
Am J Cancer Res 2023;13(5):1623-1639
www.ajcr.us /ISSN:2156-6976/ajcr0119445

Review Article
Enhancement of treatment efficacy of hepatic  
tumours using Trans-arterial-chemoembolization

Krishna Pillai, Kevin Ke, Ahmed Mekkawy, Javed Akhter, David L Morris

Department of Surgery, UNSW, St. George Hospital, Kogarah, NSW, Australia

Received July 14, 2020; Accepted September 1, 2020; Epub May 15, 2023; Published May 30, 2023

Abstract: This review article examines the basic principle underlying trans-arterial chemoembolization (TACE) used 
for treating unrespectable liver cancer with discussion on the barriers that are present for efficient drug delivery 
with suggestions on methods that may be used to overcome these barriers and hence enhance the efficacy of the 
technique. Current drugs used with TACE along with inhibitors of neovascularisation are briefly discussed. It also 
compares the conventional method of chemoembolization with TACE and rationalizes why there is not much of a 
difference between the two methods on treatment efficacy. Further it also suggests alternative methods of drug 
delivery that may be used instead of TACE. Additionally, it discusses the disadvantages on using non degradable 
microspheres with recommendations for degradable microspheres within 24 hours to overcome rebound neovascu-
larisation owing to hypoxia. Finally, the review examines some of the biomarkers that are used to assess treatment 
efficacy with indication that non-invasive and sensitive biomarkers should be identified for routine screening and 
early detection. The review concludes that, if the current barriers present in TACE can be overcome along with the 
use of degradable microspheres and efficient biomarkers for monitoring efficacy, then a more robust treatment 
would emerge that may even serve as a cure. 
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Introduction

One third of world’s cancer related death has 
been reported to be caused by hepatic cellular 
carcinoma (HCC) [1, 2]. HCC is distinctively 
prevalent in South East Asia, amongst which 
China leads with 55% of the total world cases 
[3, 4] suggesting a clear ethnic difference. This 
difference may be due to a number of factors 
such as genetic susceptibility, food habits, 
exposure to liver toxins, liver infection etc. [5, 
6]. In California (USA), there is a much higher 
incidence of HCC in pacific islanders and Latin 
American [7] and those residing near ethnic 
neighbourhood indicating that life style factors 
may be involved. In Europe, there is a wide dis-
tribution of HCC with countries in Eastern 
Europe having a higher incidence. Incidence of 
HCC in USA has been reported to peak between 
the age of 50-54 with sex disparity suggest- 
ing that estrogens may play a protective role [8, 
9].

HCC is the end result of chronic liver infection 
owing to exposure to liver toxins or viral infec-
tion such as hepatitis virus B & C (HBV & HCV) 
[10, 11]. High body mass index, fatty diets, alco-
hol and tobacco use may also predispose sub-
jects to HCC [6, 12] whilst a higher incidence 
also exists in diabetic patients. The pathogene-
sis by which these agents cause HCC has been 
reviewed recently by Singh et al. [13]. The selec-
tion of treatment modality for HCC depends 
largely on tumour size, multiplicity and the sta-
tus of liver [14, 15]. Various treatment methods 
have been developed such as surgical resecti- 
on, thermo/cryo ablation, radiotherapy, and ch- 
emotherapy [16]. For non resectable tumours, 
trans-arterial chemo-embolisation (TACE) using 
conventional methods (c-TACE) with drug deliv-
ery in an emulsion (lipiodol) along with arterial 
plugging with gelatine has been frequently us- 
ed although more recently drug eluting micro-
spheres has become very popular [17, 18]. Ow- 
ing to rebound development of tumour micro-
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vasculature after TACE due to hypoxic condi-
tions, anti-angiogenic agents such as tyrosine 
kinase inhibitor, sorafenib, brivanib, sunitinib, 
regorafenib etc. are used in therapy to inhibit 
neo-vascularisation of embolised tumours [19, 
20].

Drugs commonly used for treating HCC

A selection of chemotherapeutic agents have 
been used for the treatment of HCC either as 
single gents or in combination for systemic or 
loco regional delivery [21]. These agents are 
either hormonal (ostreotide, tamoxifen), biolog-
ic (Thalidomide, interferon), chemotherapy (So- 
rafenib, 5-fluorouracil, cisplatin, gemcitabine, 
doxorubicin, capecitabine, mitoxantrone, epiru-
bicin, etopside) or bevacizumab as targeted 
therapeutic agent [22]. In particular, most of 
the chemotherapy agents are nucleosides that 
disrupt the synthesis of DNA and their mode of 
action along with the other agents have also 
been fully reviewed recently [23]. Further, the 
efficacy of these agents either singly or in com-
bination has also been discussed by several 
authors [21, 24]. Since rebound neo-vascular 
development in tumours is a common occur-
rence with TACE, methods to suppress this  
phenomena using vascular epidermal growth 
factor inhibitors (VEGF) of which amongst the 
existing tyrosine kinase inhibitors, sorafenib 
proved superior in several clinical studies ow- 
ing to its multiplicity in action. Hence, sorafenib 
or in combination with other chemotoxic ag- 
ents are used for treating non-resectable liver 
tumours [25].

