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SFPQ promotes the proliferation,  
migration and invasion of hepatocellular  
carcinoma cells and is associated with poor prognosis
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Abstract: Liver cancer is a prevalent type of tumor worldwide. CRISPR-Cas9 technology can be utilized to identify 
therapeutic targets for novel therapeutic approaches. In this study, our goal was to identify key genes related to 
the survival of hepatocellular carcinoma (HCC) cells by analyzing the DepMap database based on CRISPR-Cas9. 
We screened candidate genes associated with HCC cell survival and proliferation from DepMap and identified their 
expression levels in HCC from the TCGA database. To develop a prognostic risk model based on these candidate 
genes, we performed WGCNA, functional pathway enrichment analysis, protein interaction network construction, 
and LASSO analysis. Our findings show that 692 genes were critical for HCC cell proliferation and survival, and 
among them, 571 DEGs were identified in HCC tissues. WGCNA categorized these 584 genes into three modules, 
and the blue module consisting of 135 genes was positively linked to the tumor stage. Using the MCODE approach 
in Cytoscape, we identified ten hub genes in the PPI network, and through Cox univariate analysis and Lasso analy-
sis, we developed a prognostic model consisting of three genes (SFPQ, SSRP1, and KPNB1). Furthermore, knocking 
down SFPQ inhibited HCC cell proliferation, migration, and invasion. In conclusion, we identified three core genes 
(SFPQ, SSRP1, and KPNB1) that are essential for the proliferation and survival of HCC cells. These genes were used 
to develop a prognostic risk model, and knockdown of SFPQ was found to inhibit the proliferation, migration, and 
invasion of HCC cells.
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Introduction

Hepatocellular carcinoma (HCC) is a prevalent 
malignant tumor of the digestive system, 
accounting for more than 90% of all liver can-
cer cases [1]. Despite significant progress in 
clinical and experimental treatment of HCC  
due to advances in surgical techniques, most 
patients only exhibit clinical symptoms in 
advanced stages, and the complex pathophysi-
ological mechanisms result in a poor prognosis 
[2]. Combining biomarkers can enhance diag-
nostic accuracy, representing a new direction in 

the clinical diagnosis of cancer [3, 4]. Therefore, 
identifying reliable biodiagnostic markers of 
HCC and developing novel therapeutic app- 
roaches remain necessary prerequisites for 
effective treatment of HCC patients.

As more mutated genes associated with the 
development of human cancer are being identi-
fied, there is a rapid development of therapeu-
tics targeting these genes [5]. However, this 
discovery alone is not enough, and it is neces-
sary to link these dependent genes with the 
genetic or molecular characteristics of tumors 
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to discover new therapeutic targets. The Cancer 
Dependency Map (DepMap) project (https://
depmap.org/portal/) provides histological data 
derived from various sources such as the 
Cancer Cell Lineage Encyclopedia (CCLE), small 
molecule sensitivity data, Broad Achilles Project 
genetic dependent data, and Sanger’s GDSC 
[6]. The project uses CRISPR-Cas9 and RNAi 
technology to silence or eliminate individual 
genes and identify those critical to the survival 
of cells [7, 8]. The CERES algorithm used for 
CRISPR screening is also obtained from 
DepMap, where the CERES score represents 
the effect of gene knockdown or knockout. 
Lower scores indicate that the gene may be 
more important for cell growth and survival [9].

In this study, we identified core essential genes 
that are differentially expressed in HCC and 
critical for HCC cell survival using the Depmap 
website and TCGA database. We then obtained 
the most relevant module for HCC progression 
through WGCNA analysis and functionally anno-
tated the module genes using KEGG and GO 
analysis. Next, we developed and verified a risk 
predictive model. Finally, we used CCK8, trans-
well, and migration assays to detect the effect 
of the screened core gene-SFPQ (Splicing 
Factor Proline and Glutamine Rich) on the func-
tion of HCC cells. SFPQ is a DNA and RNA-
binding nuclear protein that plays a crucial role 
in RNA translocation, apoptosis, and DNA repair 
[10-12]. It can bind to the dsDNA of many gene 
promoters and affect the transcriptional regula-
tion of genes [13]. SFPQ can also bind to long-
stranded non-coding RNAs (LncRNAs) of cer-
tain genes and participate in tumor formation 
and metastasis [11]. In recent years, further 
research has found that SFPQ is associated 
with many diseases, such as Alzheimer’s dis-
ease [13-15]. Moreover, abnormal SFPQ func-
tion is associated with many tumor progres-
sions. A high level of SFPQ promotes prolifera-
tion and development in colorectal cancer [16], 
while up-regulated SFPQ in melanoma is nega-
tively associated with patient survival [17]. This 
study is the first to investigate the expression 
and function of SFPQ in HCC.

