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Abstract: Evidence suggests that immunogenic cell death (ICD) releases cancer antigens that promote cytotoxic T-
cell responses, potentially improving immunotherapy. However, the relationship between ICDs and esophageal can-
cer (EC) remains unclear. This study aimed to determine the role of ICDs in EC and to construct an ICD-based prog-
nostic panel. RNA-seq data of EC and the corresponding clinical information were downloaded from the UCSC-Xena 
platform to explore the association between ICD gene expression and EC prognosis. The GSE53625 dataset was 
used to validate the proposed model. Differentially expressed genes (DEGs) between different molecular subtypes 
were identified to construct a new ICD-related prognosis panel and generate molecular subtypes using Consensus-
ClusterPlus. We created a prognostic profile based on the ICD and a nomogram based on the risk score. Compared 
with normal samples, ICD gene expression of malignant samples were significantly increased. 161 patients with EC 
were successfully divided into three subtypes (SubA, SubB, and SubC). Patients with EC in the SubC group had the 
best survival and lowest ICD score, whereas patients in the SubB group had the worst prognosis. DEGs between 
subtypes were evaluated, and risk panels were established using LASSO-Cox regression analysis. The prognosis of 
low-risk patients was significantly better than that of high-risk patients in both cohorts. The area under the curve 
of the receiver operating characteristic curve indicated that the risk group had a good prognostic value. Our study 
identified the molecular subtypes of EC and ICD-based prognostic signatures. Our three-gene risk panel could serve 
as a biomarker for effectively assessing the prognostic risk of patients with EC.

Keywords: Esophageal carcinoma, immunogenic cell death, biomarkers, clinical prognosis

Introduction

Esophageal cancer (EC), which occurs in the 
epithelial cells of the esophagus, is the sixth 
most common cause of cancer-related death 
worldwide [1]. The disease burden varied be- 
tween countries and populations, mainly be- 
cause of the prevalence of potential risk fac-
tors and subtype distribution. For example, 
China has the highest incidence of EC globally 
[2], but unlike Western countries, more than 
90% of EC cases are squamous-cell carcinoma 
esophageal carcinoma (ESCC) [3]. Despite sub-
stantial improvements in ESCC treatment over 
the past 20 years, survival for EC remained low, 

with five-year survival rates ranging between 
10-30% after diagnosis in most countries; the 
survival rates were 36%, 24%, and 30% in 
Japan [4], Australia [5], and China [6], respec-
tively. Therefore, further improvement in the 
effectiveness, safety, and economy of EC thera-
py has become the focus of clinical medicine.

Immunogenic cell deaths (ICD) is a specific form 
of cell death that induces an immune response 
against the antigens of dying or dying cells [7]. 
ICD might activate danger signaling pathways 
mediated by surface calmodulin/heat shock 
proteins, secretion ATP, or HMGB1 [8]. ICD  
was an important predictor of solid anti-tumor 
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immunity [9, 10]. Conventional chemotherapy 
promotes T-cell-mediated destruction of resid-
ual cancer cells by inducing ICDs that convert 
malignant cells into vaccines and increase 
T-cell primers [11]. More importantly, cancer 
antigens released by ICDs were increasingly 
found to promote cytotoxic T cell responses, 
potentially improving immunotherapy [12, 13]. 
The main manifestation was that, when ICD 
occurs, numerous damage-related molecular 
patterns (DAMPs) were exposed and released, 
which made dying cancer cells have powerful 
adjuvant properties by attracting and activat- 
ing antigen-presenting cells [14, 15]. Different 
innate immune receptors were involved in 
DAMPs-mediated ICD, and their synergies with 
DAMPs were required for ICD and anti-tumor 
immune responses [16]. However, the prognos-
tic value and mechanism of ICD implantation  
in EC have not been thoroughly studied. 
Therefore, an in-depth understanding of the 
correlation between ICD-related genes and EC 
prognosis may provide a new method for the 
treatment and prognostic assessment of pa- 
tients with EC.

