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Abstract: Head and neck squamous cell carcinoma (HNSC) is the 6th most common cancer around the globe; its 
underlying molecular mechanisms and accurate molecular markers are still lacking. In this study, we explored hub 
genes and their potential signaling pathways through which these genes participate in the development of HNSC. 
The GSE23036 gene microarray dataset was attained from the GEO (Gene Expression Omnibus) database. Hub 
genes were identified via the Cytohubba plug-in application of the Cytoscape. The Cancer Genome Atlas (TCGA) 
datasets and cell lines (HOK and FuDu) were used to evaluate expression variations in the hub genes. Moreover, pro-
moter methylation, genetic alteration, gene enrichment, miRNA network, and immunocyte infiltration analysis were 
also performed to confirm the oncogenic role and biomarker potential of the hub genes in HNSC patients. Based on 
the hub gene analysis results, four hub genes, including KNTC1 (Kinetochore Associated 1), CEP55 (Centrosomal 
protein of 55 kDa), AURKA (Aurora A Kinase), and ECT2 (Epithelial Cell Transforming 2), with the highest degree 
scores were denoted as hub genes. All these four genes were significantly up-regulated in HNSC clinical samples 
and cell lines relative to their counterparts. Overexpression of KNTC1, CEP55, AURKA, and ECT2 was also associ-
ated with poor survival and various clinical parameters of the HNSC patients. Methylation analysis through tar-
geted bisulfite sequencing of HOK and FuDu cell lines revealed that the overexpression of KNTC1, CEP55, AURKA, 
and ECT2 hub genes was due to their promoter hypomethylation. Moreover, higher expressions of KNTC1, CEP55, 
AURKA, and ECT2 were positively correlated with the abundance of the CD4+ T cells and macrophage while with 
the reduction of CD8+ T cells in HNSC samples. Finally, gene enrichment analysis showed that all hub genes are 
involved in “nucleoplasm, centrosome, mitotic spindle, and cytosol” pathways. In conclusion, the KNTC1, CEP55, 
AURKA, and ECT2 genes could be potential biomarkers for HNSC patients and provide a novel insight into the diag-
nosis and treatment of the disease.
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Introduction

Head and neck squamous cell carcinoma 
(HNSC) ranked 6th as the most prevalent cancer 
around the globe [1]. Every year, around 
300000 people die due to HNSC, and these 
numbers are expected to increase in the com-
ing years [1]. Although the success ratio of 
HNSC treatment has obviously improved over 
the last few decades, the 5-year survival rate of 
HNSC patients is still below 40% worldwide [2]. 
The poor survival of HNSC patients is because 
of failure in the early detection of this disease. 
The improvement of survival rates in HNSC 
patients largely depends on the early diagnosis 
of this disease. Therefore, accurate diagnosis 
is very critical for successfully treating HNSC 
patients.

During the last few years, using gene microar-
ray and next-generation sequencing (NGS) 
technologies, a huge variety of novel diagnos-
tic, prognostic biomarkers or potential treat-
ment targets have been reported in HNSC 
patients [3, 4]. However, in previous indepen-
dent research, the utilization of small sample 
sizes, different screening platforms, and bio-
marker selection criteria have all contributed 
significantly to the biasness of the results. To 
solve this problem, integrative multi-omics 
research has been preferred to obtain more 
stable, sensitive, and accurate molecular bio-
markers. Previously, HNSC biomarkers includ-
ed P16INK4A, CK4, CDK6, HRAS, TP53, BRCA1, 
and PTEN [5-7]. However, the performance of 
these biomarkers is not up to mark. 

In the current study, a single HNSC GSE23036 
[8] gene microarray dataset was initially used 
to determine the differentially expressed genes 
(DEGs) and hub genes. Then, we used multiple 
HNSC TCGA datasets from various platforms 
(UALCAN, GEPIA, OncoDB, and GENT2) and 
HNSC cell lines (HOK and FuDu) to validate the 
expression profiles of the hub genes. In addi-
tion to this, the identified hub genes were also 
further investigate via a series of bioinformat-
ics analyses to investigate their diagnostic  
and prognostic performances in the HNSC 
patients. Ultimately, the outcomes of the pres-
ent study shed light on the novel diagnostic and 
prognostic roles of four novel genes in HNSC, 
including KNTC1 (Kinetochore Associated 1), 
CEP55 (Centrosomal protein of 55 kDa), AURKA 

(Aurora A Kinase), and ECT2 (Epithelial Cell 
Transforming 2).

