling 
controls which are the key to gene-level func-
tionality and can help in capturing disease  
specific information, PPI networks can be 
immensely helpful if utilized alongside genomic 
information. A study on the exploration of the 
PPI network reported that the disease-related 
components in the PPI network are likely to be 
found in the network-based vicinity of disease 
components [33]. Similarly, another study on 
the PPI network revealed that the genes that 
contribute to a common disorder show an 
increased tendency of their protein-protein 
interactions [34]. These observations indicate 
that, due to the interconnected nature of a PPI 
network, genes belonging to similar diseases 

have a high predilection for interacting with 
other genes, forming a disease module. 
Therefore, identifying such genes or disease 
modules with the help of the PPI network can 
divulge the disease-related signaling pathways 
or other disease genes. These observations 
motivated us to incorporate the biological inter-
actions in between genes as a key attribute of 
the bio-inspired BDL-SP model. Thus, we have 
incorporated the PPI information from the 
STRING database [35], which is the most com-
prehensive and global PPI network. 

Motivated by the above discussion, this study 
addresses the problem of identifying signifi- 
cant biomarkers that differentiate MGUS from 
MM by incorporating a multidimensional analy-
sis of exome profiles and their PPI network in a 
bio-inspired deep learning-based architecture 
from signaling pathways (BDL-SP) model. One 
of the challenges with this task is the ability to 
analyze a large amount of mutational informa-
tion, a significant amount of which overlap in 
MGUS and MM samples. Since this mutational 
information is not easy to decipher for extract-
ing differentiable patterns among MGUS and 
MM, the current literature shows this gap. To 
address the above gap, we have designed  
and implemented a GCN-based model, a bio-
inspired deep learning-based architecture from 
signaling pathways (BDL-SP), for extracting 
important genomic information to discern 
MGUS and MM. BDL-SP model uses single 
nucleotide variation (SNV) profiles of the signifi-
cantly altered genes from the exome sequenc-
ing data along with the topological features of 
the PPI network, with an aim to identify pivotal 
biomarkers that can distinguish MGUS from 
MM. An in-depth analysis has been carried out 
for the identification of significantly altered 
genes and pathways that are specifically asso-
ciated with MM and may be beneficial for the 
early identification of MGUS patients who are at 
a high risk of progression to the malignant MM 
stage. This work can further lead to the identifi-
cation of novel therapeutic targets, thereby, 
preventing or delaying the malignant transfor-
mation of MGUS to MM. 

For post-hoc model explainability, ShAP (SHapl- 
ey Additive exPlanations) [36] algorithm is con-
sidered as one of the emerging and preferred 
approaches for decoding a DL model as well as 
for estimating feature importance based on 
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their contribution to the model’s predictions. 
The ShAP algorithm incorporates model-agnos-
tic approximations and uniformly characterizes 
an approach for model explainability [37, 38]. 
We aimed to use ShAP for post-hoc explainabil-
ity in order to extract the underlying cause of 
the model’s predictions by analyzing the ShAP 
score of each individual gene and genomic fea-
ture. We ranked the significantly altered genes 
based on their contribution to disease classifi-
cation using the ShAP score. Among all the ML 
models trained in this study, BDL-SP model 
reported the highest numbers of previously 
reported driver genes, oncogenes, TSGs, and 
actionable genes in the top-ranked significantly 
altered genes compared to the other models. 
BDL-SP model also shows novel genes in the 
top-ranking genes that are not reported in MM 
but found significantly altered and contributing 
significantly to the disease prediction. We per-
formed pathway enrichment analysis for top-
500 significantly mutated genes. We analyzed 
whether an altered signaling pathway becomes 
more or less significant with disease progres-
sion from MGUS to MM. We observed that sev-
eral signaling pathways either become signifi-
cant (from being insignificant at MGUS) or 
become more significant with disease progres-
sion from MGUS to MM.

We benchmarked the BDL-SP with several 
baseline ML models both quantitatively and 
qualitatively, and observed that BDL-SP out- 
performed the other models in both aspects. 
With the help of the BDL-SP model, we identi-
fied the genes and their corresponding enriched 
signaling pathways that significantly contribut-
ed to MM disease development. The BDL-SP 
model’s findings helped us to improve the 
understanding of cell transformation from pre-
malignant to malignant state and strategic 
diagnosis to support the early detection of 
transformation to MM.

Material and methods

Whole-exome sequencing datasets of MM and 
MGUS patients

In this work, we utilized two external whole-
exome sequencing (WES) datasets available 
with controlled access and one in-house WES 
dataset of MM and MGUS patients. These  
datasets are: 1) Multiple Myeloma Research 
Foundation (MMRF) CoMMpass data (of Ame- 

rican population), 2) EGA dataset (of European 
population), and 3) AIIMS WES dataset (of 
Indian population). The MMRF CoMMpass 
(https://research.themmrf.org) is an open-
source, extensive clinical and molecular data-
base of multiple myeloma. The majority of MM 
samples in MMRF CoMMpass dataset (>75%) 
were collected from the people of American 
ethnicity. The MMRF CoMMpass dataset is 
aimed to provide molecular characterization 
and to correlate clinical datasets of MM 
patients for finding new, actionable targets to 
facilitate future clinical trial designs [39]. In our 
study, we have included 1092 bone marrow 
(BM) samples of MM collected from the GDC 
portal via dbGaP authorized access (phs- 
000748; phs000348). This is to note that the 
MMRF dataset also contained 20 peripheral 
blood (PB) samples that were not included in 
this study for the uniformity of the data. 
Similarly, the European Genome-phenome 
Archive (EGA) contains more than 700 studies 
of multiple diseases (including cancer and non-
cancer) worldwide. EGA (http://www.ebi.ac.uk/
ega/) was launched in 2008 by the European 
Molecular Biology Laboratory’s European 
Bioinformatics Institute (EMBL-EBI) to provide 
secure storage of biological data and distribu-
tion only to authorized users [40]. The whole 
exome sequencing data of 33 MGUS Eur- 
opean patients were obtained from the EGA 
repository EGAD00001001901. Besides the 
above two external datasets, we also included 
the WES data collected in-house from patients 
of Indian origin registered at All India Institute 
of Medical Sciences (AIIMS), New Delhi, India. 
This dataset included 82 MM and 28 MGUS 
samples. We have used the tumor-normal 
matched pairs of all BM samples obtained from 
MMRF, EGA and AIIMS WES data repository. 
Thus, we have included MGUS and MM WES 
datasets from three different databases. 

Methods

Data pre-processing: Four variant callers, 
namely, MuSE [41], Mutect2 [42], VarScan2 
[43], and Somatic-Sniper [44], were used for 
finding the variants in MM patients from the 
MMRF CoMMpass study. Therefore, for each 
patient, four variant call format (VCF) files cor-
responding to each variant caller were down-
loaded from the GDC portal via dbGaP autho-
rized access (phs000748; phs000348). Exome 
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data obtained from EGA and AIIMS were pro-
cessed with an exome sequencing pipeline [45] 
using BWA [46] and GATK [47], which is also 
considered a standard pipeline and mostly 
adopted to process the exome sequencing 
data. Similar to the MMRF data, the single 
nucleotide variants (SNVs) in EGA and AIIMS 
exome sequencing data were extracted us- 
ing MuSE, Mutect2, VarScan2, and Somatic-
Sniper variant callers. SNVs were annotated 
using ANNOVAR tool [48] that provides in- 
formation about mutated genes, mutation type, 
the property of being deleterious or not, and 
clinical validation. In our study, we considered 
23 types of functionally significant SNVs clus-
tered into three groups based on their func- 
tional impact as follows: 1) Non-Synonymous 
(NS) SNV Group: This group consists of non-
synonymous SNVs, exonic, ncRNA_exonic, stop 
gain, stop loss, start loss, exonic; splicing,  
splicing, frameshift insertion, and frameshift 
deletion type SNVs; 2) Synonymous SNV  
Group: This group consists of synonymous 
SNVs, UTR3 and UTR5 SNVs; and 3) Other SNV 
Group: This group consists of non-frameshift 
insertion/deletion/substitution, intronic, inter-
genic, ncRNA_intronic, upstream, downstream, 
unknown, and ncRNA_splicing SNVs. The 
benign SNVs were filtered out using the 
FATHMM-XF method [49]. Genomic annota- 
tions of SNVs (i.e., SNV type, mutated gene 
name, etc.) obtained from ANNOVAR were 
pooled and analyzed to identify the top signifi-
cantly mutated genes using the ‘dndscv’ tool 
[50] based on the q-value (≤0.05) in both MM 
and MGUS individually. Union of significantly 
mutated genes from all four variant callers for 
MM (1174 patients) and MGUS (61 patients) 
groups led to 617 and 362 genes, respectively, 
and further union of the genes mentioned 
above yielded a total of 824 genes (Table S1 of 
supplementary material). For each gene, a total 
of 28 genomic features were created that 
includes total variant count and the distributive 
statistics (maximum, mean, median, and stan-
dard deviation) of variant allele frequency (VAF) 
and allele depth (AD) of each of the three 
groups of SNVs (NS SNV group, synonymous 
SNV group, and Other SNV group). A detailed 
description of the 28 genomic features is pre-
sented in Figure 1. The complete AI workflow is 
presented in Figure 2. For gene-gene interac-
tion network information, we used the STRING 
database to get protein-protein interaction 

(PPI) of 824 significantly altered genes. The 
STRING database contains all the known and 
predicted associations of protein-protein inter-
actions, including physical and functional asso-
ciations for more than 14000 organisms. 