Strategic principals of TACE

The fundamental principles underlying TACE is 
to disrupt (embolize) the proximal blood supply 
to the tumour with deprivation of nutrients and 
oxygen supply whilst delivering a sustained 
supply of chemotherapeutic drugs to the tu- 
mour cells. The chemotherapeutic agents are 
either delivered lodged within the embolus 
material in drug eluting microspheres (dem-
TACE) or suspended in lipiodol emulsion that 
ascertains a slow and sustained release locally 
known as conventional TACE (c-TACE). The main 
advantage being a substantial and sustained 
exposure of the agents to tumour cells while 
reducing systemic exposure to a minimum [26]. 
This principal and efficacy of the system has 

been summarised in an equation as given by 
Collins et al. [27].
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RD = Overall selectivity; AUC = area under the 
curve (total amount of drug delivered); IV = 
intravenous; CLtotal = total body clearance of 
drug; Q = blood flow through target organ; E = 
organ extraction ratio. 

TACE method of drug delivery seems to be an 
ideal method that targets the tumour specifi-
cally and hence capable of producing effective 
tumour regression with minimal systemic expo-
sure. However, the hypoxic environment creat-
ed by the embolus induces the tumour cells to 
over express angiogenic factors (VEGF, PDGF, 
etc) that is responsible for neo-vascularisation 
and hence rebound development of tumour 
[28, 29], although initial response is regional 
tumour necrosis. Further, neo-vascularisation 
(poorly developed and leaky blood vessels) of 
tumour may also lead to novel blood supply that 
may in theory enhance clearance of the drugs 
from the tumour since there is a negative drug 
gradient present in the new blood vessels [30]. 
How significant this loss would make to tumour 
regression may need investigation. This draw-
back is particularly applicable to very slow drug 
eluting non-biodegradable microspheres with 
embolus that are long lasting such as DC be- 
ads that do not degrade [31]. This principal has 
been illustrated in Figure 1. Since, tumoral cap-
illary beds that are developed are leaky; it may 
also increase the intra tumoral fluid pressure 
(ITFP) further in the cellular matrix and hence 
interfere with drug transfer. Hence, further re- 
search may be necessary to determine how 
neo-vascularisation effect drug concentration 
and drug dispersion in the tumour. In animal 
models, neo-vascularisation takes place within 
3 days [32] and in human it has been reported 
to be in 36 hours [33].

In systemic delivery, the drugs are prone to  
dilution in the general circulation with side ef- 
fects on all the organ systems. Hence, the in- 
tra venous (IV) dosage is generally calculated  
at a higher dose to account for the systemic 
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dilution factor. However, in the case of TACE, 
since drugs are delivered locally to the tumour, 
the dosage used may be considerably reduced 
since the dilution factor is minimal [34], with a 
considerable reduction of systemic exposure 
and hence the ensuing side effects. This is a 
major advantage, besides delivering the drugs 
in situ to the tumour in a sustained manner.

The liver is a highly perfused organ with arteri- 
al blood supply accounting for one third of the 
total blood received whilst venous supply is 
about two third and hence clearance may be 
much higher as compared to other organs [35]. 
Therefore, drug loaded embolizing agents need 
a much higher content of chemotherapeutic 
drugs in order to account for the higher clear-
ance [36]. Higher clearance may also predis-
pose to a slight elevated level of chemo-agents 
systemically and hence side effects when tre- 
ating HCC using TACE [37], although this el- 
evated level is considerably less compared to 
systemic delivery.

Marginal differences in efficacy between tran-
sarterial embolisation (TAE) and transarterial 
chemoembolisation (TACE)

The principal underlying TAE is to create a nutri-
tional deficiency as well as a hypoxic envir- 
onment by introducing an embolus within the 

Introducing a cytotoxic agent to the hypoxic 
condition should in principal increase the effi-
cacy of the treatment (a double-edged sword) 
but, many of the cytotoxic agents are more 
effective in a fast replicating cell population 
[42]. In a hypoxic situation, tumour cell repli- 
cation is much slower and hence may not allow 
the cytotoxic to have its full effect. Hence, sev-
eral clinical studies have shown that there is 
not much of a difference in efficacy between 
TAE and TACE [43, 44] since hypoxia may act as 
a barrier.