Methodology

The HNSC gene microarray dataset collection

The HNSC gene microarray dataset (accession 
# GSE23036) was collected from the GEO data-
base [9]. The GSE23036 [8] dataset contained 
mRNA expression profiles of total 68 samples, 
including 63 HNSC and 5 normal controls. 

Data processing for DEGs analysis

Prior to the DEGs analysis, a matrix consisting 
of gene expression values in GSE23036 was 
converted with the help of R-language based 
log2 function [10], and the values were obtained 
as log2 transformed expression values. The 
quality of expression data for outlier values was 
checked through principal component analysis 
(PCa) [11]. To ensure the quality of the data only 
those genes whose expression was detected in 
at least 3 samples were considered for the fur-
ther analyses. DEGs were determined with the 
help of R-language based “Limma” package 
[12]. Only genes having “|Log2FC| > 1.0, false 
discovery rate (FDR) < 0.05 and P < 0.05” were 
denoted as DEGs between HNSC and normal 
samples.

Construction of the protein-protein interaction 
(PPI) network and the selection of hub genes

The analysis of interactions and creation of the 
PPI between DEGs were carried out by STRING 
[13] using the DEGs acquired from the 
GSE23036. The created PPI network type was 
a full STRING network. After creating networks, 
the PPIs were visualized through the Cytoscape 
3.7.1 software for module and hub gene identi-
fication [14]. The critical module was identified 
using the MCODE plug-in application of the 
Cytoscape, and the top four genes having the 
highest degree scores than other genes in the 
significant module were selected by Cytohubba 
plug-in application as potential hub genes [15].

UALCAN analysis

The expression testing of identified hub genes 
at the mRNA and protein levels across the TCGA 
HNSC dataset was performed using the 
UALCAN database [16]. The clinical parameter-
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based expression analysis feature of this data-
base also facilitated us to investigate clinical 
parameter-based expression profiles of the hub 
gene.

Validation and prognostic analyses

The GEPIA [17], OncoDb [18], and GENT2 [19] 
are online TCGA databases. In this study, these 
three databases were tested to validate the 
mRNA expressions of the hub gene across 
HNSC samples relative to controls. In addition, 
the “Survival Analysis” feature of the GEPIA 
database also facilitated us in checking the 
prognostic performance of the hub genes.

Methylation, genetic alterations, and co-ex-
press gene analysis

The MEXPRESS [20] and OncoDB [18] databas-
es were tested in this study for exploring meth-
ylation statuses, while the cBioPortal [21] data-
base was tested for gaining insight into the 
genetic alterations among hub genes and iden-
tifying their highly co-expressed genes in HNSC 
patients. The TCGA HNSC datasets were cho-
sen for the mentioned analyses.

Gene enrichment and sub-cellular localization 
analyses

The gene ontology annotation of the hub genes 
for CC, BP, MF, and KEGG was done using the 
DAVID tool [22]. In addition to this, for studying 
the sub-cellular localization of the proteins 
encoded by the hub genes, the HPA database 
[23] was tested in this study.

Immune cells infiltration analysis

The TIMER database [24] was tested in this 
work in order to investigate correlations among 
infiltration levels of the immune cells (CD8+ T 
cells, CD4+ T cells, and macrophages) and 
expression levels of the identified hub genes in 
HNSC patients.

miRNA network and drug prediction analyses

For gaining insight into the miRNA network of 
the hub genes, we utilized ENCORI database  
to construct the miRNA network of the hub 
genes [25]. In order to use hub genes as the 
potential therapeutic targets, possible interac-
tions of the possible drugs with hub genes were 

explored with the help of DrugBank database 
[26].