Methods

Identification of crucial HCC genes

The DepMap uses RNAi and CRISPR-Cas9 
knockdown screens to obtain genomic informa-

tion and sensitivity to genetic and small mole-
cule perturbations in individual cell lines to dis-
tinguish genes that are critical for the prolifera-
tion and survival (https://depmap.org/portal/). 
The DepMap contains 483 cell lines screened 
with a library of approximately 74,000 sgRNAs 
targeting approximately 17,000 genes, and the 
resulting CERES scores are taken to conclude 
the gene-level dependence [18]. The positive 
CERES score showed that a gene knockdown 
enhances the survival and proliferation of cell. 
The native CERES score indicates that a gene 
knockdown inhibits the survival and prolifera-
tion of cell [19]. In the study, we classified can-
didate genes as essential genes with CERES 
scores < -1 in more than 75% of HCC cell lines.

Clinical data collection and extraction 

Transcriptome data and clinical information of 
HCC were obtained from the TCGA (https://can-
cergenome.nih.gov/). Information on LIRI-JP 
data was obtained from the International 
Cancer Genome Consortium (ICGC) (https://
icgc.org/) and was used as the validation 
cohort. Additionally, mRNA expression data of 
27 melanoma patients who received anti-PD-1 
checkpoint inhibitor therapy was downloaded 
from the GSE78220 dataset in the Gene 
Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/).

Screening for differentially expressed genes 
(DEGs)

The Limma R package was utilized to identify 
differentially expressed genes (DEGs) between 
HCC and normal liver tissues. Genes with a 
fold-change (FC) greater than 1.5 or less than 
0.67 (which corresponds to |log2FC| ≥ 0.585) 
and a p-value less than 0.05 were deemed as 
significant DEGs [20].

Weighted gene co-expression network analysis 
(WGCNA) analysis

WGCNA analysis was conducted on the tran-
scriptional expression profiles of DEGs in the 
TCGA database using the WGCNA R package 
[21]. A soft-threshold parameter of β=5 to the 
power and a scale-free R2=0.9 were selected 
for this analysis. A signed network was utilized, 
and a minimum cluster size was applied for 
dendrogram clustering detection. In total, three 
modules were created.
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Construction of prognostic risk model

The least absolute shrinkage and selection 
operator (LASSO) is a contemporary statistical 
technique that enables active selection from  
a large set of potentially multicollinear vari-
ables in regression analysis, resulting in a more 
correlated and explainable set of predictors 
[22]. By analyzing the TCGA-HCC transcriptomic 
data, LASSO was developed to establish a risk 
score formula: risk score = (0.0288 × expres-
sion of SFPQ) + (0.0168 × expression of SSRP1) 
+ (0.0005 × expression of KPNB1).

GSEA analysis

We obtained the GSEA software from the offi-
cial website (https://software.broadinstitute.
org/gsea/index.jsp) and utilized biosignaling 
gene sets from MSigDB (https://software.
broadinstitute.org/gsea/downloads.jsp) as ref-
erence gene sets to divide HCC patients into 
high-risk and low-risk groups. Each analysis 
was conducted with 1000 iterations using  
the default weighted enrichment statistical 
method.

Nomogram model

Clinical factors, including risk score, age, gen-
der, stage, and grade, were incorporated to 
construct a nomogram to evaluate the probabil-
ity of 1-, 3-, and 5-OS of HCC in the entire set. 
The nomogram’s performance was evaluated 
using the ‘rms’ package by generating a calibra-
tion plot [23]. This plot compared the predicted 
probabilities of the nomogram with the actual 
observed rates.