Taken together, the introduction of micro-
spheres that disintegrate shortly <24 hrs, with 
the liberation of its drug load at the tumour site 
may be a better form of therapy since the 
rebound hyper-vascularisation may be avoid- 
ed since neo-vascularisation takes 36 hours  
in human. In addition, if the chemo-agent de- 
livered by the short lived microspheres can be 
tethered to a suitable agent that has the po- 
tential of binding to the tumour matrix but with 
ability to release the active agent slowly would 
be an advantage since the cells will be exposed 
to the agent continually over a long period of 
time without long term induced hypoxia. 

Clinical evidence for TACE

Currently TACE is recommended as first line 
therapy for patients categorised as moderate 

microvasculature of the tum- 
our. Cancer cells undergo ap- 
optosis initially owing to depri-
vation of nutrients and oxygen, 
although cancer cells rely on 
aerobic metabolism (Warburg 
effect) mostly [38]. However, 
within a very short duration of 
time, tumour cells undergo ch- 
anges owing to generous indu- 
ction of hypoxic factors HIF 
alpha and beta [39] and be- 
come resistant owing to expre- 
ssion of several other survival 
proteins that induces, anti-ap- 
optosis, replication, angiogen-
esis and metastasis [40, 41], 
thereby preserving the tumour 
population. Hence, the end re- 
sults, although tumour shrink-
age is observed initially, resi- 
dual tumour cells are preserv- 
ed with subsequent recurren- 
ce of the disease. 

Figure 1. It is a diagrammatic representation of enhanced clearance with 
build-up of Intra-tumoral fluid pressure.  Indicates direction of blood 
flow in the blood vessels;  Direction of drug diffusion;  
drugs escaping to newly formed blood capillaries. ITFP = Intra-tumoral fluid 
pressure.
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under the Barcelona Liver Cancer Clinic (BLCC) 
staging system [45]. However, a 2011 Cochra- 
ne review analysing 9 trials involving 645 pa- 
tients showed that there was insufficient evi-
dence to determine whether TACE or TAE sh- 
owed benefits to survival [46]. Critics of the 
Cochrane review assert that TACE methods  
are continually improving, and the Cochrane 
review was too strict in its inclusion of trials 
[47]. It will be difficult to conclusively demon-
strate whether TACE offers survival benefit due 
to the substantial time and cost of conduct- 
ing randomised controlled trials, despite there 
being still a need to do so. Nonetheless, as it  
is currently in widespread use across the world, 
efforts to improve TACE methods such as those 
described by this paper will still be of practical 
benefit to clinicians.

Methods to enhance the efficacy of TACE

Currently, a number of chemotherapeutic drugs 
are available for treating non-resectable HCC 
tumours, more recently several tyrosine kinase 
receptors have been tested clinically and of 
which sorafenib a multi-receptor inhibitor with 
anti VEGF, PDGF, etc outperformed the others 
[48, 49]. Hence, a combination of anti-tumour 
drugs and sorafenib are used in treatment in 
order to derive maximum benefit [50, 51]. The- 
re are also other new tyrosine kinase inhibitors 
that can be used as a second line therapy if  
the tumour is resistant to sorafenib [52]. Fur- 
ther, a number of new tyrosine kinase such as 
Lenvatinib, imatinib etc have been tested in 
clinical trials with equal efficacy as sorafenib 
[53]. The delivery of tyrosine kinase inhibitors 
and other anti-angiogenic agents, either oral or 
systemic has shown numerous side effects  
and patient non-compliance [54, 55] and hen- 
ce the delivery at the tumour site using TACE 
may be a better option since local delivery may 
be more effective without undue systemic tox-
icity with additional benefit of continuous de- 
livery. 

When using doxorubicin, mitoxantrone or other 
drugs which are weak bases, owing to their 
interaction with the tumoral weakly acidic pH 
(formation of salt) their uptake through cellu- 
lar membrane is often reduced [56, 57]. Hence, 
methods to raise the tumoral pH to weakly 
basic condition may be necessary to enhance 
the cytotoxic effect of the drug. This may be in 
the form of additives that would raise the pH of 

the tumour environment or on the other hand 
increase the concentration of doxorubicin to 
account for the poor absorption. This paradigm 
needs further in vivo and in vitro studies. On 
the contrary, selection of suitable cytotoxic 
which are weakly acidic may be more compati-
ble with the tumour acidic environment. On  
the other hand, alkalization of tumour environ-
ment may be another option using proton pu- 
mp inhibitors [58].

In the case of mucin producing HCC tumours 
that enable them to form a protective barrier 
against drug penetration, whilst also enhanc- 
ing survival pathways [59], suitable agents that 
break down this barrier may provide better  
penetration of chemotherapeutic agents thus 
increasing efficacy. Mucolytics such as N-ace- 
tylcysteine, bromelain or other glycolytic and 
reducing agents [60, 61] may be incorporated 
to disintegrate this barrier and allow better pen-
etration of drugs. Numerous studies on mucin 
producing cancers showed that the efficacy of 
cytotoxic was increased in the presence of 
N-acetyl cysteine and bromelain [62, 63], whilst 
synergistic combinations enabled a dramatic 
reduction of cytotoxic (paper under review).