Proposed shallow bio-inspired deep learning 
architecture from signaling pathways (BDL-SP): 
The conventional convolutional neural network 
(CNN) often fails to learn data of non-Euclidean 
space because non-Euclidean data cannot be 
modeled into n-dimensional linear space. The 
protein-protein interaction (PPI) network used 
in our model has a similar underlying non-
Euclidean structure. Thus, a Graph Convolu- 
tional Network (GCN) could help us learn PPI 
data of non-Euclidean space. The proposed 
BDL-SP model carries out disease classifica-
tion using a graph convolutional network that 
learns significant features from the exomic 
mutational profiles of genes interacting among 
each other according to the PPI network inter-
actions. The mathematical description of GCN 
model is as follows: 

For a given undirected graph, g = (v, ε) where v 
is a collection of a finite set of nodes and ε is a 
collection of the finite set of edges, a graph 
convolution network learn the node represen-
tation by applying the graph laplacian with the 
input feature matrix (X ϵ RN×p, where N denotes 
the number of nodes and p the number of fea-
tures) and follows the propagation rule for each 
layer shown below:

H(l+1) = σ(LH(l)W(l))

Where L denoted the normalized graph lapla-
cian defined below.

L I D ~AD U U2
1

2
1 T= - = /

- -

Where Di,j j 1
n= R = A(i,j), degree matrix of the 

graph and Au  = A+I where A is the adjacency 
matrix, U is the matrix of eigenvectors of graph,  
/  denote the respective eigenvectors, and W ϵ 
Rp×m (where m corresponds to the number of 
filters in the graph convolution) denotes a learn-
able weight matrix. A GCN model transform a 
graph into the spectral domain by graph Fourier 
transformation [30] defined as below:

x * g = UgUTx

The above Fourier transformation can be com-
puted by approximating Chebyshev polynomi-
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als and the renormalization trick mentioned in 
[30] as:

Z D AD X W2
1

2
1

= - -u u u

The infographic representation of the architec-
ture of BDL-SP with end-to-end pipeline is 
shown in Figure 3 and is explained here. The 
BAM files from EGA and AIIMS datasets, and 
VCF files from the MMRF dataset are processed 
to extract 824 significantly altered genes using 
the dndscv tool (as shown in the WES Data  
pre-processing block) in Figure 3. The interac-
tion among these 824 genes is extracted us- 
ing the protein-protein interaction (PPI) network 
(from the STRING database). A network of 
nodes and edges is set-up using this informa-
tion, where each node denotes one of these 
824 genes and each link implies that the two 
nodes/genes of that link were connected as 
per the PPI network. Each node is set up with 
its 28-length feature-vector extracted earlier 
(as shown in Figure 1). Hence, the 28-length 
genomic feature-vectors of all 824 genes are 
added to the network established using the  
PPI network. This input layer is followed by two 
hidden layers of GCN, that are further followed 
by one fully connected layer of 824 neurons to 
2 neurons giving output through log-softmax 
activation function. Since there were 95% sam-
ples of MM class and 5% samples of MGUS 
class, which made the data highly imbalanced 
(class imbalance ratio = 19.22), a cost-sensi-
tive loss function was utilized to train the BDL-
SP model in order to deal with the data imbal-
ance problem. BDL-SP is trained in a super-
vised fashion, where the MM/MGUS target 
class label along with the feature matrix of 
824×28 is provided as an input to the ar- 
chitecture. The network is trained until the loss 
reduces and saturates. Five-fold cross-valida-
tion is performed that led to the training of five 
BDL-SP classifiers, one for each fold of test 
data. Next the ShAP algorithm is used on the- 
se five trained BDL-SP classifiers to obtain the 
top genomic features and significantly altered 

signaling pathways as explained in the next 
subsection. The setting of layers of BDL-SP and 
the hyperparameters values are shown in Table 
1.

Quantitative benchmarking of BDL-SP model 
with traditional machine learning classifiers: 
We have benchmarked the proposed BDL-SP 
model with six baseline ML models (random 
forest, decision tree, logistic regression, 
XGBoost, CatBoost, and SVM from scikit-
sklearn [51]). The conventional cost-blind 
machine learning models do not account for 
the imbalanced classes in the data and tend to 
make decisions favoring the majority class 
resulting in misclassification. In the case of 
medical diagnosis, such misclassification can 
lead to erroneous direction of strategic treat-
ment, causing patients to suffer. In our study, 
there were 95% samples of MM class and 5% 
samples of MGUS class, which made the data 
highly imbalanced (class imbalance ratio = 
19.22). Therefore, we have used cost-sensitive 
ML models to account for the class imbalance 
in our data and model benchmarking. During 
training, the cost-sensitive loss function penal-
izes the mistake in identifying each MGUS sam-
ple (minority class) more compared to the mis-
take in identifying each MM sample (majority 
class). This ensures that the classifier is not 
biased to the majority class and learns to iden-
tify the samples of both the classes. These 
baseline models are trained with the traditional 
data pre-processing pipeline using principal 
component analysis (PCA). Each baseline ML 
model was trained exhaustively with five-fold 
cross-validation, where the confusion matrix of 
the hold-out set was kept separate for each 
fold. The final confusion matrix was obtained by 
adding the confusion matrices of all five hold-
out sets and the performance metrics were cal-
culated for each ML model.

Qualitative application-aware post-hoc bench-
marking of BDL-SP model using ShAP: ShAP 
(SHapley Additive exPlanations) is an algorithm 

Figure 1. Schematic layout of genomic feature matrix used for the training of proposed BDL-SP model. The dimen-
sion of the genomic feature matrix is 824×28 with 824 significantly altered genes (See Table S1 of supplementary 
material) and 28 genomic features obtained from MMRF, EGA and AIIMS WES datasets using the AI-based workflow 
shown in Figure 2. The genomic features were extracted from three groups of SNVs, namely, 1. Non-synonymous 
SNV group, 2. Synonymous SNV group, and 3. Other SNV group. A total of nine features were extracted for each 
SNV group to learn the distributive statistics (maximum, mean, median, and standard deviation). The full form of 
abbreviations used in this figure are as follows: SNVs = Single Nucleotide Variations, VAF = Variant Allele Frequency, 
and AD = Allele Depth.

http://www.ajcr.us/files/ajcr0148190suppltab1.xlsx
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that measures the significance of an attribute 
in the prediction of a model, scoring each attri-
bute proportional to its contribution. Therefore, 
it was utilized for the post-hoc explainability  
of the BDL-SP model. The most-contributing 
genomic features and significantly altered 
genes at the group (i.e., either MGUS or MM) as 
well as at the individual sample-level were iden-
tified. Since five-fold validation was carried out 

during training, the ShAP algorithm was applied 
on each trained classifier to obtain the signifi-
cant genomic attributes (both genes and 
genomic features) for each sample. Note that 
the ShAP score can either be positive or nega-
tive. Here, the positive ShAP score for an attri-
bute indicates its contribution to the model’s 
prediction toward the MGUS class (positive 
class), while the negative score indicates its 

Figure 2. AI-based workflow to infer differentiable genomic biomarkers to identify MGUS and MM using the whole-
exome sequencing (WES) data.

Figure 3. Infographic representation of the proposed AI-based BDL-SP model architecture and the application-aware 
post-hoc analysis for the identification of pivotal genomic biomarkers that distinguish MGUS from MM. The BAM files 
from EGA and AIIMS datasets and VCF files from MMRF dataset are processed to extract 824 significantly altered 
genes using the dndscv tool (as shown in the WES Data pre-processing block). The interaction among these 824 
genes is extracted using the protein-protein interaction (PPI) network (from STRING database). A network of nodes 
and edges is set-up using this information, where each node denotes one of these 824 genes and each link implies 
that the two nodes/genes of that link were connected as per the PPI network. Each node is set up with its 28 ge-
nomic features extracted for the corresponding gene as explained earlier. This input layer is followed by two hidden 
layers of GCN, one fully connected layer, and a softmax layer at the output. Thus, each subject’s WES data is ana-
lyzed and the feature vectors of all 824 genes are extracted. These are given as input along with the subject’s MM/
MGUS target class label to train the GCN in a supervised mode. Once the BDL-SP model is learned to distinguish 
MGUS from MM, the top genomic features and significantly altered signaling pathways were obtained from ShAP 
algorithm and the Enrichr Pathway Database.
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contribution to the model’s prediction toward 
the MM class (negative class). Therefore, the 
higher the magnitude of the ShAP score, the 
higher its impact on the model’s positive class 
outcome. Moreover, only those samples were 
considered for extracting ShAP interpretability 
that were correctly predicted by at least one of 
the five classifiers.