In this study, RNA-seq data from the UCSC-
Xena platform were used as the training cohort 
and the GSE53625 dataset was used as the 
validation cohort. The expression profile of ICD-
related genes was obtained from a previous 
study (PMID: 27057433) and a molecular clas-
sifier of EC was successfully established. The 
relationships between molecular clustering, 
prognosis, immune cell infiltration, and ICD ac- 
tivity were investigated. Construction of risk 
panels using differentially expressed genes 
(DEGs) and clinical features of EC subtypes  
can be used as biomarkers to effectively 
assess the risk of prognosis in patients with EC.

Materials and methods

Data acquisition, differential expression analy-
sis, and intersection identification

The RNA-seq data of EC were downloaded from 
the UCSC-Xena platform (https://xenabrowser.
net/datapages/), along with clinical informa-
tion (including age, sex, TNM stage, tumor 
stage, family history, lymph node examined 
count, neoplasm histologic grade, primary diag-
nosis, site of resection or biopsy, and disease 

type). Finally, 162 cancer samples and 11 nor-
mal samples with survival information were 
preserved [17]. In addition, GSE53625 da- 
taset was downloaded from the GEO platform 
(http://www.ncbi.nlm.nih.gov/geo/), which in- 
cluded 179 EC and 179 normal samples as a 
validation cohort for a subsequent model [18]. 
The expression data downloaded above were 
normalized to log2 (FPKM + 1). We directly 
downloaded the processed and standardized 
probe expression matrix, and gene annotation 
information was obtained from the reference 
(PMID: 29317304). For different probes corre-
sponding to the same gene symbol, the aver-
age value was used as the gene expression 
value for subsequent analyses. In total, 34 ICD-
related genes (Table S1) were identified from 
the literature (PMID: 27057433) [19].

Cluster analysis

Univariate Cox regression analysis was used  
to screen the prognostic genes. Consensus- 
ClusterPlus (v1.54 4.0) was used for consistent 
cluster analysis of ICD gene expression profile 
data. The proportional hazards assumption 
(PHA) was tested using the R survival package, 
which ensembled a test based on the weighted 
residuals. Heatmap clustering was performed 
using PheatMap (v1.0.12). The correlation 
between the cluster and clinical parameters is 
shown by overlaying diagrams and analyzed 
using the chi-square test. The four molecular 
subtypes of EC were evaluated using the R’s 
GSVA package for ICD gene enrichment scores, 
and the Wilcoxon rank test was used to evalu-
ate the differences in ICD gene enrichment 
scores among the different subtypes. Kaplan-
Meier (KM) analysis was used to compare the 
prognoses of the four groups.

Cluster-based analysis of tumor immune mi-
croenvironment

To further explore the relationship between  
ICD subtypes and tumor microenvironment,  
the relative abundance of each immune cell  
in different subtypes was obtained using the 
“ESTIMATE” package of R, and Wilcoxon rank 
test was performed [20]. Simultaneously, using 
CIBERSORTx (https://cibersortx.stanford.edu/) 
online tools, based on gene expression data 
calculate the score 22 kinds of immune cells 
[21].
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Results

Identification of ICD between EC and normal 
sample

First, we compared the distribution of ICD gene 
expression between EC and normal samples. 
As is shown in Figure 1A, the expression of ICD 
genes in EC samples differed from that in nor-
mal samples, and the expression of PIK3CA 
and NT5E in EC tissues was significantly higher 
than that in normal tissues (P < 0.05). However, 
correlation analysis of ICD gene expression 
showed that the expression of the ICD gene in 
normal samples had a certain correlation; how-
ever, with the occurrence of EC, the correlation 
of ICD gene expression was low (Figure 1B).