Cell cultivation and transfection

HCC Hep3B cells and Huh7 cells were obtained 
from ATCC (American Type Culture Collection, 
Manassas, VA, USA). The cells were cultured in 
DMEM medium supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin/strepto-
mycin sulfate. The cells were maintained in a 
humidified sterile cell culture incubator at  
37°C with 5% CO2. To transfect the encoded 
vectors, approximately 2 × 106 cells were ino- 
culated in 6 cm culture dishes and Lipo- 
fectamine 2000 (Invitrogen, Carlsbad, CA, USA) 
was used for transfection of both Huh7 and 
Hep3B cells.

CCK-8 assay 

The level of cell proliferation was evaluated 
using the CCK-8 assay. Transfected cells were 
seeded into four 96-well plates, with 2000 
cells per well and six replicate wells per plate. 
After cell attachment, the CCK-8 reagent pur-
chased from Beyotime (Shanghai, China) was 
added following the manufacturer’s instruc-
tions, and the OD450 was measured using an 
enzyme marker after 1.5 hours. The absor-
bance of the cells was measured separately at 
0, 24, 48, and 72 hours of incubation.

Invasion assay

The invasion capacity of Huh7 and Hep3B cells 
was assessed using the Trans-well assay. Cells 
were added to 24-well plates with an invasion 
chamber containing serum-free medium. The 
lower chamber was filled with complete medi-
um and cultured at 37°C, 5% CO2 for 48 hours. 
The invaded cells passing through the mem-
brane were fixed with a methanol: PBS=7:3 mix-
ture and stained with 500 µL of 0.1% crystal 
violet for 10-20 minutes. Cells on the upper 
chamber surface were wiped off with cotton 
swabs, and the number of invading tumor cells 
was randomly photographed at 6 different 
areas.

Migration assay

The migration ability of Huh7 and Hep3B cells 
was assessed using a wound healing assay. 
Firstly, the cells were cultured in 6-well plates 
until they reached approximately 90% conflu-
ency. Next, any dislodged cellular debris was 
washed away with PBS at least three times. A 
10 µL pipette tip was then used to create a 
scratch wound, and any remaining debris was 
washed away with PBS. Finally, serum-free 
medium was added to the plates and the cells 
were incubated at 37°C, 5% CO2 for 48 hours 
before being observed microscopically.

HCC cDNA microarray

The HCC cDNA microarrays were purchased 
from Shanghai Xinchao Biotechnology Co., Ltd., 
with the chip lot number: HLivH090Su01 and 
array number: 96*R100-M-20170915-**. The 
cDNA microarray contained 64 cancer tissue 
samples from patients with HCC and 24 adja-
cent non-cancerous tissue samples.
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Real-time quantitative PCR

Real-time quantitative PCR was carried out 
using SYBR Green PCR kit (Takara, Dalian, 
China). The reaction conditions involved an ini-
tial denaturation at 95°C for 10 minutes fol-
lowed by 40 cycles of 95°C for 1 minute and 
58°C for 30 seconds. GAPDH was utilized as an 
internal control. Primer sequences were as fol-
lows: SFPQ forward 5’-GGGCTGT TGTAATAGT- 
GGATGA-3’; SFPQ reverse 5’-CCAAAGACTCC- 
ATCGCTGA-3’. GAPDH forward 5’-CCTGCACC 
ACCAACTGCTTAG-3’; GAPDH reverse: 5’-GTG- 
GATGCAGGGATGATGTTC-3’.

Statistical analysis

In this study, we plotted Kaplan-Meier curves to 
analyze overall survival (OS) using survival data 
from HCC patients in the TCGA and LIRI-JP 
databases. Additionally, we drew a receiver 
operating characteristic (ROC) curve to evalu-
ate the prediction accuracy, with the area under 
the curve (AUC) representing the level of accu-
racy. A statistical significance of P < 0.05 was 
deemed significant.