Next, we devised the algorithms for the es- 
timation of the best ShAP score 1) for all 824 
significantly altered genes (Figure 4A) and 2) 
for all 28 genomic features (Figure 4B) at a 
sample-level to understand their contribution 
to the BDL-SP model’s prediction. The pseudo-
codes with mathematical description for esti-
mating the best ShAP scores for genes and 
genomic features are provided in Table 2, 
Algorithm-A, and Algorithm-B. The algorithms 
shown in Figure 4A and 4B take the sample 
feature matrix as input and estimate the best 
ShAP scores for genes and genomic features  
at a sample-level. For each sample feature 
matrix, the corresponding sample class was 
predicted using all five trained classifiers of the 
BDL-SP model and the ShAP algorithm was 
applied only on those classifiers that predicted 
the sample’s class correctly. Here, the ShAP 
score for all the genomic attributes were col-
lected at the classifier-level and the sample-
level. For each genomic attribute, the best 
ShAP score was first calculated at a classifier 
level and then the final best ShAP score was 
estimated among all classifiers at a sample-
level. For each gene, we first collected the ShAP 
score of all 28 genomic features at a sample-
level and then grouped them based on their 
positive and negative signs. Next, we compared 
the absolute value of the sum of ShAP scores of 

genomic features having the positive ShAP 
scores with the absolute sum of those having 
the negative ShAP scores. The ShAP score hav-
ing the highest absolute value was considered 
as the best ShAP score for that gene and the 
classifier. This step was repeated for all those 
classifiers that predicted the sample’s class 
correctly and the best ShAP score was saved 
for each of the classifiers. The ShAP score hav-
ing the highest absolute value among all the 
classifiers was considered as the best ShAP 
score for a gene at a sample-level. For a better 
clarity of the steps employed in the estima- 
tion of the best ShAP scores of significantly 
altered genes and genomic features at a sam-
ple-level, one may refer to Figure 4A and 
Algorithm-A of Table 2, Figure 4B and 
Algorithm-B of Table 2, respectively.

Similarly, for each genomic feature, we first col-
lected the ShAP score of all 824 genes at a 
sample-level and grouped them based on their 
positive and negative signs. Next, we compar- 
ed the absolute value of the sum of ShAP 
scores of genes having positive scores with the 
sum of ShAP scores of genes having negative 
ShAP scores. The ShAP score having the high-
est absolute value was considered as the best 
ShAP score for a genomic feature and the clas-
sifier. We repeated the above step for all the 
classifiers that predicted the sample’s class 
correctly and saved the best ShAP score for 
each of the classifiers. The ShAP score having 
the highest absolute value among all the classi-
fiers was considered as the best ShAP score for 
that genomic feature at a sample-level. Once 
the best ShAP scores were obtained for all the 
genes and all the genomic attributes, the top 
ranked genes and the top ranked genomic attri-

Table 1. Hyperparameters values and layer dimensions of the BDL-SP model architecture
GCN Architecture Attribute/Hyperparameter Hyperparameter Value
No. of GCN Layers 2
GCN layer dimensions Input sample dimension: 824×28

1st Layer (For each node): 28×7
2nd Layer (For each node): 7×1
Output dimension: 824×1

Output Linear Layer dimension 824×2 (number of classes = 2)
Activation Function LeakyReLU (0.1)
Dropout 0.75
Cost function and Adjusted Cost for class imbalance Cost Function: Cross-Entropy Loss

Cost Adjusted: 20.0
GCN Weight Initialization Uniform Xavier
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butes were identified at the group-level and at 
the sample-level.

Further, the top-ranked significantly altered 
genes revealed by BDL-SP were also compared 
with the multiple myeloma related studies to 
identify the previously reported significantly 
altered genes. We included information from 

multiple databases for model validation and 
post-hoc analysis at gene level analysis 
(OncoKB, COSMIC, IntoGen, and TargetDB 
databases). We downloaded a list of 1064 can-
cer genes from OncoKB [52] to deduce the 
oncogenes and tumor-suppressor genes in our 
top mutated genes. Further, 318 oncogenes 
and 320 tumor-suppressor genes obtained 

Figure 4. Flowchart showing steps for estimating the best ShAP score for (A) 824 significantly altered genes and (B) 
28 genomic features at sample-level to reveal their contribution to the BDL-SP model prediction.
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Table 2. (A) Pseudo-codes of algorithm A for estimating the best ShAP score of 824 genes and (B) 
Algorithm B for estimating the best ShAP score of 28 genomic features at a sample level
Algorithm A: Estimate the Best ShAP Score (BSS) for each gene at a sample level
1. Fivefold classifiers = [List of five classifiers trained on each fold of test dataset]
2. CPC = [List of correct prediction classifiers i.e. classifiers that correctly predicted the sample’s class]
3. SFM = Sample feature matrix
4. Genes = [List of 824 genes]
5. GFPSg|c = [List of genomic features having positive ShAP score for a gene “g” and classifier “c”]
6. GFNSg|c = [List of genomic features having negative ShAP score for a gene “g” and classifier “c”]
7. CSGg|c = Best ShAP score of gene “g” and classifier “c”
8. ACGS[classifier]g = [List of best ShAP scores of gene “g” for all the classifiers that correctly predicted the sample]
9. BSGg = Best ShAP score of gene “g” among all classifiers
10. LBSGgenes = List of the best ShAP score of all the genes among all the classifiers
11. function BSS gene (SFM)
12. for classifier in (Fivefold classifiers) do
    A. Predict the sample’s class with the help of a classifier
    B. if classifier predict the sample class correctly then
        a. Append classifier in CPC list
        b. Apply ShAP algorithm on the classifier
        c. Collect the ShAP score for all 824 genes on their respective 28 GF for that classifier
13. for gene in Genes do
    A. for classifier in CPC do
        a. GFPSgene|classifier← Collect features having positive ShAP score
        b. GFNSgene|classifier← Collect features having negative ShAP score
        c. If |∑GFPSgene|classifier|>|∑GFNSgene|classifier| then
        d. CSGgene|classifier← GFPSgene|classifier

        e. else
        f. CSGgene|classifier← GFNSgene|classifier

        g. ACGS[classifier]gene← CSGgene|classifier

    B. BSGgene← ACGS[argmax[|CSG| for CSG in ACSG]]
    C. LBSGgenes[gene]← BSGgene

14. Output: LBSGgenes

Algorithm B: Estimate the Best ShAP Score (BSS) for each genomic feature (GF) at a sample level
1. Fivefold classifiers = [List of five classifiers trained on each fold of test dataset]
2. CPC = [List of correct prediction classifiers i.e. classifiers that correctly predicted the sample’s class]
3. SFM = Sample feature matrix
4. Genomic Features = [List of 28 GFs]
5. GPSgf|c = [List of genes having positive ShAP score for a genomic feature and classifier]
6. GNSgf|c = [List of genes having negative ShAP score for a genomic feature and classifier]
7. CSGFgf|c = Best ShAP score of GF “gf” and classifier “c”
8. ACGFS[classifier]gf = [List of best ShAP scores of gene “gf” for all the classifiers that correctly predicted the sample]
9. BSGFgf = Best ShAP score of GF “gf” among all classifiers
10. LBSGFgfs = List of the best ShAP score of all GF among all classifiers
11. function BSS genomic feature (SFM)
12. for classifier in (Fivefold classifiers) do
    A. Predict the sample’s class with the help of a classifier
    B. if classifier predict the sample class correctly then
        a. Append classifier in CPC list
        b. Apply ShAP algorithm on the classifier
        c. Collect the ShAP score for all 824 genes on their respective 28 GF for that classifier
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from COSMIC database [55] were also used to 
deduce oncogenes and tumor-suppressor 
genes in our top-mutated genes. Similarly, we 
created a list of MM driver genes reported by  
[7, 53]. MM Driver genes were also extracted 
from IntoGen database [54] (https://www.into-
gen.org/) to infer MM drivers genes present in 
our top mutated gene list. Finally, a list of 180 
actionable genes from the COSMIC database 
[55] and 135 actionable genes from the 
TargetDB database [56] was used to infer the 
actionable genes present in our top mutated 
gene list. The top ranked significantly altered 
genes were grouped in four categories based 
on their functional significance as follows: 1. 
Oncogenes (OGs); 2. Tumor-Suppressor genes 
(TSGs); 3. Onco-driver genes (ODGs); 4. 
Actionable genes (AGs).

The top-ranked significantly altered genes in 
each of the above gene categories were then 
collected at the group-level (MM/MGUS) and 
the sample-level. We also checked the role of 
genomic features on the disease classification 
in post-hoc interpretability analysis of the BDL-
SP model. 

Statistical analysis: We performed the unpaired 
Wilcoxon ranksum statistical analysis to study 
the impact of ethnicity in multiple myeloma.  
In this analysis, we first extracted the top sig-
nificantly altered genes from the WES data  
of MGUS/MM patients of American (MMRF), 
European (EGA), and Indian (AIIMS) population 
using the top performing BDL-SP model. Next, 
for each sample, we computed the total num-
ber of significantly altered genes that belong- 
ed to the reported categories of OGs, TSGs, 
ODGs, and AGs of MM literature. Then, we per-
formed a statistical comparison of the number 
of significantly altered genes of the reported 

category of OGs, TSGs, ODGs, and AGs on the 
groups of American (MMRF), European (EGA), 
and Indian (AIIMS) population to study the 
impact of ethnicity on individual gene 
category.