RNA-seq and targeted bisulfite-seq analysis 
based in vitro validation of the hub genes ex-
pression and methylation status

A total of one HNSC cell line, including FaDu, 
and one normal human oral keratinocyte (HOK) 
cell line were purchased from the ATCC 
(American Type Culture Collection). The pur-
chased cell lines were cultured in DMEM 
(HyClone), supplemented with 10% fetal bovine 
serum (FBS; TBD), 1% glutamine, and 1% peni-
cillin-streptomycin in 5% CO2 at 37°C. Total RNA 
extraction from all these three cells lines was 
done using TRIzol® reagent method [27], while 
total DNA was extracted via organic method 
[28]. Finally, RNA and DNA samples were sent 
to Beijing Genomics Institute (BGI) company for 
RNA-seq bisulfite-seq analysis.

After RNA-seq analysis, the gene expression 
values of the hub genes were normalized using 
reads per kilo base million reads (RPKM) and 
fragments per kilo base million reads (FPKM). 
While, methylation values were normalized as 
beta values. The obtained FPKM, and beta val-
ues against hub genes in HNSC and normal oral 
keratinocyte (HOK) cell line were compared to 
identify differences in the expression and 
methylation levels.

Statistics details for in silico analyses 

DEGs were identified using a t-test [29]. While 
for GO and KEGG enrichment analysis, we used 
Fisher’s Exact test for computing statistical dif-
ference [30]. Correlational analyses were car-
ried out using Pearson method. For compari-
sons, a student t-test was adopted in the cur-
rent study. All the analyses were carried out in 
R version 3.6.3 software.

Results

The HNSC gene microarray dataset process-
ing, DEGs determination, and hub gene analy-
sis 

Outlying microarray samples can cause huge 
biasness in the analysis results [31]. Therefore, 
the removal of such samples is critical prior to 
further analysis. In order to check the outlier 
sample, we firstly performed PCa analysis. 
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Accordingly, none of the samples was detected 
as an outlier in the GSE23036 HNSC dataset 
(Supplementary Figure 1A). The boxplot-wise 
and heatmap-wise expression profiles of the 
samples included in the GSE23036 is given the 
Supplementary Figure 1A, 1B. Utilizing the 
“limma” package, in total, 2487 DEGs were 
determined between HNSC and normal tissue 
samples (Supplementary Figure 1C). The dis-
persion of DEGs was shown with the help of a 
volcano plot (Supplementary Figure 1D). Such 
gene expression profiles of the DEGs highlight-
ed that HNSC and normal samples in the ana-
lyzed dataset significantly differ from each 
other in terms of dysregulated genes.

Employing the STRING database, a PPI of the 
top 250 DEGs with the lowest p-values was 
constructed and subjected to module and hub 
gene identification analysis (Figure 1A). The top 
identified module was comprised of 13 DEGs 
(Figure 1B, 1C), and out of which KNTC1 (Kine- 
tochore Associated 1), CEP55 (Centrosomal 
protein of 55 kDa), AURKA (Aurora A Kinase), 
and ECT2 (Epithelial Cell Transforming 2) genes 
with the highest degree scores were denoted 
as hub genes for further analysis (Figure 1D).

TCGA expression analysis of hub genes

In order to check the worthiness of hub genes 
as a novel diagnostic tool, we undertook the 
expression analysis of these genes in the TCGA 
dataset via the UALCAN. The expression analy-
sis was carried at the both mRNA and protein 
levels across HNSC patients with different clini-
cal variables and their corresponding control 
samples. As shown in Figures 2-4, the hub 
gene (KNTC1, CEP55, AURKA, and ECT2) 
expressions were notably (P < 0.05) higher in 
HNSC samples of different clinical parameters 
at the mRNA (Figure 3) as well as protein 
(Figure 4) levels relative to the controls.