Identification of ICD-based molecular clusters 
in EC using consensus clustering analysis

To identify the ICD-based EC molecular clus-
ters, 34 ICD-related genes were identified using 
consistent cluster analysis. Eighty percent of 
the samples and genes were selected from 
10000 repeated sampling. K, denoting the 
maximum number of clusters, was set to ten. A 
hierarchical clustering algorithm and correla-
tion distance matrix were used. According to 
the cumulative distribution function (CDF) cur- 
ve and delta area, the optimal cluster number, 
K, was three, and three ICD-based EC molecu-
lar clusters were constructed (Figure 2A-C). To 
verify the rationality of the molecular subtypes 
of EC, ICD scores were calculated for the three 
molecular subtypes, and significant differences 
were observed in the ICD scores among the 
three molecular clusters (P < 0.01). The ICD 
score for SubC was the lowest (Figure 2D). 
Additionally, the three ICD-related clusters 
exhibited significantly different survival curves. 
Compared with other clusters, EC patients in 
the SubC cluster had the best survival, whereas 
those in the SubB cluster had the worst progno-
sis, indicating that ICD implantation had a pro-
tective effect on EC patients (Figure 2E). The 
genomic landscape of different patient clusters 
is shown in Figure 2F.

Cluster-based analysis of tumor immune mi-
croenvironment

The “ESTIMATE” R package was used to asse- 
ss the differences in immune characteristics 

Identification of differentially expressed genes

The “limma” program was utilized to determine 
the DEGs among four subtypes, and the filter-
ing threshold was P value < 0.05 [22].

Building the prognostic signature

Univariate Cox regression analysis was per-
formed to identify the DEGs that were highly 
associated with prognosis in the training 
cohort. We used the prognostic genes to con-
struct a prognostic model using LASSO Cox 
regression analysis via the lars package (Ver- 
sion 1.2) [23]. The genes whose regression 
coefficient was not 0 were included in the mul-
tivariate Cox analysis to construct the final 
prognostic risk scoring model. Based on the 
regression coefficient (c) derived from multivar-
iate Cox regression analysis, the following for-
mula was used to construct a prognostic sig- 
nature: risk score = [c1 × expression level of 
gene (1)] + [c2 × expression level of gene (2)] + 
[cn × expression level of gene (n)]. Each patient 
was assigned a risk score using the following 
formula: The risk score for each patient was 
calculated according to the formula, and the 
“pROC” package of R software was used to 
draw the subject working characteristic curve 
to calculate the Yoden index to determine the 
optimal cut-off value of the risk score [24]. The 
median value divided the EC samples into high-
risk and low-risk groups, and overall survival 
(OS) times were compared between the two 
groups using KM analysis. Time-related receiv-
er operating characteristic (ROC) at 1, 3, and 5 
years was performed using the timeROC pack-
age (v0.3) to evaluate the prognostic ability of 
the risk model. GSE53625 was selected as  
the external validation cohort from the GEO 
database.

Drug sensitivity prediction

Using the pharmacosensitivity genomics data-
base, the “pRRophetic” package in R was used 
to estimate the sensitivity of chemotherapy 
agents in patients with EC [25]. The maximum 
inhibitory concentration of half (IC50) was cal-
culated and quantified. The Wilcoxon test was 
used to compare differences in drug sensitivity 
between the high- and low-risk groups.
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Figure 1. Role of immunogenic cell death in tumor and normal samples of esophageal cancer (EC). A. Difference in 
expression of ICD genes between tumor and normal samples in EC. B. Correlation analysis of ICD genes expression 
in esophageal carcinoma and normal samples.