Gene pathway analysis: The significant genes 
identified by BDL-SP, which helped in differenti-
ating MM from MGUS, were mapped back to 
the significant gene list obtained for MM and 
MGUS using the dndscv tool. Some genes  
were found to be common in both the groups, 
while some were found to be significantly 
mutated either in MGUS or in MM only. Pathway 
analysis was done on the top-500 genes 
obtained from the BDL-SP model. KEGG and 
Reactome pathways were found via Enrichr 
gene set enrichment analysis web server 
[57-59].

Results

Using the dndscv tool (as shown in Figure 2), 
362 and 617 significantly altered genes were 
identified in MGUS and MM, respectively. Of 
these, 155 genes were common in MGUS  
and MM. The complete list of all 824 genes is 
shown in Table S1 of supplementary material. 
We then inferred the important genes that were 
accountable for distinguishing MGUS from MM 
as obtained through our graph-based BDL-SP 
model.

Comparative performance of BDL-SP and stan-
dard ML models

Using our AI-based workflow of BDL-SP (Figures 
2 and 3), we trained the BDL-SP model with a 
5-fold cross-validation and compared its per-
formance with six standard cost-sensitive 
machine learning models. Results of the BDL-

13. for feature in Genomic features do
    A. for classifier in CPC do
        a. GPSfeature|classifier← Collect genes having positive ShAP score
        b. GNSfeature|classifier← Collect genes having negative ShAP score
        c. if |∑GPSfeature|classifier|>|∑GNSfeature|classifier| then
        d. CSGFgf|classifier← GPSfeature|classifier

        e. else
        f. CSGFgf|classifier← GNSfeature|classifier

        g. ACGFS[classifier]gf← CSGFgf|classifier

    B. BSGFgf← ACGFS[argmax[|CSGF| for CSGF in ACGFS]]
    C. LBSGFgfs[feature]← BSGFgf

14. Output: LBSGFgfs

http://www.ajcr.us/files/ajcr0148190suppltab1.xlsx
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SP model and all the six cost-sensitive classifi-
ers are presented in Figure 5. The proposed 
BDL-SP model outperformed the rest of the 
models in terms of the balanced accuracy and 

AUPRC (area under precision-recall curve), 
while the area under the curve (AUC) was high-
est (and equal) for the top three models. BDL-
SP model performed best with a balanced 

Figure 5. (A) The benchmarking of the performance of BDL-SP with six cost-sensitive ML models on the metrics of 
balanced accuracy, AUC, and AUPRC (Area under Precision-Recall Curve). Precision-Recall Curves (PRC) for all five 
folds of (B) BDL-SP, (C) CSRF, (D) CS-Cat, (E) CS-XGB, (F) CSLR, (G) CS-SVC, and (H) CSDT. No skill line is also shown 
in each of the AUPRC plots that represent the inability of the classifier to correctly classify a sample. The full form 
of the abbreviation used in this figures are as follows: CSDT = Cost-Sensitive Decision Tree, CS-SVC = Cost-Sensitive 
Support Vector Machine, CSLR = Cost-Sensitive Logistic Regression, CS-XGB = Cost-Sensitive XGBoost, CS-Cat = 
Cost-Sensitive CatBoost, and CSRF = Cost-Sensitive Random Forest.
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accuracy of 96.26%. Cost-sensitive Random 
Forest (CS-RF) performed the next best with a 
balanced accuracy of 95.5%, and cost-sensi-
tive Catboost (CS-Cat) performed the third  
best with a balanced accuracy of 91.3% (Figure 
5A). All these three models reported an AUC 
value of 0.99. BDL-SP model also outperformed 
other models on AUPRC scoring the highest 
AUPRC of 0.92, while the AUPRC of both CSRF 
and CS-Cat model was 0.86 (Figure 5B-D). This 
is to note that AUPRC is one of the most impor-
tant quantitative metrics and is more relevant 
compared to AUC on the unbalanced data. BDL-
SP outperformed the other models on AUPRC 
with a great margin. This shows that, quantita-
tively, BDL-SP performed best, with the CS-RF 
model being the second best model.

BDL-SP identified the maximum number of 
minority class samples, i.e., 60 out of 61 MGUS 
samples, and 1087 MM samples out of a total 
of 1153 MM samples. The second-best model 
was CS-RF that identified 59 out of 61 MGUS 
samples and 1086 out of 1153 MM samples. 
The third best performing model was CS-Cat 
that identified 52 out of 61 MGUS samples  
and 1121 out of 1153 MM samples. Thus, 
again BDL-SP outperformed other models on 
minority class detection, CS-RF performed  
next to this model. Since the performance of 
CS-RF was close to the leading BDL-SP model 
on metrics other than AUPRC, we performed 
post-hoc interpretability benchmarking of the 
top-three performing models (BDL-SP, CS-RF, 

and CS-Cat). In post-hoc benchmarking, we  
utilized the ShAP algorithm and tabulated the 
top-250 and top-500 genes identified by the 
top-three trained models to understand the 
reasons for the models’ predictions. Then, the 
top-ranked genes were further analyzed to 
identify previously reported oncogenes (OGs), 
tumor-suppressor genes (TSGs), both onco-
genes and driver genes (ODGs), and actionable 
genes (AGs) in MM. As demonstrated later in 
this Section with the post-hoc interpretability 
analysis results, we observed that BDL-SP iden-
tified the maximum number of the previously 
reported genes in top-250 and top-500 genes.

Out of 824 significantly altered genes identified 
from the workflow shown in Figure 2, there 
were 31 oncogenes (OGs) (e.g. KRAS, LTB, 
CARD11, NOTCH1, etc.), 43 tumor-suppressor 
genes (TSGs) (e.g. HLA-A/B/C, TRAF3, TP53, 
SDHA, etc.), ten genes that were both onco-
genes and driver genes (KRAS, LTB, NRAS, 
FGFR3, BRAF), and 19 actionable genes (e.g. 
MITF, ARID1B, ARID2, RPTOR, etc.) (Table 3). 
This full list of genes is provided in Table S1 of 
supplementary material. For each of the top-
three models, we have considered only those 
genes in the top-250 or top-500 gene list that 
have a non-zero ShAP score in the post-hoc 
explainability analysis. The total counts of pre-
viously reported genes as found in the top-250 
and top-500 genes of the top-three models is 
shown in Table 4.

Table 3. Types of four different gene categories (OG, TSG, ODG, and AG) and their counts in 824 sig-
nificantly altered genes

Gene type based on functionality Total number of previously reported genes present in 
our list of 824 significantly altered genes

Oncogenes (OGs) 31
Tumor-suppressor genes (TSGs) 43
Both oncogene and driver gene (ODGs) 10
Actionable genes (AGs) 19

Table 4. Counts of previously reported 4 categories of genes as found in the post-hoc analysis based 
top-250 and top-500 genes of the top-3 models (BDL-SP, CS-RF, and CS-Cat)

Top Gene
BDL-SP Model

(Top-performing model)
CS-RF Model

(Second best model)
CS-Cat Model

(Third best model)
OG TSG ODG AG OG TSG ODG AG OG TSG ODG AG

Top-250 20 21 7 11 7 10 1 4 6 5 1 4
Top-500 27 37 10 17 7 10 1 4 6 5 1 4
The number of previously reported genes (OG/TSG/ODG/AG) obtained in each category (top-250/top-500) using the best 
performing model are highlighted in bold.

http://www.ajcr.us/files/ajcr0148190suppltab1.xlsx
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From Table 4, we observed that BDL-SP model 
identified 20 out of 31 oncogenes in top-250 
and 27 out of 31 oncogenes in the top-500 
gene list, while CS-RF and CS-Cat could identify 
only 7 and 5 oncogenes in top-250 and top-
500 gene list, respectively. Similarly, out of 43 
TSGs, BDL-SP model identified 21 and 37 TSGs 
in the top-250 and top-500 gene list, while 
CS-RF and CS-Cat identified only 10 and 5 
TSGs, respectively, in the top-250 and top-500 
gene list. Further, the BDL-SP model identified 
7 and all ten ODGs, while CS-RF and CS-Cat 
could identify only one ODG in top-250 and top-
500 significantly altered genes. Finally, the 
BDL-SP model identified 11 and 17 actionable 
genes in top-250 and top-500 genes, respec-
tively, while CS-RF and CS-Cat could identify 
only 4 actionable genes in top-250 and top-
500 significantly altered genes. The post-hoc 
benchmarking of the top-three models is shown 
in Table 4 and the list of OGs, TSGs, ODGs, and 
AGs in the top-250 and top-500 significantly 
altered gene list of BDL-SP, CS-RF, and CS-Cat 
models is provided in Table 5. Since BDL-SP 
model identified the highest number of previ-
ously reported OGs, TSGs, ODGs, and AGs, this 
model can be inferred as the best performing 
model and was used subsequently for inferring 
the top significantly altered genes, genomic 
features, and altered signaling pathways to 
identify the pivotal genomic biomarkers to dis-
tinguish MM and MGUS. This analysis shows 
that one can obtain similar quantitative results 
with two or more different ML models, but one 
should choose the model that is more interpre-
table with reference to the application domain.