Hub gene expressions verification and prog-
nostic performance

A single TCGA dataset may not be sufficient to 
determine the worthiness of the KNTC1, 
CEP55, AURKA, and ECT2 as diagnostic tool. 
Thus, we utilized 3 more TCGA datasets from 3 
different online sources, including GEPIA, 
OncoDB, and GENT2, for mRNA expression veri-
fication purposes. Analysis outcomes from 
these databases were consistent with the 

UALCAN results, i.e., the significant (P < 0.05) 
up-regulation of KNTC1, CEP55, AURKA, and 
ECT2 genes in HNSC samples compared to con-
trols were also observed via the GEPIA, OncoDB, 
and GENT2 databases (Figure 5A-C). Moreover, 
to evaluate the prognostic significance of the 
KNTC1, CEP55, AURKA, and ECT2 genes, the 
“survival” module of the GEPIA was used, and 
results revealed that overexpression of the 
KNTC1, CEP55, AURKA, and ECT2 genes was 
associated with the poor prognosis in HNSC 
patients (Figure 5D). In other words, HNSC 
patients having the overexpression of the 
KNTC1, CEP55, AURKA, and ECT2 hub genes 
have shorter survival durations than those 
HNSC patients who has low expressions of the 
KNTC1, CEP55, AURKA, and ECT2 hub genes.

Methylation, genetic alterations, and co-ex-
press gene analysis

Promoter methylation patterns of the KNTC1, 
CEP55, AURKA, and ECT2 genes were obtained 
via MEXPRESS and OncoDB. Significant nega-
tive correlations were observed when promoter 
methylation patterns of the KNTC1, CEP55, 
AURKA, and ECT2 were compared between 
HNSC and controls (Figure 6). Methylation anal-
ysis findings revealed that higher expressions 
of KNTC1, CEP55, AURKA, and ECT2 across 
HNSC may be due to decreased methylation 
levels in their promoter regions.

The cBioPortal was utilized to assess KNTC1, 
CEP55, AURKA, and ECT2 genes’ genetic alter-
ations across the TCGA cohort of 530 HNSC 
samples. All these four hub genes were geneti-
cally altered in HNSC samples with varying fre-
quencies ranging for the 0.4% (in case of 
AURKA) to 20% (in case of ECT2) (Figure 7A). 
The two most kinds of alterations in those 
genes were amplification and missense muta-
tions (Figure 7A). Therefore, amplification may 
also be the reason behind the overexpression 
of KNTC1, CEP55, AURKA, and ECT2 in HNSC 
samples. Moreover, we further analyzed that 
the HNSC patient group harboring KNTC1, 
CEP55, AURKA, and ECT2 genetic alterations 
had poorer OS and DFs than unaltered HNSC 
patients (Figure 7B). Finally, the co-expressed 
gene analysis from the cBioPortal showed that 
along expressed genes in HNSC samples 
include TMPO, KIF11, UBE2C, and SMC4, 
respectively (Figure 7C).
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Figure 1. A PPI of the obtained 250 DEGs, a module, and a PPI of the denoted hub genes in GSE23036. (A) A PPI network of the top 250 DEGs in GSE23036 micro-
array dataset, (B, C) A PPI network of the most significant module, and (D) A PPI network of identified four hub genes. P < 0.05 = significant.
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Gene enrichment and sub-cellular localization 
analyses

As reported by the DAVID tool, the KNTC1, 
CEP55, AURKA, and ECT2 along with their co-
expressed genes were involved in the “germinal 
vesicle, centralspindlin complex, RZZ complex, 
female germ cell complex, chromosome pas-
senger complex, and kinetochore microtubule” 
CC (Supplementary Figure 2A), “histone serine 
kinase activity, plus-end directed microtubule 
motor activity, lamin binding, and ubiquitin-like 
protein ligase binding” MF (Supplementary 
Figure 2B), “mitotic centrosome separation, 
centrosome separation, cytokinesis, mitotic 
sister chromatid segregation, mitotic spindle 
organization, and mitotic nuclear division” BPs 
(Supplementary Figure 2C), and “progesterone-
mediated oocyte maturation, oocyte meiosis, 
and ubiquitin mediated proteolysis” KEGG 
terms (Supplementary Figure 2D). 