among the three subtypes, including Immu- 
neScore, StromalScore, ESTIMATEScore, and 
Tumorpurity. As is shown in Figure 3A, the 
ImmuneScore, StromalScore, and ESTIMATE- 
Score levels of the SubC subtype were lower 
than those of the other subtypes, but the tumor 
purity levels were enhanced. These results sug-
gest that the prognosis of EC is negatively cor-
related with immune and stromal components. 
To further explore immune cells in the tumor 
distribution microenvironment, the CIBERS- 
ORTx online tool was used to calculate the per-
centage of different subtypes of 22 types of 
immune cell infiltration. Meanwhile, we found 
that naïve B cells, CD4 memory resting cells, 
CD8 T cells, CD4 memory activated cells, mac-

rophages, and mast cells were significantly dif-
ferent among the three subtypes (P < 0.05; 
Figure 3B). Additionally, we analyzed the im- 
mune checkpoint and human leukocyte anti- 
gen (HLA) genes in the three clusters and found 
that all immune checkpoint genes, except for 
VTCN1, were downregulated in the SubC sub-
type, and the HLA genes in the SubC group 
showed the same trend (Figure 3C, 3D, P < 
0.05).

Risk model development of EC based on ICD-
related genes and external verification

According to the thresholds described in the 
Methods section, a difference analysis was 
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Figure 2. Consensus clustering of EC molecular subgroups based on immunogenic cell death (ICD). Cumulative distribution function curve (A), Consensus clustering 
matrix with K as 3 (B), and PAC verification curve (C). C1, C2, and C3 were SubA, SubB, and SubC, respectively. (D) ICD scores among three groups. (E) Kaplan-Meier 
survival curve of various clusters. (F) Distribution of clinical characteristics among various clusters.
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Figure 3. Cluster-based analysis of tumor immune microenvironment. A. Comparison of tumor immune microenvironment components. B. Box plots present dif-
ferential immune infiltration. C. Immune checkpoint genes expression. D. Human leukocyte antigen family genes expression. *P < 0.05. **P < 0.01. ***P < 0.001. 
****P < 0.0001.
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years were 0.85, 0.83, and 0.80, respectively 
(Figure 5D). Based on the nomogram calibra-
tion map, the predicted OS results were closer 
to the observed results, and the calibration 
curves for 1 year showed good consistency; 
however, some deviation was observed over 
time (Figure 5E).

Cluster-based analysis of drug sensitivity

The drug sensitivity analysis showed that 
BIBW2992 (afatinib), bortezomib, Parthenolide, 
and RDEA119 (Refametinib) were expected to 
benefit the low-risk group (Figure S3).

Discussion

EC was found to be a common gastrointes- 
tinal tumor. Asian countries, such as Turkey, 
Kazakhstan, and China, have a high incidence 
of EC. Despite the prevalence of various treat-
ments such as chemotherapy, targeted thera-
py, immunotherapy, and surgery, most patients 
diagnosed with EC will not benefit from sur- 
gery and show poor prognosis. Although some 
patients with EC are clinically cured by surgery, 
the tumor is prone to relapse and metastasis 
within a certain period following relevant che-
motherapy and targeted drug therapy. There- 
fore, further improvements in the effective-
ness, safety, and cost of EC therapy have 
become the focus of clinical medicine. To the 
best of our knowledge, this study is the first to 
identify molecular subtypes and prognostic sig-
natures based on ICDs, which could help pre-
dict the clinical prognosis and therapeutic 
response in patients with EC.

In the anti-tumor process, in addition to the 
well-known cell death processes (such as apop-
tosis and pyroptosis), chemotherapy or radio-
therapy has been employed in various types of 
cancer, which could induce specific cells to initi-
ate the pro-inflammatory process, increase the 
activation of T cells, and develop a new the- 
rapeutic method that causes cell death (for 
example, ICD) [26]. Similarly, the results of the 
present study showed that ICD gene expres- 
sion was higher in EC samples than in normal 
samples, suggesting that the cells in EC sam-
ples activated or enhanced the expression of 
immunogenic cell death genes to protect them-
selves and promote cell death.