Owing to the dense ECM present in the tumour 
environment, drug transfer is often compro-
mised and hence suitable agents such as bro-
melain, collagenase etc. and other proteolytic 
enzymes should be incorporated into the TACE 
system to breakdown this barrier to enable a 
better drug transfer [64]. The suppression of 
collagen I synthesis by losartan in a dose de- 
pendent manner has been demonstrated in 
preclinical models [65]. Further, hyperthermia 
and ultrasound have also been suggested as a 
method of softening the dense tumour matrix 
[66, 67].

Since the Intra-Tumoral-Fluid Pressure (ITFP) 
within the tumour is higher than the surround-
ing [68], drug passage through the tumour 
matrix may be difficult resulting in reduced effi-
cacy. Hence, suitable methods such as ultra-
sound, hyperthermia or a combination of both 
may enable to reduce the intra tumoral pres-
sure [69, 70]. Other methods such as using 
vasodilators, small molecular weight chemo-
therapeutics and drugs that increase vascular 
permeability have been discussed in a recent 
review [71]. On the other hand, delivery of suit-
able chemical agents to reduce the ITFP may 
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be necessary to ensure a better absorption of 
cytotoxic. High ITFP in the tumour is mainly con-
tributed by the stiffening of the cellular matrix 
along with compromised fluid extraction since 
the lymphatic out flow is poorly developed. 
Treatment efficacy is mainly dependent on 
response to a particular chemotherapeutic 
agent and at the same time on attaining suit-
able concentration at the treatment site for  
sufficient time. Hence, reducing the ITFP or nor-
malising it may greatly enhance drug transfer 
into cancer cells with greater efficacy. The bar-
riers and possible solutions for increasing the 
efficacy of TACE may be summarised as shown 
in Figure 2.

Recent classification of HCC has divided them 
broadly into two groups such as proliferators 
and non-proliferators that correlate with clinical 
pathological features, aetiology, and prognosis 
[72]. Tumours from the proliferator class are 
highly heterogenous with enhancement repli- 
cation pathways such as Insulin-like Growth 
Factor-1 (IGF1), mechanistic target of rapamy-
cin (MTOR) and stem cell feature (NOTCH) [73, 
74]. Further this class display numerous gene 
expression associated with tumour recurrence 

and poor prognosis [75]. Currently, extensive 
work is undergoing to target some of the new 
oncogenes that have been identified [76] and 
with future clinical trials, molecular classifica-
tion with specific selection of chemotherapeu-
tic drugs may enable a more effective tre- 
atment.

New development in drug therapy targeting 
both the tumour cells as well as angiogenesis 
using a number of different chemotherapeutic 
drugs together with tyrosine kinase inhibitors 
has shown plausible results in increasing pa- 
tient survival [20, 77]. However, at the current 
therapeutic dosage, these agents have numer-
ous undesirable side effects [78]. Hence, che-
motherapy is generally given in four cycles ov- 
er a month with 7 days rest between cycles. 
However, if these agents can be combined syn-
ergistically, then, the effective dosage of both 
the agents may be dramatically reduced and 
hence, therapy may be given more frequently 
with possible better tumour ablation. Recent  
in vitro study using doxorubicin + lonafarnib or 
sorafenib + lonafarnib has shown tremendous 
synergistic efficacy in tumour cell reduction as 
compared to doxorubicin + sorafenib [79]. 

Figure 2. Barriers to drug penetration and efficacy with possible methods to surmount them to increase the efficacy 
of TACE. ECM: extracellular matrix; HCC: Hepatic cellular carcinoma; TACE: trans-arterial-chemoembolization; VEGF: 
vascular epidermal growth factors.
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Intra-tumoral drug delivery to overcome the 
disadvantages posed by TACE

Recent work has indicated that intra-tumoural 
drug delivery using liposomes conjugated to 
drugs is an efficient way of delivering chemo-
therapeutic agents for treating malignant tu- 
mours and the various methods that may be 
employed to surpass some of the barriers for 
efficient penetration of chemo-agents has 
been reviewed by Goins et al. [80]. Further, 
slow releasing paclitaxel containing micro-
spheres have been successfully delivered by 
intratumoral delivery with great efficacy com-
pared to free drug intra-tumoural delivery in in 
vitro and in vivo studies [81]. Other studies 
using intratumoural injection of gels contain- 
ing losartan microspheres and PLG-g-mPEG-
cisplatin nanoparticles showed improved drug 
penetration, retention and anti-tumor activity 
[82]. In essence, this delivery method avoids 
embolisation of the blood vessels and hence 
may avoid neo-vascularisation and rebound 
tumour development that is encountered using 
the classical TACE method. Although, the drugs 
are delivered intra-tumourally, the drugs still 
have to overcome some of the barriers that  
are found within the tumour such as high ITFP, 
abnormal tumour vasculature, stiff extracellu-
lar matrix, poor lymphatics acidic pH etc.