Results

Identifying the essential HCC genes

We obtained CERES dependency scores for 24 
HCC cell lines from DepMap and identified 
essential HCC genes with a CERES score of 
less than -1 in over 75% of the cell lines. A total 
of 692 genes were found to be crucial for sus-
taining the survival of HCC cell lines and were 
designated as candidate genes (Supplementary 
Table 1). We then aimed to identify differentially 
expressed genes (DEGs) in HCC among these 
692 candidates. Our analysis of the TCGA data-
base revealed that 571 candidate genes were 
significantly upregulated in HCC tissues, while 
the expression levels of the remaining genes 
did not show significant downregulation (Figure 
1, Supplementary Table 2). This could be due to 
the fact that these candidate genes play impor-
tant roles in the survival of HCC cell lines.

Next, we constructed gene co-expression mod-
ules using WGCNA and filtered for phase-relat-
ed modules. We utilized mRNA expression of 
571 DEGs for WGCNA analysis and selected the 

Figure 1. Analysis the expression of 692 candidate genes in HCC based on TCGA database. A. Heat map. Red color 
represents up-regulated DEGs and blue color represents down-regulated DEG. B. Volcano plot. Black plot indicates 
non-DEG, red plot indicates up-regulated DEG.

http://www.ajcr.us/files/ajcr0149790suppltab1.xlsx
http://www.ajcr.us/files/ajcr0149790suppltab1.xlsx
http://www.ajcr.us/files/ajcr0149790suppltab2.xlsx
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optimal β=5 as the soft threshold power to 
establish a scale-free network (Figure 2A, 2B). 
The WGCNA analysis divided the 571 DEGs into 
three modules based on their co-expression 
patterns. The blue module consisted of 135 
genes, the turquoise module consisted of 194 
genes, and the grey module consisted of 6 
genes (Figure 2C, Supplementary Table 3). 
Based on the WGCNA results, the blue module 
was found to be positively correlated with tumor 

stage (R=0.3, P < 0.001; Figure 2D). To further 
investigate the 135 genes in the blue module, 
we performed GO and KEGG pathway analyses. 
The top 10 GO enrichment terms included 
mRNA metabolic process, RNA splicing via 
transesterification reactions, mRNA process-
ing, RNA splicing, RNA localization, and others 
(Figure 2E). The KEGG pathway analysis re- 
vealed that these 135 genes were enriched in 
the spliceosome, RNA transport, aminoacyl-

Figure 2. Analysis of HCC co-expression module genes in TCGA da-
tabase by WCGNA. (A) Relationship between scale-free topological 
model fitting and soft threshold (power). (B) Relationship between 
average connectivity and various soft thresholds. (C) Clustering and 
merging of gene co-expression modules. (D) Heat map of correla-
tions between clinical information and module. Red indicates posi-
tive correlations and green indicates negative correlations. Correla-
tions increase with darker colors. GO (E) and KEGG (F) functional 
enrichment analysis of blue module genes. Larger bubbles and 
longer columns indicate greater enrichment of specific features. 
(G) Protein-protein interaction (PPI) network of blue module genes.

http://www.ajcr.us/files/ajcr0149790suppltab3.xlsx
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tRNA biosynthesis, cell cycle, DNA replication, 
proteasome, phagosome, vibrio cholerae infec-
tion, protein export, and collecting duct acid 
secretion (Figure 2F). Subsequently, we map- 
ped these 135 genes as a PPI network and 
used Cytoscape software to construct a PPI 
network and identify 10 hub genes through the 
MCODE application. The 10 hub genes includ-
ed RNA binding motif protein X-linked (RBMX), 
karyopherin subunit Beta 1 (KPNB1), heteroge-
neous nuclear ribonucleoprotein M (HNRNPM), 
heterogeneous nuclear ribonucleoprotein C 
(HNRNPC), heterogeneous nuclear ribonucleo-
protein L (HNRNPL), U2 small nuclear RNA aux-
iliary factor 2 (U2AF2), heterogeneous nuclear 
ribonucleoprotein K (HNRNPK), structure-spe-
cific recognition protein 1 (SSRP1), serine and 
arginine-rich splicing factor 1 (SRSF1), and 
splicing factor proline and glutamine rich 
(SFPQ) (Figure 2G).