After elucidating the protective effect of ICDs 
on EC, we performed cluster analysis and risk 

performed for three subtypes: SubA and SubB, 
SubA and SubC, and SubB and SubC. For SubA 
and SubB, 3218 genes were identified, includ-
ing 2052 up-regulated genes and 1166 down-
regulated genes (Figure S1A). A total of 5455 
genes were identified, including 4184 and 
1271 up- and down-regulated genes, respec-
tively (Figure S1B). A total of 4695 genes  
were identified, including 3762 and 933 up- 
and down-regulated genes, respectively (Figure 
S1C). A total of 1045 genes were obtained from 
the intersection of the three groups of differen-
tial genes (Figure S1D).

The DEG-based univariate Cox analysis of the 
three subtypes identified three prognostic ge- 
nes (Figure 4A). LASSO regression analysis 
was performed on the prognostic genes identi-
fied using univariate Cox analysis. Figure 4B 
shows the loci of each independent variable. 
The number of independent variables app- 
roaching zero increased with increasing lamb-
da (λ) value (Figure 4C). 

The risk score of each patient was calculated, 
and the samples from the training and verifica-
tion cohorts were divided into H (risk score 
higher than the median value of the risk score) 
and L (risk score lower than the median value of 
the risk score) groups (Figure S2). The KM  
curve showed that the prognosis of low-risk 
patients was significantly better than that of 
high-risk patients in both the training (P=1.3e- 
3, Figure 4D) and validation cohorts (P=6.0e-3, 
Figure 4E). The area under the curve (AUCs) of 
the time-dependent ROC curves for 1-, 3-, and 
5-year OS was 0.77, 0.78, and 0.81, respective-
ly (Figure S2C), indicating good predictive per-
formance. A similar phenomenon was observed 
in the validation cohort; the ROC curves for the 
1-, 3-, and 5-year OS rates were 0.65, 0.61, and 
0.55, respectively (Figure S2D).

Developing a predictive nomogram for OS 
prediction

Data on risk scores and clinical features were 
analyzed using univariate and multivariate Cox 
regression analyses to determine prognostic 
factors. The results showed that risk scores 
and pathologic_N were significantly associat- 
ed with prognosis (P < 0.05; Figure 5A, 5B). A 
nomogram was established to accurately pre-
dict the clinical outcomes (Figure 5C). Si- 
multaneously, the ROC curves of 1-, 3- and 5 
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Figure 4. Prognostic model of EC based on prognostic genes. (A) Univariate COX regression forest map. (B) LASSO 
coefficient profiles. (C) Plot of error rates from ten-fold cross-validation. KM survival curve illustrating the predictive 
value of risk model in the training (D) and validation (E) cohorts.

Figure 5. Construction of the nomogram for predicting OS of EC patients. Univariate (A) and multivariate (B) forest 
plots of the risk score model and clinicopathological characteristics associated with overall survival. (C) Nomogram 
was constructed based on two independent prognostic factors. (D) ROC curve. (E) Calibration plot for internal valida-
tion of the nomogram.
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stratification to distinguish patients with EC 
with different ICD activities. First, 173 EC sam-
ples were genotyped according to ICD-related 
gene expression profiles, and three subtypes 
were identified. Patients with EC in the SubC 
group had the best survival and lowest ICD 
score, while the worst prognosis was observed 
in the SubB group. In addition, the SubC sub-
type had lower ImmuneScore, StromalScore, 
and ESTIMATEScore scores, but higher levels  
of tumor purity. These results consistently 
showed that the lower the ICD score, the better 
the clinical outcome of the SubC subtype, which 
also verified the protective effect of ICDs on EC.

To explore the potential prognostic mecha-
nisms of the proposed ICD-based molecular 
subtypes and the causes of prognostic differ-
ences among the different subtypes, we com-
pared the tumor immune microenvironments of 
the different subtypes. Interestingly, we found 
significantly higher levels of CD4+ T cells and 
M0 macrophages, and lower levels of immune 
checkpoint gene expression in patients in the 
SubC group with low ICD scores and good clini-
cal outcomes. CD8+ T cells are an important 
component of tumor-infiltrating lymphocytes, 
which are manifested by the host’s immune 
response to cancer cells [27]. CD8+ T cell infil-
tration could be used as a predictive marker 
[28]. As a major effector of humoral immunity, 
B cells stimulate T cell responses by produc- 
ing immunoglobulins and prevent tumor pro-
gression by directly destroying tumor cells [29]. 
Therefore, high infiltration of immune cells is 
closely related to good prognosis of EC.