Pathway analysis on the top 500 genes ob-
tained from the BDL-SP model

On comparing the top-500 significantly altered 
genes obtained from the BDL-SP model (that 
helped in differentiating MM from MGUS) to  
the significant gene list obtained for MM and 
MGUS using the dndscv tool, 301 genes were 
observed to be statistically significantly mutat-
ed only in the MM cohort, 101 genes were 
observed to be statistically significantly mutat-
ed only in the MGUS cohort, while 98 genes 
were observed to be statistically significantly 
mutated in both MM and MGUS cohorts. The 
set of 301 genes that were found to be signifi-
cantly mutated only in the MM cohort included 
several important OGs, ODGs, TSGs, and AGs 

such as BCL7A, BRAF, CARD11, CYLD, DIS3, 
EGR1, FAM46C, IGLL5, KRAS, KMT2D, NRAS, 
MECOM, etc. Similarly, the set of 101 genes  
significantly mutated only in the MGUS cohort 
included APC, FAM47B, MGAM, NOTCH1, 
TYRO3, etc. The set of 98 common genes 
observed to be significantly mutated in MGUS 
and MM cohorts included AMER1, FANCD2, 
HLA-B, KMT2C, PABPC1, TRRAP, etc. The com-
plete list of top significantly altered genes only 
in MM, only in MGUS, and common in both MM 
and MGUS is provided in Table S7 of supple-
mentary material.

Enrichr and Reactome were used to infer the 
KEGG and Reactome pathways altered by 399 
MM and 199 MGUS genes. A total of 5 KEGG 
pathways inferred from Enrichr were signifi 
cantly altered in MGUS (Table S2 of supple 
mentary material) and 108 KEGG pathways 
were significantly altered in MM (Table S3 of 
supplementary material). Similarly, a total of  
10 Reactome pathways inferred from Enrichr 
were significantly altered in MGUS (Table S2 of 
supplementary material) and 134 Reactome 
pathways inferred from Enrichr were signifi- 
cantly altered in MM (Table S3 of supplemen-
tary material). Further, we grouped the signifi-
cantly altered pathway into four categories 
based on the variations in their significance 
with disease progression from MGUS to MM as:

1. Category-1: Pathways that become more sig-
nificant with disease progression from MGUS to 
MM.

2. Category-2: Pathways that become less sig-
nificant with disease progression from MGUS to 
MM.

3. Category-3: Significantly altered pathways 
observed only in MM and and not observed in 
MGUS.

4. Category-4: Significantly altered pathways 
observed only in MGUS and not observed in 
MM.

The complete list of significantly altered path-
ways for the above mentioned four categories 
are provided in Tables S4 and S5 of supple-
mentary material. In Category-1 of significantly 
altered pathways, 05 KEGG and 09 Reactome 
pathways became more significant as the dis-
ease progressed from MGUS to MM (Figure 6). 

http://www.ajcr.us/files/ajcr0148190suppltab7.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab2.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab3.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab2.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab3.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab4.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab5.xlsx
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Table 5. List of 4 categories of previously reported genes as found in the post-hoc analysis based top-250 and top-500 genes of the top-3 mod-
els (BDL-SP, CS-RF, and CS-Cat)
(A) List of oncogenes (OGs) and actionable genes (AGs) in top-250 and top-500 genes

Top Genes
BDL-SP Model

(Top-performing model)
CS-RF Model

(Second best model)
CS-Cat Model

(Third best model)
OG AG OG AG OG AG

Previously reported oncogenes and 
actionable genes in MM and MGUS 
as found ranked in top-250 during the 
post-hoc analysis of the model

MUC16, FGFR3, PABPC1, BIRC6, MUC4, 
IRS1, PGR, MGAM, VAV1, ABL2, MITF, 
TP53, RPTOR, NRAS, NOTCH1, BRAF, 
TCL1A, LTB, CARD11, KRAS

NRAS, TYRO3, NOTCH1, 
FGFR3, BRAF, ARID2, NF1, 
MITF, TP53, KRAS, RPTOR

TCL1A, LTB, RP-
TOR, ABL2, TAL1, 
VAV1, NOTCH1

RPTOR, NF1, NFK-
BIA, NOTCH1

TCL1A, MGAM, 
ABL2, VAV1, PGR, 
BRD4

NFKBIA, APC, 
BRD4, BRAF

Previously reported oncogenes and 
actionable genes in MM and MGUS 
as found ranked in top-500 during the 
post-hoc analysis of the model

MUC16, FGFR3, PABPC1, BIRC6, MUC4, 
KMT2D, IRS1, PGR, MECOM, MGAM, VAV1, 
TRRAP, BRD4, ABL2, TAL1, MITF, TP53, 
RPTOR, NRAS, NOTCH1, BRAF, TCL1A, LTB, 
CARD11, MACC1, TERT, KRAS

NRAS, APC, TYRO3, NOTCH1, 
RB1, ARID1B, FGFR3, BRAF, 
FANCD2, BRD4, ARID2, NF1, 
MITF, TP53, NFKBIA, KRAS, 
RPTOR

TCL1A, LTB, RP-
TOR, ABL2, TAL1, 
VAV1, NOTCH1

RPTOR, NF1, NFK-
BIA, NOTCH1

TCL1A, MGAM, 
ABL2, VAV1, PGR, 
BRD4

NFKBIA, APC, 
BRD4, BRAF

(B) List of tumor-suppressor genes (TSGs) and both oncogenes and driver genes (ODGs) in top-250 and top-500 genes

Top Genes
BDL-SP Model

(Top-performing model)
CS-RF Model

(Second best model)
CS-Cat Model

(Third best model)
TSG ODG TSG ODG TSG ODG

Previously reported TSGs and ODGs 
in MM and MGUS as found ranked in 
top-250 during the post-hoc analysis of 
the model

HLA-A, SP140, ARID2, PABPC1, CYLD, HLA-
C, SAMHD1, SIRPA, SDHA, IRF1, NF1, MITF, 
TP53, ATP2B3, DIS3, KMT2C, NOTCH1, 
LTB, HLA-B, TRAF3, EGR1

NRAS, FGFR3, BRAF, LTB, 
PABPC1, TP53, KRAS

NCOR1, LTB, 
CYLD, NFKBIA, 
NF1, EGR1, 
TRAF3, NOTCH1, 
SDHA, KMT2C

LTB NCOR, CYLD, NFK-
BIA, APC, MAX

BRAF

Previously reported TSGs and ODGs 
in MM and MGUS as found ranked in 
top-500 during the post-hoc analysis of 
the model

KMT2B, AMER1, RB1, ARID1B, FANCD2, 
HLA-A, CMTR2, SP140, ARID2, PABPC1, 
CYLD, MAX, HLA-C, SAMHD1, NCOR1, 
KMT2D, SIRPA, TERT, SDHA, IRF1, NF1, 
WNK2, MITF, ATP2B3, TP53, DIS3, ZFHX3, 
KMT2C, APC, NOTCH1, LTB, HLA-B, 
ACVR1B, NFKBIA, TRAF3, MYH11, EGR1

NRAS, FGFR3, TRRAP, BRAF, 
LTB, PABPC1, TP53, KRAS

NCOR1, LTB, 
CYLD, NFKBIA, 
NF1, EGR1, 
TRAF3, NOTCH1, 
SDHA, KMT2C

LTB NCOR, CYLD, NFK-
BIA, APC, MAX

BRAF
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In Category-2, no pathway became less signifi-
cant with disease progression in KEGG and in 
Reactome. In Category-3, 103 KEGG pathways 
and 125 Reactome pathways were observed as 
significantly altered only in MM and not in 
MGUS (Figures 7 and 8). We further observed 
that 14 out of 103 KEGG pathways and 14 out 
of 125 Reactome pathways had no overlapping 
genes with the set of 199 significantly altered 
genes in MGUS. Finally, in Category-4, no KEGG 
pathway, but one Reactome pathway was 
observed as significantly altered only in MGUS 
and not in MM (Figure 9). Further, we observed 
that several signaling pathways such as 
Calcium signaling, B-cell receptor signaling, 
MAPK signaling pathway, regulation of actin 
cytoskeleton, etc. were significantly altered 
only in MM (p-adjusted value >0.05) and were 
not observed to be significantly altered in 
MGUS. The KEGG pathways that were signifi-
cantly involved in disease progression from 
MGUS to MM with highlighted top-ranking 
genes identified by BDL-SP are shown in Figure 
10.

Explainability of the BDL-SP model using ShAP 
algorithm

We utilized the ShAP algorithm for post-hoc 
model explainability and to rank genomic attri-
butes based on their contribution to the model 
prediction. Here, each genomic attribute was 
assigned a ShAP score based on their contribu-
tion to each class (MM/MGUS) and has been 
ranked at the group-level (MM versus MGUS) 
and sample-level accordingly. We conducted 

the ShAP analysis for post-hoc explainability of 
the trained model in three different ways as 
explained in the subsequent sections.