Construction of a prognostic model according 
to essential HCC genes

We further evaluated the prognostic value of 
these 10 genes for HCC patients through a uni-
variate Cox regression analysis of the TCGA 
dataset. The results revealed that high expres-
sion of SFPQ, HNRNPK, HNRNPL, HNRNPM, 
KPNB1, SRSF1, SSRP1, U2AF2, and RBMX 
were significantly negatively associated with 
the overall survival of patients with HCC, while 
HNRNPC was not significantly correlated with 
the overall survival of patients with HCC (Figure 
3A). Next, we used LASSO analysis of the 
10-fold cross-validation to analyze these 10 
genes (Figure 3B), and identified three genes 
that constructed the risk score model, which 
included SFPQ, SSRP1, and KPNB1 (Figure 3C). 
The calculation of the risk scores is as follows: 
Risk score = (0.0288 × expression of SFPQ) + 
(0.0168 × expression of SSRP1) + (0.0005 × 
expression of KPNB1). Based on the risk score, 
each HCC patient was grouped into a low-risk 
group and a high-risk group. Kaplan-Meier sur-
vival rates showed an association between the 
low-risk group and better prognosis for HCC 
patients (Figure 3D). The results of the ROC 
analysis demonstrated the powerful predictive 
potential of risk scores for the prognosis of  
HCC patients at 1 year (AUC=0.78), 3 years 
(AUC=0.72), and 5 years (AUC=0.77) (Figure 
3E). The distribution of mRNA levels of the 

three genes, risk scores, and survival of HCC 
patients based on the TCGA dataset were 
shown in Figure 3F.

To investigate the underlying mechanism be- 
tween the low- and high-risk score samples, we 
conducted GSEA of the differential expression 
of the low- and high-risk score samples. The 
GSEA enrichment analysis revealed that the 
high-risk score samples were mainly enriched 
in the cell cycle, oocyte meiosis, ubiquitin-medi-
ated proteolysis, spliceosome, base excision 
repair, and DNA replication (Supplementary 
Figure 1A-F).

The relationship between the risk scores and 
immune characteristics

Furthermore, we investigated the association 
of risk scores with immune characteristics by 
analyzing the correlation between risk scores 
and 24 immune indicators (Figure 4). The 
results demonstrated a positive correlation 
between the risk score and macrophage M0 
cells.

Correlation of risk signature with anti-PD-1 im-
munotherapy

Immune therapy, represented by immune 
checkpoint blockade (PD-1/L1 and CTLA-4), 
has shown excellent clinical efficacy as a major 
breakthrough in cancer treatment. Previous 
studies have demonstrated that anti-PD-1  
antibody therapy exhibits stronger anti-tumor 
effects, but only a few patients achieve durable 
responses. Therefore, in this study, we investi-
gated whether risk score can predict patient 
response to PD-1 immune checkpoint blockade 
therapy (GSE78220 cohort). Encouragingly, 
patients with lower risk scores had better OS 
than those with higher risk scores (Figure 5A). 
Partial responders had lower risk scores com-
pared to non-responders. Moreover, although 
not statistically significant, patients with com-
plete immune therapy responses had lower risk 
scores compared to non-responders, which 
may be due to the limited number of patients in 
the cohort (Figure 5B). These results strongly 
suggest that risk features are significantly 
associated with response to anti-PD-1 immune 
therapy and may serve as new biomarkers  
for predicting response to PD-1/L1 immune 
therapy.
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Validation of the prognostic model

We further divided HCC patients into high-risk 
and low-risk groups based on different clinical 
factors, including age, gender, tumor stage, 
grade, and TNM. The survival analysis showed 
significantly shorter survival times for HCC 
patients in the high-risk group compared to 

those in the low-risk group (Supplementary 
Figure 2A-N). These findings demonstrate the 
robust stratification ability of the prognostic 
risk model. Additionally, we utilized information 
from the LIRI-JP database and computed each 
patient’s prognostic risk score, classifying them 
into high and low-risk groups. The Kaplan-Meier 
curves analysis revealed that low-risk scored 