However, one of the major advantage of this 
method is that the drugs do not have to cross 
from low to high ITFP as in the TACE method of 
drug delivery [83], since the tumoral pressure 
is highest within the central core of the tumour 
where the drug is delivered and the passage is 
from high to low pressure (diminishing pressure 
gradient) at the circumference of the tumour 
[84] as illustrated in Figure 3.

cant, and convection becomes the predomina- 
ting process for drug transport. The tumours 
have higher ITFP values centrally with decreas-
ing net fluid pressure away from the tumour, 
into the intravascular space [86]. This means 
that drugs have less ability to penetrate high 
ITFP tumours from the vascular space, espe-
cially higher molecular weight drugs that de- 
pend on convection as the primary means of 
drug transport. Drugs with low molecular wei- 
ght will be less affected by this because they 
are more easily able to use diffusion to travel 
into the tumour.

Further, introducing drug carrying microspher- 
es at the central point of tumour will overcome 
this as the drug will be present at the site of  
the tumour, in close proximity to tumour cells, 
hence can be a way to overcome the barrier of 
high ITFP.

In principal one of the major obstacles in this 
method of drug delivery is the high ITFP within 
the central core of the tumour where the drug is 
delivered and this high ITFP may oppose drug 
elution from the microspheres. A study shows 
that drugs are eluted freely and hence the high 
central ITFP is no obstacle [87]. This may be 
due to diffusion of drugs from high concentra-
tion within the sphere to low concentration 
(tumour matrix) following Fickian law of diffu-
sion [88].

Further, introducing nano-conjugated drugs or 
drug carrying microspheres at the central point 
of tumour where ITFP is greatest may oppose 
free delivery of medicament. Piercing may in 
fact lead to efflux of tumoural fluid with meta-
static cells leading to cancer spread. Other ch- 
allenges that are presented to TACE, such as 

Figure 3. Demonstrates the principals involved in intra-tumoral drug deliv-
ery system. ITFP: intratumoural fluid pressure.

Drugs are transported from the 
intravascular space into the 
interstitial space in two main 
ways - diffusion and convec-
tion. Diffusion occurs at a fast-
er rate for lower molecular size 
substances due to faster drift 
velocities. As derived by Eins- 
tein in 1905, the average drift 
displacement of a suspended 
sphere in a liquid is inversely 
proportional to its radius [85]. 
Therefore, as the molecular 
size of the drug increases, dif-
fusion becomes less signifi-
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low tumoral pH, poor lymphatic drainage, etc. 
are also applicable to this method of delivery, 
although similar remedial techniques may be 
adopted. Therefore, using the intra-tumoral de- 
livery system (ITD), single drugs such as doxo- 
rubicin, mitoxantrone, cisplatin etc. may be an 
efficient therapy since rebound tumour devel-
opment owing to neo-angiogenesis that is com-
mon in TACE is absent. 

Hepatic arterial infusion chemotherapy

Hepatic arterial infusion chemotherapy (HAIC) 
is the treatment of hepatic tumors using an 
infusion of chemotherapeutic agents through 
the hepatic artery and its downstream branch-
es. Currently, while it is not used as standard  
of care under the AASLD, it is widely used in 
Japan and endorsed for the treatment of 
advanced cases of HCC [89]. As opposed to 
TACE there is no embolization involved, alth- 
ough it shares a similar characteristic with TACE 
in the locoregional delivery of drug. As such, 
HAIC displays a pharmacokinetic advantage 
compared to systemic drug delivery, following 
Collins’ model described previously. This has 
been confirmed for the drug (FUdR) (floxuri-
dine), with which tumor concentrations 14 ti- 
mes higher were able to be achieved as mea-
sured through radiolabelling [90]. A review by 
Ensminger (2002) describes how pharmacoki-
netic as well as pharmacodynamic parameters 
must be considered when choosing drugs for 
HAIC [91]. For a drug to be appropriate for HAIC, 
it must be dosed at a rate that does not satu-
rate the tumor cells, otherwise the incremen- 
tal benefit of delivering through infusion will be 
small. Drugs also must have relatively high he- 
patic extraction ratios otherwise there will be 
no advantage over intravenous delivery [91]. 