As for the sub-cellular localization of the pro-
teins encoded by the KNTC1, CEP55, AURKA, 
and ECT2 hub genes across HNSC cells, the 
KNTC1 was detected in “cytosol and plasma 
membrane” (Supplementary Figure 2E), CEP55 
was seen in “plasma membrane, centriolar  
satellite, and midbody” (Supplementary Figure 
2E), AURKA was found in “nucleoplasm, centro-
some, mitotic spindle, and cytosol” (Supple- 
mentary Figure 2E), while ECT2 was detected  
in “nucleoplasm and cytosol” (Supplementary 
Figure 2E). 

Immune cells infiltration analysis

Across the HNSC TCGA cohort, the TIMER data-
base was used to evaluate correlations among 
CD8+ T cells, CD4+ T cells, and macrophage 
infiltration level and expression and expres-
sions of the KNTC1, CEP55, AURKA, and ECT2 
hub genes. As reported by the TIMER analysis, 
higher expressions of KNTC1, CEP55, AURKA, 
and ECT2 were positively correlated with the 
abundance of the CD4+ T cells and macro-
phages while with the reduction of CD8+ T cells 
across HNSC samples (Supplementary Figure 
3).

miRNA network of the hub genes

Via ENCORI and Cytoscape, we constructed the 
lncRNA-miRNA-mRNA co-regulatory networks 
of the KNTC1, CEP55, AURKA, and ECT2. In the 
constructed networks, the total counts of miR-
NAs, and mRNAs were 182 and 4, respectively 
(Supplementary Figure 4). Based on the con-
structed networks, we have identified one 
miRNA (has-mir-16-5p), that targets all hub 
genes simultaneously. Therefore, we speculate 
that the identified miRNA (has-mir-16-5p), and 
hub genes (KNTC1, CEP55, AURKA, and ECT2) 
(Supplementary Figure 4) as an axis, might also 
be the potential inducers of the HNSC.

Drug prediction analysis of the hub genes

Through the DrugBank database, we selected a 
total of seven drugs (Table 1) which can poten-
tially reduce hub gene expressions (KNTC1, 
CEP55, AURKA, and ECT2), including the two 
most common drugs, namely cyclosporine and 
dasatinib (Table 1). The identified drugs in this 
work may be utilize in the treatment of HNSC 
patients. 

Experimental in vitro validation of the hub 
genes expression and methylation status

In the current study, by performing RNA-seq 
and targeted bisulfite-seq analyses of one 
HNSC (FaDu) and one normal human oral kera-
tinocyte (HOK) cell lines, the expression and 
methylation levels of identified four hub genes 
were validated. The expression levels of these 
genes were validated using FPKM, while meth-
ylation level was validated using beta values. 
Both FPKM and beta are quantitative values 
with widespread use in the RNA-seq analysis. 
As shown in Figure 8A, it was noticed that 
KNTC1, CEP55, AURKA, and ECT2 hub genes 
were expressed in both cell lines and RPKM val-
ues of KNTC1, CEP55, AURKA, and ECT2 were 
notably higher in HNSC cell lines (FaDu) as 
compared to normal cell line (HOK) (Figure 8A). 
Similarly, the beta values of KNTC1, CEP55, 
AURKA, and ECT2 were higher in normal (HOK) 
cell line while lower in HNSC cell line (FuDu) 
(Figure 8B).