Ranking of genes at the group-level from the 
explainability analysis of BDL-SP using ShAP: 
Based on the best ShAP score estimated for 
each genomic attribute using the algorithms 
shown in Figure 4A and 4B, we ranked all the 
significantly altered genes at the group-level 
(MM/MGUS) to identify the top genes that sig-
nificantly contributed to the model’s prediction. 
The gene ranking of all 824 genes at group-
level is shown in the beeswarm plot in Table S6 
of supplementary material. In the beeswarm 
plot, each sample is represented as a dot, and 
the color of each dot corresponds to the best 
ShAP score of the gene. We have also highlight-
ed all the previously reported genes of high rel-
evance in MM in the beeswarm plot. In our 
analysis KIR3DL2, IGLL5, and FCGR2A are 
observed to be the top three genes based on 
their best ShAP scores in MGUS and MM sam-
ples from among the 824 significantly altered 
genes. Several previously reported driver genes 
in MM such as IGLL5, HLA-A, KRAS, LTB, TP53, 
EGR1, FGFR3, NFKBIA, IRF1, NRAS, etc. are 
observed in these top-ranked genes. Similarly, 
the previously reported oncogenes such as 
CARD11, NOTCH1, VAV1, IRS1, MGAM, ABL2, 
etc., and tumor-suppressor genes such as HLA-
B, HLA-C, SDHA, etc. are observed in the top-
ranked genes in our analysis. Also, many action-
able genes are observed among the top genes, 
such as KRAS, NOTCH1, TP53, FGFR3, ARID1B, 
etc.

Figure 6. Pathway enrichment analysis of the top-genes obtained from BDL-SP model. A. KEGG Pathways that 
gained more significance during progression from MGUS to MM. B. Reactome Pathways gained more significance 
during the progression from MGUS to MM. Here in both of the figures, pale golden and orange ribbon means sig-
nificant p-adjusted value (<0.05); orange refers to more significant and pale golden color refers to less significant.

http://www.ajcr.us/files/ajcr0148190suppltab6.xlsx
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Ranking of genes at the sample-level from the 
explainability analysis of BDL-SP using ShAP: In 
the sample-level analysis, we ranked genes 
found significantly altered in a sample accord-
ing to their best ShAP scores estimated using 
the algorithm shown in Figure 4A and Algo- 
rithm A of Table 2. We observed that several 
previously reported OGs, TSGs, ODGs, and AGs 
were found in the top-ranked gene list of each 
sample. On assessing the ShAP scores of top 
significantly altered genes among all MM and 
MGUS samples, we observed that the mean ± 
standard deviation of the 100th ranked gene’s 
ShAP score for all MM and MGUS samples is 
0.0174±0.0037 and 0.0171±0.0040, respec-
tively. Further, the ShAP score reduced to a con-
siderably low value as we moved to a lower 

rank. Hence, we considered the top-100 signifi-
cantly altered genes from all MM and MGUS 
samples based on their best ShAP scores for 
further analysis. The violin distribution plots for 
four gene groups of previously reported genes 
for all MM versus MGUS samples, only MGUS 
samples of EGA and AIIMS datasets, and only 
MM samples of MMRF and AIIMS datasets are 
shown in Figure 11A-C, respectively. 

Analysis in MM & MGUS samples with ethnici-
ty: We performed the statistical comparison  
of the disease stages (MM/MGUS) across 
American, European, and Indian populations 
(as mentioned in Section-2.1) on the basis of 
the number of previously reported genes in four 
gene groups using unpaired Wilcoxon ranksum 

Figure 7. A, B. Pathway enrichment analysis of the top-genes obtained from BDL-SP model: KEGG Pathways that 
are uniquely significant in MM. In the above figure, orange ribbon means significant p-adjusted value (<0.05) and 
gray color refers to non-significant (p-adjusted value >0.05). There were a total of 108 KEGG pathways observed as 
significantly altered. Due to the large number of altered pathways, the above river plot was splitted into two parts 
to get more clarity.
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test. We observed that the number of genes in 
OG, ODG, and AG gene groups are significantly 
different between the disease stages (MM and 
MGUS) in the analysis of combined data of dif-
ferent geographic populations (Figure 11A). 
Further, the medians of the number of genes  
in the OG, TSG, and AG gene groups were 
observed to be higher than the respective 
medians in the precursor stage (MGUS) (Figure 
11A). Similarly, comparing the number of  
genes in all four gene groups between the 
MGUS samples of Indian (AIIMS dataset) and 
European (EGA dataset) population, the num-
ber of genes in OG, ODG, and AG gene groups 
were observed to be significantly different 
(Figure 11B). On the contrary, the number of 
genes in all four gene groups were not found  
to be statistically and significantly different in 
MM samples of Indian (AIIMS dataset) and 
American population (MMRF dataset) (Figure 
11C). These observations indicate that ethnici-
ty might be playing a significant role in the dis-
ease development and thus, ethnicity-specific 
analysis can be helpful in further gaining in-
depth insights into the disease biology of the 
premalignant stage of MM (MGUS).

Genomic feature ranking at a sample-level 
using ShAP analysis: Besides identifying the 
top-significantly altered genes in MM and 
MGUS, we also ranked the genomic features 
based on their contribution in the model predic-
tion. A set of 28 genomic features (Figure 1) 
were used to train the BDL-SP model. These 
genes were ranked on the basis of their ShAP 
scores. The algorithm for estimating the best 

ShAP score for each genomic feature is shown 
in Figure 4B. We observed that the total num-
ber of SNVs, total number of SNVs in the Other 
SNV group (as shown in Figure 1), and VAF’s 
standard deviation of SNVs in the Other SNV 
group were the top three genomic features, 
while VAF’s standard deviation of SNVs in the 
Non-synonymous SNV group, VAF’s standard 
deviation of SNVs in the Synonymous SNV 
group, and AD’s standard deviation of SNVs in 
the Non-synonymous SNV group were the least 
contributing genomic features. The beeswarm 
plot for genomic feature ranking from BDL-SP 
model post-hoc analysis using ShAP is shown in 
Figure 12.

Discussion

It is well established that MM evolves through 
premalignant stages driven by the acquisition 
of multiple genomic aberrations [60]. Though a 
few studies have analyzed the progression 
from MGUS to MM [10, 13], a limited amount  
of information is available on the notable bio-
markers responsible for this transformation. 
However, if known apriori, appropriate treat-
ment at the MGUS stage can help control the 
progression of MGUS to MM, thereby prevent-
ing the complications associated with MM, 
reducing morbidity, and increasing the overall 
survival of these patients. Thus, it is crucial to 
unravel the genomic features responsible for 
the malignant transformation of MGUS to MM.

In this work, we addressed the challenge of 
extracting relevant MM and MGUS differentiat-

Figure 8. A. Pathway enrichment analysis of the top-genes obtained from BDL-SP model: Reactome Pathways that 
are uniquely significant in MM. In the above figure, orange ribbon means significant p-adjusted value (<0.05) and 
gray color refers to non-significant (p-adjusted value >0.05). There were a total of 134 Reactome pathways observed 
as significantly altered. Due to the large number of altered pathways, the above river plot was splitted into two 
parts to get more clarity. B. Pathway enrichment analysis of the top-genes obtained from BDL-SP model: Reactome 
Pathways that are uniquely significant in MM. In the above figure, orange ribbon means significant p-adjusted value 
(<0.05) and gray color refers to non-significant (p-adjusted value >0.05). There were a total of 134 Reactome path-
ways observed as significantly altered. Due to the large number of altered pathways, the above river plot was splitted 
into two parts to get more clarity.

Figure 9. Pathway enrichment analysis of the top-genes obtained from BDL-SP model: Reactome Pathways that are 
uniquely significant in MGUS. In the above figure, orange ribbon means significant p-adjusted value (<0.05) and gray 
color refers to non-significant (p-adjusted value >0.05).
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Figure 10. KEGG pathways found to be significantly involved in progression of MGUS to MM. Top genes that were 
identified by post-hoc analysis of BDL-SP using ShAP algorithm as significantly mutated either in MGUS only or in 
MM only (acting as differentiators of MGUS and MM) are shown in red colored font.
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ing genomic attributes from the pool of a large 
mutational information available for each 
patient. Our proposed BDL-SP based workflow 
has been successful in accomplishing this  
task. In the pre-processing of the data, we iden-
tified significantly mutated genes for each vari-
ant caller and then took the union of them so 
that we do not miss any important gene. Thus, 
a large cohort size and an ensemble of four 
variant callers enabled us to obtain generaliz-

able mutational information, driver genes, and 
altered pathway information. Recently, graph-
based learning has been extensively explored 
for deciphering crucial information such as dis-
ease progression, identification of novel bio-
markers for targeted drug therapy, etc. in 
genomics. For example, the graph-based model 
was used to learn the temporal graphs of diag-
nosis (Dx), procedure (Px) and prescription (Rx) 
of multiple myeloma patients from the sequen-