There are many theoretical advantages with 
HAIC over TACE. Firstly, higher amounts of drug 
can be delivered for longer periods of time, as 
HAIC is not limited by the release kinetics of 
TACE, whether it be through microspheres, or 
lipiodol injections. By performing an infusion 
into the tumor over potentially several hours or 
even days, we can maintain tumor concentra-
tions at a high equilibrium which is difficult to 
achieve through TACE. Dynamic control of drug 
infusion is possible with HAIC through simply 
adjusting drug concentrations and infusion rat- 
es in the implantable port system whereas in 

TACE, there is no way to control the delivery of 
drug once injection is complete. Moreover, the- 
re will be no rebound angiogenesis using HAIC 
because there is no embolization, which means 
drug can be delivered indefinitely whereas with 
TACE, rebound angiogenesis will quickly cause 
drug washout through increased tumor clear-
ance of drug.

Experimental evidence that supports the use  
of HAIC largely comes from high observed rat- 
es of tumor response as described through 
RECIST criteria and mRECIST criteria, as well  
as a collection of trials comparing HAIC to sys-
temic chemotherapy. Notably, there are no ran-
domised trials comparing TACE with HAIC, rep-
resenting an area of potential future research. 
One of the only trials to compare TACE and HAIC 
came from Kim et al., who compared 36 pati- 
ents prospectively given HAIC with a retrospec-
tively matched group of patients undergoing 
TACE with similar patient and tumor character-
istics [92]. This study demonstrated a higher 
rate of objective response according to mRE-
CIST in the HAIC group compared to TACE group 
(16.7% vs 0%, P = 0.03), as well as higher me- 
dian survival (193 vs 119 days, P = 0.026). 
However, the study is limited by the fact that 
different drugs were used - the HAIC group was 
treated using 5FU and cisplatin, while the TACE 
group was treated using doxorubicin. Never- 
theless, it is promising evidence that HAIC can 
be considered as a potential alternative treat-
ment to TACE. Daniels and Wallman also have 
described significantly lower complication rates 
through their use of HAIC as opposed to report-
ed complication rates of TACE therapy (1.4% vs 
31%) [93]. Another recent trial showed a major 
survival advantage using HAIC with sorafenib 
over only sorafenib in a cohort of 247 HCC 
patients with portal vein invasion randomised 
to one of two groups (13.37 vs 7.13 months) 
[94]. The trial also showed a benefit in the time 
to progression (7 vs 2 months), as well as in 
response rate (41 vs 2%), however, there were 
more instances of vomiting (6 vs 1%), neutro- 
penia (10 vs 2%), and thrombocytopenia (13 vs 
5%) in the sorafenib and HAIC group. This trial 
presents substantial evidence that a change  
in the standard of care is necessary for HCC 
patients with portal vein invasion and suggests 
that further research into HAIC in different 
patient groups is required. 
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Development of degradable microspheres for 
TACE 

Degradable microspheres are designed to pro-
vide embolisation on a transient basis depend-
ing on duration of treatment time required after 
which they disintegrate within the vessels with-
out having any deleterious effect on other or- 
gans such as cytotoxicity or subsequent embo-
lization of smaller capillaries with their residual 
material. Presently, a few different degradable 
microspheres have been developed using poly-
merised polylactic glycolic acid (PLGA), PLGA-
polyethylene glycol (PEG)-PLGA, carboxymethyl-
cellulose-chitosan (CMC-CCN), chitosan, hydr- 
oxyethyl acrylate (HEA) and degradable starch 
microspheres (DSM) [95].

PLGA microspheres degrades in vivo by hydroly-
sis of the ester bonds that are found between 
polylactic acid and polyglycolic, with the former 
degrading further into lactic acid that is excret-
ed or converted into glucose to form adenosine 
triphosphate [96] whilst the latter also under-
goes further hydrolysis into the monomers whi- 
ch is excreted through the kidneys or used in 
the tricarboxylic acid cycle [97]. The safety and 
efficacy of these PLGA microspheres (Occlu- 
sin500 from IMBiotechnologies Ltd, Edmonton, 
AB, Canada) have been successfully tested in 
sheep model with 150-212 um spheres [98]. 
Although technically PLGA microspheres de- 
grade in 6 months Occlusin500 took up to 9 
months owing to the development fibrous 
growth within the blood vessel and hence it 
was disqualified as degradable microspheres 
since it fell short of the standard set by ISO 
10993-1 (international standard for device) 
which is <30 days [99]. 