Figure 2. mRNA and protein expression analysis of KNTC1, CEP55, AURKA, and ECT2 using UALCAN. (A) A heatmap 
of KNTC1, CEP55, AURKA, and ECT2 in HNSC normal samples group, (B) Box plot presentation of KNTC1, CEP55, 
AURKA, and ECT2 hub genes mRNA expression, and (C) Box plot presentation of KNTC1, CEP55, AURKA, and ECT2 
hub genes protein expression. P < 0.05 = significant.
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Figure 3. mRNA expression profiling of KNTC1, CEP55, AURKA, and ECT2 in HNSC samples of different clinical variables relative to controls using UALCAN. (A) mRNA 
expression of KNTC1, (B) mRNA expression of CEP55, (C) mRNA expression of AURKA, and (D) mRNA expression profiling of ECT2. P < 0.05 = significant.
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Figure 4. Protein expression profiling of KNTC1, CEP55, AURKA, and ECT2 in HNSC samples of different clinical variables relative to controls using UALCAN. (A) Pro-
tein expression of KNTC1, (B) Protein expression of CEP55, (C) Protein expression of AURKA in, and (D) Protein expression of ECT2. P < 0.05 = significant.
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Figure 5. Expression validation and survival analysis of KNTC1, CEP55, AURKA, and ECT2. (A) Expression validation of KNTC1, CEP55, AURKA, and ECT2 in HNSC 
and normal samples via GEPIA database, (B) Expression validation of KNTC1, CEP55, AURKA, and ECT2 in HNSC and normal samples via OncoDB database, (C) 
Expression validation of KNTC1, CEP55, AURKA, and ECT2 via GENT2 database, and (D) Survival analysis of KNTC1, CEP55, AURKA, and ECT2 in HNSC and normal 
samples via GEPIA database. P < 0.05 = significant.

Figure 6. Methylation status exploration of KNTC1, CEP55, AURKA, and ECT2 via MEXPRESS and OncoDB in HNSC and normal samples. (A) Methylation status 
exploration via MEXPRESS, and (B) Methylation status exploration via OncoDB. P < 0.05 = significant.
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Figure 7. Exploration of genetic alteration frequencies, effect of the genetic mutations on the survival, and co-expressed gene analysis via cBioPortal. (A) Types, fre-
quencies, and location of the genetic alterations in KNTC1, CEP55, AURKA, and ECT2, (B) Effect of the genetic mutations on the OS and DFs of the HNSC patients, 
and (C) Identification of co-expressed genes with KNTC1, CEP55, AURKA, and ECT2. P < 0.05 = significant.
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Discussion

The identification of novel potential molecular 
biomarkers to achieve accurate HNSC diagno-
sis at the early stages and discovering appropri-
ate chemotherapeutic drugs and drug targets 
for treating HNSC patients is highly demanded 
at present. This current study initially concen-
trated on the GSE23036 HNSC gene expres-
sion microarray dataset for exploring possible 
biomarkers and therapeutic targets in HNSC 
patients. After identifying potential signature 
genes (hub genes), we attempted to integrate 
various multi-omics TCGA datasets and utilized 
HNSC cell lines to achieve the possible best 
quality in terms of validating hub gene expres-
sions and investigating their tumor-causing 
roles. After a detailed analysis of the GSE23036 
HNSC gene expression microarray dataset, we 
obtained the KNTC1, CEP55, AURKA, and ECT2 
genes as potential biomarkers in HNSC. After 
expression analysis using TCGA HNSC cohorts 
and cell lines (HOK and FuDu), it was apparent 
that the KNTC1, CEP55, AURKA, and ECT2 hub 
genes were up-regulated in HNSC relative to 
the control samples. Moreover, mutational and 
methylation analysis revealed that amplifica-
tion and promoter hypomethylation in these 
genes notably contribute to the overexpression 
of these genes in HNSC patients relative to 
their normal counterparts.

The KNTC1, an evolutionary conserved gene, is 
one of the major mitotic checkpoint compo-
nents, that promote proper chromosomal seg-

regation during the cell division process [32, 
33]. It is earlier shown by various studies that 
most of the genes involving the mitosis process 
are overexpressed in different human malig-
nancies, including cancer, and some of these 
genes are oncogenes [34, 35]. In this view, the 
higher expression of KNTC1 was noticed by 
prior studies in a wide variety of human can-
cers, including colorectal, breast cancer, 
esophageal cancer, hepatocellular carcinoma, 
gastric cancer, and neuroblastoma [36-40]. 
However, to the best of our knowledge, the 
KNTC1 role in the pathogenesis of HNSC has 
not been reported earlier in the medical 
literature. 