The R kit was used for univariate Cox regres-
sion analysis, resulting in the screening of three 
genes with significant prognostic correlation, 
and the prognostic model of EC patients was 
established using LASSO Cox analysis. Patients 
were divided into high- and low-risk groups 
based on their risk scores. We found that the 
prognosis of EC patients in the low-risk group 
was better than that of patients in the high-risk 
group. The ROC curve showed good predictive 
performance. Similar results have been report-
ed in previous studies. Xu et al. developed an 
immune-related genes to predict prognosis in 
patients with osteosarcoma [30]. Another prog-
nostic feature based on circulating nucleo-
somes and immunogenic cell death markers 
predicted the prognosis of pancreatic cancer 

[31]. The present study also examined correla-
tions between prognostic risk scores, patient 
characteristics, and prognosis. Risk scores and 
pathological N were independent prognostic 
factors for OS. Overall, although the effective-
ness of the prognostic models is slightly worse 
than that of similar studies [32, 33], the ICD 
markers in the present study were of great 
value for the prognosis of patients with EC.

In the present study, patients in the low-risk 
group may have benefitted from fuel-based 
drugs. Among them, BIBW2992 (Afatinib) is an 
EGFR inhibitor, which was approved for use in 
non-small cell lung cancer with EGFR muta-
tions; Bortezomib was a proteasome inhibitor, 
and patients with mantle cell lymphoma or mul-
tiple myeloma were approved to be treated wi- 
th it; Parthenolide was a HDAC1 inhibitor and 
RDEA119 (Refametinib) was an MEK 1/2 inhib-
itor, both of which have not obtained clinical 
indications for treating tumors. These four 
drugs have not yet been approved for clinical 
use in EC, and further research is needed to 
explore their correlation with ICD expression.

The results presented here should be consid-
ered exploratory rather than conclusive becau- 
se this study was a retrospective analysis of the 
data from publicly accessible sources. Further 
in vitro and in vivo experiments, and prospec-
tive studies, are required to validate the find-
ings. Nonetheless, the results can aid the 
development of new biomarkers for patients 
with EC.

Conclusion

Overall, we identified molecular subtypes of 
EC-based ICDs and used them to construct 
prognostic signatures. Different molecular sub-
types and risk groups were analyzed for clinical 
characteristics, tumor immune microenviron-
ment, and survival. In future, the proposed sig-
natures may provide clinical evidence to sup-
port decisions regarding the treatment and 
prognosis of patients with EC.
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Table S1. ICD genes list
ATG5
BAX
CASP8
PDIA3
EIF2AK3
PIK3CA
CALR
HMGB1
HSP90AA1
ENTPD1
NT5E
IL6
IFNA1
IFNB1
TNF
CXCR3
P2RX7
CASP1
NLRP3
IL1B
IL1R1
TLR4
MYD88
LY96
CD4
CD8A
CD8B
IFNG
IFNGR1
IL17A
IL17RA
PRF1
IL10
FOXP3
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Figure S1. Differential gene screening. A. Volcanic map of differential genes in SubA & SubB. B. Volcanic map of 
differential genes in SubA & SubC. C. Volcanic map of differential genes in SubB & SubC. D. Venn diagram.
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Figure S2. An overview of the risk score distribution, survival status of each patient both in the training cohort (A) 
and the verification cohort (B). ROC curve of the predictive value of the risk model in the training cohort (C) and 
validation cohort (D).



Prediction model for esophageal carcinoma

4 

Figure S3. Targeted-drug sensitivity prediction.