Figure 11. A. The distribution of the number of previously reported genes in four gene groups (OGs, TSGs, ODGs, 
and AGs) found significantly altered and ranked in top-100 across all MM and MGUS samples (combined dataset of 
MMRF, EGA, and AIIMS samples). B. The distribution of the number of previously reported genes found significantly 
altered and ranked in top-100 across all MGUS samples in EGA and AIIMS datasets. C. The distribution of the num-
ber of previously reported genes found significantly altered and ranked in top-100 across all MM samples in MMRF 
and AIIMS datasets (OG: Oncogenes, TSG: Tumor-Suppressor Genes, ODG: Both oncogenes and driver genes, AG: 
Actionable Genes). The P-value shown with each violin plot was estimated using unpaired Wilcoxon ranksum statisti-
cal test to check whether the number of genes in a particular gene group is significantly different from their respec-
tive counts in the other group. The gene group having P-value with superscript “*” (star) symbol represents that the 
number of genes in that gene group are significantly different compared to the other group. The table on the right of 
each figure shows the median of the number of genes in each gene group for disease stages (MM/MGUS) and data-
sets (MMRF, EGA, and AIIMS). Note: To have a better view of the violin plots, refer to the colored version of this figure.
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Figure 12. Genomic feature ranking based on the BDL-SP model’s post-hoc explainability in MM and MGUS using 
ShAP algorithm. Each genomic feature is ranked according to their best ShAP score estimated using the algorithm 
shown in Figure 4 and Table 2. The negative ShAP score represents the contribution of the genomic feature towards 
MM, while the positive ShAP score represents the contribution of the genomic feature towards MGUS. Further, each 
dot in the individual scatter plot of the genomic feature represents a sample and the color of dot represents the 
value of that genomic feature with the color-codes as follows: the dark blue color represents low and the pink color 
represents high value of the genomic feature. Note: Refer to the colored version of this figure for a clear view of the 
sample distribution for each genomic feature.
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tial electronic health records (EHR) and predict 
a patient’s response to treatment [61]. Till now, 
graph-based learning approaches have not yet 
been explored to identify the underlying differ-
ence between MM and its precursor stage 
(MGUS). In our BDL-SP model, we have used 
the connectionist model of graph-based learn-
ing to learn genomic mutational profiles (as 
node features) that were extracted from the 
WES datasets of AIIMS, EGA, and MMRF. We 
additionally utilized the gene-gene interaction 
information from PPI network to identify the piv-
otal biomarkers that can differentiate MM from 
MGUS.

Our proposed AI-based BDL-SP workflow is 
innovative in multiple ways as explained below:

1. The identification of pivotal biomarkers using 
WES datasets of MM of three populations 
(American, European, and Indian) increases the 
robustness of the workflow by enhancing its 
ability to assess the granular-level insights of 
mutational profiles from multiple datasets of 
different geographic locations/ethnicities.

2. Because of the pathogenic nature of delete-
rious SNVs, only deleterious SNVs were consid-
ered for identifying the significantly altered 
genes in the proposed workflow. We observed 
that the total number of SNVs were reduced 
considerably after variant filtration of benign 
SNVs using the FATHMM-XF [49] method.

3. An analysis of the genomic mutational profile 
along with the gene-gene interaction informa-
tion enables this workflow to look at inter-
dependencies between genes, making it a 
complete bio-inspired workflow.

4. The proposed workflow includes quantitative 
(using performance metrics) as well as an 
exhaustive qualitative (post-hoc interpretability 
analysis of the trained models) benchmarking. 
It also shows that multiple ML models behaving 
closely on the quantitative metrics may differ 
hugely in the qualitative analysis. Thus, applica-
tion-aware interpretability analysis as carried 
out in this workflow (ShAP on genes and genom-
ic features) can help in choosing the right model 
and increase the confidence of the doctors on 
the trained AI model. 

The complete list of top significantly altered 
genes identified by the best three performing 

models (BDL-SP, CS-RF, and CS-Cat) is provided 
in Table 5. Of all, our proposed BDL-SP model 
identified the highest number of previously 
reported OGs, TSGs, ODGs, and AGs compared 
to the other standard ML methods. This shows 
that our GCN-based BDL-SP workflow is indeed 
capable of extracting the differentiating genom-
ic features robustly that are otherwise difficult 
to obtain. Many of the top-ranking genes in the 
present study included known cancer drivers 
(IGLL5, HLA-A, KRAS, LTB, etc.), oncogenes 
(KRAS, NRAS, FGFR3, BRAF, etc.), tumor-sup-
pressor genes (HLA-A, LTB, TRAF3, EGR1, 
SAMHD1, DIS3, ARID2, CYLD, SP140, etc.) and 
actionable genes (KRAS, TP53, NF1, NFKBIA, 
ARID2, etc.) having high relevance in MM. 
Interestingly, some TSGs (HLA-B/C, NOTCH1, 
SDHA, MITF, ARID1B, FANCD2, KMT2D, APC, 
CMTR2 and AMER1) and oncogenes (CARD11, 
NOTCH1, VAV1, IRS1, MGAM, ABL2, TCL1A, 
PGR, MITF, RPTOR, TERT, BRD4, MECOM, and 
TAL1) that are so far not reported as drivers in 
MM, were also listed in the top ranking genes of 
BDL-SP. Further focused studies are required to 
validate the above finding and to check the 
functional status and other characteristics of 
these genes before classifying them as MM 
drivers.

Pathway analysis on MM and MGUS genes 
revealed that the MM related pathways such as 
MAPK, cGMP-PKG, B-cell receptor, etc. were 
not significantly altered in MGUS (adj P-value 
≥0.05) and became significant in MM (adj p-val-
ue ≤0.05). We observed that several OGs, 
TSGs, ODGs, and AGs associated with the sig-
nificantly altered pathways were found signifi-
cantly altered only in the MM cohort and not in 
the MGUS cohort (See Figure 13). Here, the 
additional alterations in several previously 
reported genes such as BRAF, FGFR3, IRS1, 
MAX, KRAS, etc. assisted the malignant pro-
gression of MGUS to MM. Our pathway analysis 
also demonstrated that some pathways that 
lost their statistical significance from MGUS to 
MM were actually related to the other cancer 
types.

However, the results in our study are unique 
because we have demonstrated that these 
pathways are selectively and significantly dys-
regulated in MM compared to its precursor 
stage of MGUS due to a distinct set of genes 
that are differentially mutated in the two dis-
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eased stages. These observations warrant fur-
ther investigations to decipher if any of these 
differentiating genes could become druggable 
targets especially during the early phase of 
MGUS. Some of the key genes and pathways 
that are selectively altered at the MM stage, 
such as FGFR3, BRAF and MAP kinase path-
ways, are actionable and hence, targeted ther-
apy for them is under evaluation in clinical trials 
[62]. FGFR3 is a partner gene in t(4;14) that 
has been observed as a significantly altered 
gene in all datasets of MM and MGUS. However, 
the poor prognostic impact of FGFR3 has been 
linked to activating mutations in the FGFR3 
gene rather than the fusion event which exerts 
its influence via activation of WHSC/MMSET 
genes and is responsive to proteasome inhibi-
tors [63, 64]. Besides, single case reports  
demonstrating efficacy of BRAF inhibitors in 
relapsed refractory MM with BRAF mutations, 
a recent report on NCI-Match trial shows prom-
ising results for BRAF inhibitors, Dabrafenib 

tional immune environment to control virulent 
cell clones [68]. Akin to higher levels of disease 
load in MM compared to its precursor states, 
measurable disease load, increased number of 
non-synonymous mutations in MM compared 
with MGUS [9-12] and increased levels of 
deregulated cytokines in relapsed refractory 
MM compared to treatment naïve MM has been 
reported [69].

In addition, Mikalasova et al. In MGUS, a posi-
tive correlation between the increasing chro-
mosome changes and the somatic gene muta-
tions, and absence of MYC translocation and 
TP53 deletions or mutations has been observ- 
ed [11]. From the genomic profile analysis of 
paired MGUS-MM and SMM-MM samples, it 
has been observed that as the disease pro-
gressed, the number of NS mutations actually 
decreased in 70% samples. This observation is 
in contrast to reports on unpaired samples, 
where an increase in the NS mutations has 

Figure 13. GOChord plot reveals the association of driver/TSG/Onco/Action-
able genes associated with important pathways. The gene KMT2C was ob-
served to be significantly mutated in MGUS and MM, while the gene APC 
was mutated only in MGUS. All other genes were observed to be significantly 
mutated in MM only.

and Trametinib, in patients 
harboring tumors with BRAF 
V600E mutations including 
MM [65]. Many structural vari-
ations (SVs) observed in MM 
such as IgH translocations,  
1q gain, 1p del are also 
observed at the MGUS stage. 
However, C-MYC alterations, 
which are predominantly st- 
ructural variations, are sec-
ondary events and are seen in 
nearly 40% of MM patients 
[66]. Lack of analysis of struc-
tural variants is one of the 
limitations of this study. How- 
ever, we did observe muta-
tions in MAX at the MM stage, 
which is known to dimerize 
with C-MYC and influence the 
transcription of multiple genes 
and thus, the pathogenesis of 
MM [67].

The frequently observed com-
plex genomic traits that can 
drive the disease progression 
from MGUS to MM can be 
3’UTR/5’UTR mutations [12], 
copy number variants, struc-
tural variants [1, 60], and loss 
of the ability of the dysfunc-



BDL-SP model for identification of altered pathways in MM and MGUS

1181 Am J Cancer Res 2023;13(4):1155-1187

been reported from MGUS to MM [9-12]. 
Further, the comparisons of unpaired MGUS/
SMM and MM samples have shown the muta-
tional similarity of MGUS/SMM with MM [13]. 
Based on this observation, we hypothesize that 
the progression is associated with an altered 
landscape of acquired mutations, rather than 
an increased total mutational burden.