The CEP55 protein plays a vital role in the mito-
sis process, specifically by binding with CDK1, 
ERK2, and PLK1 proteins [41]. The overexpres-
sion of CEP55 is earlier documented in differ-
ent human cancers, including the cancers of 
the breast [42], thyroid cancer [43], prostate 
cancer [44], kidney and so on. 

Prior clinical studies revealed that CEP55 over-
expression is a potential molecular biomarker 
for different cancers. Such as, Nina Hauptman 
et al. [45] highlighted through bioinformatics 
analysis that CEP55 up-regulation is a marker 
of diagnosis for colorectal cancer patients. In 
esophageal squamous cell carcinoma (ESCC) 
patients, Yang Jia et al. [46] found that overex-
pression of CEP55 mRNA is correlated with 
poor survival. Moreover, the 5-year survival of 
cancer patients with normal CEP55 expression 

Table 1. DrugBank-based hub genes-associated drugs
Sr. No Hub gene Drug name Effect Reference Group
1 KNTC1 Dasatinib Decrease expression of KNTC1 mRNA A21899 Approved

Cyclosporine A21092
Dronabinol A22083
Troglitazone A24633

2 CEP55 Dasatinib Decrease expression of CEP55 mRNA A21899 Approved
Tretinoin A24453

Palbociclib A23569
Cyclosporine A21092

3 AURKA Cyclosporine Decrease expression of AURKA mRNA A21092 Approved
Calcitriol A22301

Afimoxifene A20479
Dasatinib A21899

4 ECT2 Cyclosporine Decrease expression of ECT2 mRNA A21092 Approved
Dasatinib A21899
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Figure 8. Validating KNTC1, CEP55, AURKA, and ECT2 expressions and methylation status using HOK and FaDu cell lines via RNA-seq and targeted bisulfite-seq 
analyses. (A) FPKM values based expression plots of the KNTC1, CEP55, AURKA, and ECT2, and (B) Beta values based methylation plots of the KNTC1, CEP55, 
AURKA, and ECT2.
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was notably higher than that of those having 
overexpression of CEP55 [47]. Regarding the 
use of CEP55 overexpression as a biomarker in 
LUAD and LUSC, the results of the previous 
studies are conflicting [47]. 

AURKA is an important molecule for cell cycle 
progression [48, 49]. It has been frequently 
found overexpressed or mutated in various 
types of human tumors [39, 40]. For example, 
Tanaka et al. [41] investigated 33 cases of BRIC 
and found overexpression of AURKA in 94% of 
the cases. According to Du et al. AURKA overex-
pression was correlated with the poor survivals 
of colorectal, esophageal, and lung cancer 
patients [50]. Miyoshi et al. observed AURKA 
overexpression in 64% of the BRIC cases using 
reverse transcription-polymerase chain reac-
tion (RT-PCR) in a group of 47 patients [42]. 
However, comparatively, a larger study includ-
ing 112 BRIC patients did not find any associa-
tion between AURKA expression and BRIC 
patients’ survival [43]. However, Nadler et al. 
have observed the elevated expression of 
AURKA in breast tumors and related it with OS 
[44].

The ECT2 gene codes for a guanine nucleotide 
exchange factor whose overexpression is asso-
ciated with the development of cancer [51]. In 
certain cancer subtypes, the overexpression of 
the ECT2 gene was observed in previous stud-
ies, and therefore this gene is denoted as the 
oncogene [52, 53]. The ECT2 mRNA and pro-
tein are reported to be significantly overex-
pressed in ovarian cancer cells relative to nor-
mal cells. The overexpressed ECT2 protein was 
mainly detected in the nucleus of the ovarian 
cancer cells leading to the higher cell prolifera-
tion [54]. Moreover, ECT2 overexpression 
serves as a major contributor to the occurrence 
of breast cancer [55]. However, the molecular 
subtype based cancer driving role of ECT2 in 
breast cancer was unclear. In addition to this, 
the dysregulation of ECT2 was also revealed as 
an oncogenic factor in colorectal [56], esopha-
geal [57], and lung cancers [58].