The in vivo degradation of PLGA-PEG-PLGA 
begins with the degradation of PLGA by similar 
mechanism as above whilst PEG (polyethylene 
oxide) is excreted unchanged in urine with lim-
ited toxicity [100]. However, if metabolised in 
the kidneys, PEG could form ethylene glycol 
metabolite i.e. calcium oxalate and carbon diox-
ide which may pose toxicity. In vivo, these mi- 
crospheres were reported to degrade in less 
than 7 days using 300-500 and 700-900 um 
spheres in sheep [101]. However, decreased 
particle size showed more distal occlusion, 
greater necrosis and lower recanalization rate 
[102]. Further the microspheres produced less 

ischemic damage relative to the controls (tris-
acryl-gelatine) owing to its short half-life. Given 
its short embolic life, there will be no fibrotic 
tissue formation; however, the risk of migration 
with embolisation in non-target tissues may 
occur.

The disintegration of CMC-CNN microspheres 
is determined by the percentage oxidation of 
carboxymethylcellulose (CMC), 10% oxidised 
form disintegrates within 14 days whilst 25% 
oxidised in 30 days [103, 104]. In vivo, lyso-
zyme separates the two components by cleav-
ing the Schiff’s base. CMC is non-toxic with lim-
ited degradation into glucose by hydrolysis of 
the 1-4 glycosidic linkages. Chitosan is regard-
ed as non-toxic and it undergoes lyzozymic deg-
radation. These spheres can be produced in a 
variety of sizes (100-1550 um) [104]. The safe-
ty of these microspheres was tested using the 
renal artery of Rabbit model; however, migra-
tion was not addressed [105]. 

Chitosan microspheres are polymer of glucos-
amine with N-acetylglucosamine, linked togeth-
er by 1-4 glycosidic bonds that are hydrolysed 
by lysozyme into glucosamine [106]. Glucosa- 
mine is then converted into glycosaminogly-
cans, proteoglycans and glycolipids [107] with 
low systemic toxicity. The safety of chitosan 
microspheres (150-250 um) were tested in rab-
bits and the first sign of degradation was ob- 
served at 24 weeks (6 months) with complete 
absence at 32 weeks (8 months). Inflammatory 
response persisted for 32 weeks, however with 
low eosinophil count suggesting that allergic 
reaction may not occur [108].

Degradable starch microspheres (DSM) con-
sists of polymerised partly hydrolysed starch 
molecules that are linked using glycerol ether 
groups and are easily degraded by blood α- 
amylase [109]. EmboCept® S DSM 35/50 (Ph- 
armaCept GmbH, Berlin, and Germany) manu-
factures DSM with an average diameter of 50 
um with a half-life being 35-50 minutes both in 
vitro and in vivo [110]. Hence, repeated treat-
ment is required to achieve optimal results. 
Degraded smaller fragments of microspheres 
may lodge non-specifically in other organ sys-
tem resulting in ischemia and severe pain 
although this is only very temporary and blood 
flow is normally resumed in a matter of minutes 
(10-15 mins) [111]. Recent study has indicated 
that overall survival of patients can be improv- 
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ed using a combination of cytostatic drugs  
and DSM when compared to that of IV delivery 
of cytostatic drugs [112].

Biomarkers to assess the efficacy of TACE 
treatment

Specific and sensitive tumour biomarkers will 
enable not only early detection of the disease 
but also assess treatment efficacy in HCC [13]. 
Currently, several tumour markers have been 
identified for the detection of HCC such as 
α-fetoprotein (AFP), des-γ-carboxyprothrombin 
(DCP), Glypican-3 (GPC3), Golgi protein-73 (GP- 
73), and circulating mi-RNAs (Figure 4). There 
are also several reviews addressing other 
tumour markers for the detection of HCC 
[113-115].

Glypican-3 (GPC3) is a heparin sulfate proteo-
glycan and plays a vital role in regulating the 
growth of cells particularly through the wnt and 
hedgehog signalling pathway [116]. Numerous 
studies have found the absence or very low 
expression of GPC3 in normal liver, focal nodu-
lar hyperplasia and hepatocellular adenoma 
but highly expressed in HCC [117]. Although 
GPC3 can sometimes be expressed in other 
cancers such as liposarcoma, lung squamous 
cell carcinoma and testicular non-seminoma-
tous germ cell tumour, studies have indicated 
its diagnostic value as a serum marker in HCC 
[118]. Notably, GPC3 has a higher specificity 
and sensitivity than human cervical cancer on- 
cogene (HCCR) and Alfa fetoprotein (AFP) in  
the diagnosis of HCC and the combination of 
the three markers have indicated a much high-
er sensitivity to the detection of HCC than any 
other markers [119].

Alpha-fetoprotein (AFP) is primarily produced  
in the liver by the foetus during develop- 

Des-γ-carboxyprothrombin (DCP) is a non-func-
tional precursor of prothrombin that is exces-
sively secreted by HCC cells which raises the 
level of DCP. The level of blood DCP has been 
well correlated with tumour diameter, disease 
progression [122]; portal vein invasion with cor-
relation to survival [123]. It has also been sug-
gested that DCP may promote angiogenesis 
through activation of vascular endothelial grow- 
th factor (VEGF) and epidermal growth factor 
(EGF) [124]. Compared to other tumour mark-
ers such as AFP, AFP-L3 and Golgi protein 73 
(GP73), DCP has 60% sensitivity and 64.5% 
specificity for early stage diagnosis and 62.5% 
and 85.5% for all stages [125].