The post-hoc explainability of the BDL-SP mo- 
del using ShAP algorithm revealed the top 
genomic attributes (genomic features and sig-
nificantly altered genes) at both the group- and 
sample-levels. At group-level, all the 824 sig-
nificantly altered genes were ranked according 
to their ShAP score using the algorithm shown 
in Figure 4 (Table S6 of supplementary materi-
al) and top-500 genes were further compared 
with the literature (Table S7 of supplementary 
material). Several significantly altered genes 
found in our analysis were previously reported 
as driver genes in [7, 53, 54], oncogenes and 
TSGs in [52], and actionable genes in [55, 56], 
while some genes such as KIR3DL2, FCGR2A, 
LILRB1/2, KIR2DL1/4 etc. were novel that con-
tributed significantly in disease classification 
(See Table S6 of supplementary material). The 
KIR framework genes (KIR3DL2/2DL4) were 
among the top significantly altered genes with 
highest ShAP scores. The KIR gene complex on 
chromosome 19 encodes a series of inhibitory 
or activatory KIR genes expressed on NK cells 
[70-72]. These receptors serve as HLA ligands 
and modulate NK cell immune function against 
tumors [70]. A few activating genes in the KIR 
family (KIR2DS4 and KIR2DS5) have been 
shown to have higher prevalence in MM 
patients [70] than healthy people. The KIRs 
have also been reported to influence the effi-
cacy of therapies such as that of isatuxi- 
mab [71]. The second topmost gene with the 
highest ShAP score was IGLL5. Again, the 
IGLL5 gene undergoes point mutations and 
IGLL5/IGH translocations in MM [73]. Point 
mutations are largely mutually exclusive of RAS 
mutations and associated with greater risk of 
disease progression. Similarly, other genes 
such as HLA-A/B/C, FCGR2A and LILRB1/2 
reported in previous studies are also shown to 
have a significant role in MM [74-77]. Given the 
crucial role of these top immune related genes 
highlighted by the ShAP ranking in our study 
suggests their potential role as drivers of pro-
gression and disease stratifying biomarkers.

We have also highlighted the impact of ethnici-
ty (Figure 11) among three groups of American 
(MMRF), European (EGA), and Indian (AIIMS) 
population. The number of OGs, ODGs, and AGs 
were significantly different in the MM samples 
of American and Indian population, and MGUS 
samples of European and Indian population 
(Figure 11A). Also, the median of the number of 
OGs and AGs increased with the disease pro-
gression from MGUS to MM. This increase 
could be due to the increasingly active partici-
pation of OGs and AGs in disease progression 
from MGUS to MM. Similarly, the number of 
OGs, ODGs, and AGs are significantly different 
in the MGUS samples of Indian population  
and MGUS samples of European population 
(Figure 11B). Here, we also observed the 
increasingly active participation of OGs, ODGs, 
and AGs in MGUS samples of Indian and 
European population. On the other hand, the 
number of previously reported genes (OGs, 
ODGs, TSGs, and AGs) present in the MM sam-
ples of the American and Indian population 
were not found to be statically different (Figure 
11C). These observations indicate that the 
impact of ethnicity on disease biology can not 
be overlooked and might be an important fac-
tor during the initial phase or development 
phase of MM. Further analysis of ethnicity-spe-
cific information to infer the responsible prog-
nostic factor for disease development and pro-
gression is strongly suggested.

The sample-wise gene-ranking highlighted their 
contribution at the individual sample-level. The 
study in [11] showed that the transition from 
MGUS to MM is due to the acquisition of muta-
tions in critical driver genes and oncogenes. 
Interestingly, we have observed that not only 
driver genes and oncogenes, but several TSGs 
and actionable genes were also altered signifi-
cantly in MGUS (Figure 11). Further, the role of 
oncogenes increased as disease progressed 
from MGUS to MM. On comparing the top con-
tributing genomic features in MGUS and MM 
samples, we observed that the genomic fea-
tures related to the Synonymous SNVs group  
(a group of UTR3, synonymous, and UTR5 type 
SNVs) and the Other SNVs group (a group  
of Non-frameshift insertion/deletion/substitu-
tion, intronic, intergenic, ncRNA_intronic, up- 
stream, downstream, unknown, and ncRNA_
splicing SNVs) contributed largely in disease 
classification as compared to the genomic fea-

http://www.ajcr.us/files/ajcr0148190suppltab6.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab7.xlsx
http://www.ajcr.us/files/ajcr0148190suppltab6.xlsx
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tures of the Non-synonymous SNVs group 
(Figure 12).

Although the role of synonymous SNVs are 
unclear in MM, recent studies have observed 
these synonymous SNVs as significant contrib-
utors in multiple cancer types [78-82]. Further 
exploration of differentially affected biological 
pathways may provide the pathogenic link 
between MM, its precursor (MGUS or SMM), 
and overt disease stages so as to find appropri-
ate targeted therapy to halt the progression 
from precursor to stage to MM (Figure 14). We 
have shown in the current study that the incre-
mental accumulation of key mutations tilts the 
balance of biological pathways in favor of pro-
gression from the state of MGUS to MM in a 
large cohort of unpaired MGUS-MM samples. 
Some of these pathways are actionable and, 
targeting them may enable us to reverse the 
balance in favor of a controlled and relatively 
indolent clinical course. Further, AI-based work-
flow has assisted in successfully differentiating 
MGUS from MM. We have shown in our study 
that our trained machine learning (ML) classifi-
ers are able to identify pivotal genomic bio-
markers helpful in distinguishing MM and 
MGUS, thereby, leading to a better understand-
ing of malignant transformation of MGUS to 
MM and prognostication.

Conclusion

MGUS and MM share many common features 
such as genomic biomarkers and structural 
variants, although MGUS has a relatively less 
complex genomic profile than MM. Therefore, it 
is a challenging task to distinguish MM from 
MGUS. In our proposed work, we have present-
ed an innovative, bio-inspired AI-based work-
flow BDL-SP to identify pivotal genomic bio-
markers to distinguish MGUS from MM. The 
proposed graph convolutional network based 
BDL-SP model is able to extract discriminative 
genomic biomarkers for identifying MM and 
MGUS samples. BDL-SP outperformed all the 
baseline ML-based models. Further, using the 
application-aware interpretability analysis of 
the trained AI model, we have demonstrated a 
way to identify the best AI model from among 
the multiple machine learning or deep learning 
models that may have performed similarly on 
the quantitative metrics on the available data. 
In the post-hoc interpretability benchmarking, 
BDL-SP outperformed all the baseline models 
by identifying the highest number of previously 
reported genes such as KRAS, BRAF, LTB, 
NRAS, FGFR3, NF1, NFKBIA, ARID2, RB1, HLA-
A, TP53, SP140, TRAF3, EGR1, IRF1, SAMHD1, 
DIS3, CYLD, KMT2B/C, MAX, ZFHX3 and 
NCOR1, that are of high relevance in MM. 

Figure 14. Important pathways significantly altered in MM. Drugs used for pathway-directed therapies associated 
with mutations in genes are also shown with red colored text-boxes and arrows.



BDL-SP model for identification of altered pathways in MM and MGUS

1183 Am J Cancer Res 2023;13(4):1155-1187

Further, some of the genes that acted as dif-
ferentiable biomarkers included TSGs (HLA-
B/C, NOTCH1, SDHA, MITF, ARID1B, FANCD2, 
KMT2D, APC, CMTR2, and AMER1) and onco-
genes (CARD11, NOTCH1, VAV1, IRS1, MGAM, 
ABL2, TCL1A, PGR, MITF, RPTOR, TERT, BRD4, 
MECOM, and TAL1) that have not yet been iden-
tified as MM drivers. These require validation 
by future studies before being declared as MM 
drivers. We further validated our findings by 
performing pathway analysis on the top mutat-
ed genes. It was inferred from the pathway 
analysis that several signaling pathways such 
as Calcium signaling pathway, B-Cell receptor 
signaling pathway, PI3K-Akt signaling pathway, 
MAPK signaling pathway, etc. are selectively 
and more significantly dysregulated with dis-
ease progression. Additional mutations in  
driver genes, critical oncogenes, tumor-sup-
pressor genes, and actionable genes fostered 
the transformation of benign MGUS to MM. 
Similarly, the genomic mutation associated 
with the Synonymous SNV group (synonymous 
SNVs, UTR3, and UTR5) were found to be the 
most significantly contributing biomarker differ-
entiating MM from MGUS. These observations 
may hold great significance from a therapeutic 
point of view. We observed that the number  
of oncogenes, driver genes, and actionable 
genes in the MGUS samples of European and 
Indian populations were statistically different. 
Although no population specific differences 
were observed in our analysis of the MM data 
consisting of the American and Indian popula-
tion, the results on MGUS data indicates that 
the impact of ethnicity on the disease biology 
of MM should be further explored.
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