A huge number of recently conducted research-
es have claimed that the infiltration of immune 
cells could significantly accelerate the develop-
ment of cancer [59]. For example, Hu et al. 
showed that overexpressed OGN gene can 
enhance CD8+ T imunne cells infiltration, and 
thus inhibit blood vessels formation in colon 

cancer [60]. Keeping this vital information in 
view, we investigated the relationships among 
hub genes and a few important immune cell 
infiltrations. Interestingly, higher expressions of 
the KNTC1, CEP55, AURKA, and ECT2 were 
positively correlated with the abundance of the 
CD4+ T cells and macrophages while with the 
reduction of CD8+ T cells across HNSC sam-
ples, indicating that these genes may be 
involved in regulating HNSC at immunological 
level. KEGG analysis results further support 
this hypothesis; KNTC1, CEP55, AURKA, and 
ECT2 hub genes were enriched in the “proges-
terone-mediated oocyte maturation, oocyte 
meiosis, and ubiquitin mediated proteolysis” 
immune-related pathways. However, still there 
is a need to conduct more experiments for vali-
dating hub gene associations with immune infil-
tration in HNSC. We further noticed that KNTC1, 
CEP55, AURKA, and ECT2 hub genes’ expres-
sion were regulated simultaneously by hsa-mir-
16-5p miRNA in HNSC patients. Previously, the 
dysregulation of hsa-mir-16-5p in multiple 
human cancers has been reported in published 
studies, for example in breast cancer, bladder 
cancer, glioblastoma, and lung cancer [61, 62]. 
However, any tumor suppressor or tumor-caus-
ing role of hsa-mir-16-5p in HNSC is not report-
ed anywhere. Therefore, the exploration of the 
hsa-mir-16-5p oncogenic role in HNSC develop-
ment with further biological experiments will be 
highly valuable. 

Conclusion

In conclusion, by utilizing detailed bioinformat-
ics RNA-seq, and targeted bisulfite-seq meth-
odologies, four hub genes (KNTC1, CEP55, 
AURKA, and ECT2) were identified as potential 
markers of the HNSC. All these four hub genes 
were overexpressed in HNSC samples. The 
overexpression of KNTC1, CEP55, AURKA, and 
ECT2 was the outcome of gene amplification 
and promoter hypomethylation. The KNTC1, 
CEP55, AURKA, and ECT2 hub genes were 
involved in immunological regulation across 
HNSC tissue samples, which further needs to 
be verified through biological experiments.
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Supplementary Figure 1. A comparison between expression profiles of samples, volcano graphs of DEGs, and a total count of DEGs in GSE23036 microarray data-
set. (A, B) A comparison between expression profiles of samples in GSE23036 microarray dataset, (C) A total count of DEGs and non-DEGs in GSE23036 microarray 
dataset, (D) A volcano graph of the DEGs observed in GSE23036 microarray dataset, and (E) Volcano graph of the DEGs, identified in the GSE23036 microarray 
dataset.
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Supplementary Figure 2. Gene enrichment and subcellular localization analysis of KNTC1, CEP55, AURKA, and 
ECT2. (A) KNTC1, CEP55, AURKA, and ECT2 associated CC terms, (B) KNTC1, CEP55, AURKA, and ECT2 associated 
MF terms, (C) KNTC1, CEP55, AURKA, and ECT2 BP terms, (D) KNTC1, CEP55, AURKA, and ECT2 KEGG terms, and 
(E) Subcellular localization of KNTC1, CEP55, AURKA, and ECT2 in HNSC tissues.
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Supplementary Figure 3. Correlation analysis of KNTC1, CEP55, AURKA, and ECT2 hub genes expression with different immune cells (CD8+ T, CD4+ T, and Macro-
phages) infiltration level. (A) KNTC1, (B) CEP55, (C) AURKA, and (D) ECT2.
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Supplementary Figure 4. miRNA-mRNA co-regulatory network of KNTC1, CEP55, AURKA, and ECT2 hub genes. (A) 
A PPI of miRNAs targeting hub genes, and (B) A PPI highlighting most important miRNA (hsa-mir-16-5p) targeting 
all hub genes.