Golgi protein-73 (GP73) is a 73 kDa transmem-
brane glycoprotein is highly expressed in liver 
tumours and it promotes HCC cell invasion th- 
rough the (CREB) mediated pathway [125]. It is 
a highly sensitive and specific serum biomarker 
for HCC as indicated by several studies [126] 
with better scores compared to AFP. Sixty per-
cent of AFP negative HCC patients tested posi-
tive for GP73 in a recent study [127] althou- 
gh the sensitivity and diagnostic accuracy was 
lower. Hence, a combination of AFP and GP73 
may serve as a useful diagnostic as well as 
treatment efficacy markers [128].

Micro RNAs have vital role in the development 
of HCC since healthy livers express high levels 
of miRNA 122 compared to HCC [129]. Studies 
have also shown that miRNA-122 may act as a 
tumour suppressor [130]. Further miRNA-23a 
was found to be associated with multiple local 
hepatic lesions [131] and a cut of value of > 210 
miRNA-23a was comparatively more accurate 
for diagnosis of HCC since it was significantly 
specific and sensitive as compared to AFP with 
a cut off value of > 200 ng/ml [132]. Hence, 
miRNA-23a may have an important role in diag-

Figure 4. Shows some of the common biomarkers that are detected in HCC 
for diagnostic and therapeutic purpose.

ment, however it subsides 
after birth. The glycosylated  
form of AFP designated as 
AFP-L3 is closely associat- 
ed with HCC and the simu- 
ltaneous determination of 
AFP-L3, AFP with p53 antig- 
en or with des-γ-carboxypr- 
othrombin (DCP) has shown 
great diagnostic accuracy and 
sensitivity than any of the 
markers individually [120, 
121].
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nosis and prognosis. Similarly, miRNA-494 has 
been proposed for both diagnosis and as a 
prognostic agent [133].

There are several reviews examining both diag-
nostic and prognostic biomarkers that can be 
detected in both histo-pathological and blood 
samples [13, 113-115], with emphasis that a 
number of biomarkers should be used for diag-
nostic and prognostic screening since there is  
a inter patient variation of biomarker expres-
sion. Hence, the judicious use of biomarkers on 
an individual basis may enable a more accurate 
diagnostic and prognostic evaluation in HCC 
patients.

Conclusion

TACE appears to be an ideal method for drug 
delivery, although the use of non-degradable or 
that degrade very slowly may work against the 
efficient performance of the cytotoxic drugs 
since rebound vascular development that sup-
ports tumour regrowth takes place within 36 
hours in human. The use of oral anti VEGF and 
tyrosine kinase inhibitors to overcome neovas-
cularisation carry inherent disadvantage such 
as non-patient compliance owing to severe side 

effects. Further, these anti angiogenic therapy 
cannot be used on a long-term basis to over-
come neovascularisation since they affect 
other organ systems [134]. Incorporating the 
tyrosine kinase inhibitors or anti VEGF therapy 
within the microspheres may reduce the side 
effects since the delivery is locoregional with 
minimal systemic exposure. However, the non-
biodegradable spheres create permanent em- 
bolism that are very long lasting with lasting 
neovascularisation. Hence, the use of degrad-
able microspheres may overcome neovascu-
larisation although one major disadvantage is 
the embolization of non-target organs with de- 
graded fragments, that are however relatively 
short lived. Other inbuilt barriers within the tu- 
mour will still prevail and has to be overcome  
in order to attain good efficacy. In the case of 
intra-tumoral drug delivery, although the drug is 
delivered within the tumour, factors such as  
low pH, dense tumour matrix and other barriers 
will still prevail, and they have to be overcome 
as discussed earlier. After drug delivery by 
TACE, the efficacy of treatment can be moni-
tored using either dual biomarkers such as 
AFP-L3 and DCP or the use of several biomar- 
kers that may be specific in certain patients. 
Since there are several variabilities within the 

Figure 5. TACE as an ideal treatment for non-resectable HCC.
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tumour environment that is patient dependant, 
it would be difficult to attain uniform treatment 
response amongst patients although certain 
parameters such as selection of cytotoxic de- 
pending on tumour characteristics, type of mi- 
crospheres, size etc, can be controlled. In an 
ideal situation where the existing barriers to 
drug transfer and other inherent disadvantages 
in microspheres can be overcome, then TACE 
may serve as an ideal treatment with probable 
better outcome and even serve as a cure for 
non-resectable HCC (Figure 5).
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