Figure 3. Construction of classifiers to predict prognosis of HCC patients based on 10 genes. A. Univariate Cox 
survival analysis on the 10 genes. B. Lasso coefficient profile of overall survival with partial likelihood deviation. C. 
Distribution of lasso coefficients for 10 OS genes. D. Kaplan-Meier comparing the OS of the HCC patients within 
low-risk and high-risk. E. ROC was implemented to assess the ability of risk scores to differentiate between different 
prognostic times. F. Distribution of survival status, risk scores, and mRNA expression of SFPQ, SSRP1 and KPNB1 
in HCC patients based on the TCGA database.
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Figure 4. Correlation between the immune indicators and risk scores. A. Heat map of correlation between risk score and 24 immune indicators generated by analyz-
ing HCC patient data from TCGA database. B. Correlation analysis between macrophage M0 and risk score.
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patients had a better overall survival than high-
risk scored patients. The ROC curve for 5-year 
overall survival showed excellent predictive 
value (AUC=0.77), demonstrating the prognos-
tic model’s accuracy (Figure 6A, 6B).

Construction and validation of a nomogram 
model

Subsequently, we developed a nomogram 
model that included independent predictors of 
overall survival, such as tumor stage, tumor 
grade, age, gender, and risk score. The nomo-

gram model provides a visual statistical predic-
tive tool for HCC patients’ survival, enabling  
the risk-scoring model to be applied to clinical 
practice (Figure 7A). Furthermore, the calibra-
tion curves demonstrated good consistency 
between the predicted and observed values of 
the nomogram (Figure 7B).

SFPQ is highly expressed in HCC and is associ-
ated with poor prognosis

Previous studies have demonstrated that 
SSRP1 and KPNB1 genes promote HCC cell 

Figure 5. Association of risk score with anti-PD-1 immunotherapy treatment response of GSE78220 cohort. A. 
Kaplan-Meier analysis of OS in patients treated with anti-PD-1 immunotherapy with different risk scores. B. Com-
parison of risk scores between patients with complete, partial, and no response to anti-PD-1 immunotherapy. NS, 
P > 0.05; **, P < 0.01.

Figure 6. Validation of the prognostic model based on LIRL-JP database. A. Kaplan-Meier analysis of the prognostic 
model by using the LIRL-JP database. B. Plotting ROC curves to assess the accuracy of the prognostic model based 
on LIRL-JP database.
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proliferation. However, the expression and 
effect of SFPQ on HCC are unknown. Figures 1 
and 3 have shown the high expression of SFPQ 
in liver cancer and its correlation with poor 
prognosis in liver cancer patients. Based on  
the TCGA database, we further analyzed the 
expression of SFPQ in different stages and in 
HCC with or without metastasis. The results 
revealed that the expression of SFPQ was low-
est in Stage I and highest in Stage III&IV (Figure 
8A). There was no significant difference in 
SFPQ expression between HCC tissues with 
and without metastasis (Figure 8B). Additionally, 
RT-PCR was used to detect the expression of 
SFPQ in HCC tissues and adjacent non-cancer-
ous tissues from 24 patients. The results dem-
onstrated that the expression of SFPQ was sig-
nificantly upregulated in HCC tissues (Figure 
8C). Furthermore, survival analysis revealed 
that high expression of SFPQ was a poor prog-
nostic factor in 66 HCC patients (Figure 8D).

Knockdown SFPQ inhibits the HCC cells prolif-
eration, migration and invasion

To investigate the functional roles of SFPQ  
in HCC cell proliferation, we knocked down 
SFPQ using SFPQ-shRNAs (Figure 9A, 9B). 
Subsequently, CCK-8 experiments were per-
formed to evaluate the effects of SFPQ inhibi-
tion on the proliferation, migration, and inva-
sion of Huh-7 and Hep3B cells (Figure 9C-H). 
The results demonstrated that SFPQ inhibition 
significantly reduced the proliferation, migra-
tion, and invasion of Huh-7 and Hep3B cells 
(Figure 9C, 9D).

Discussion

In this study, we identified genes critical for 
HCC cell proliferation and survival from the 
DepMap project using the CERES algorithm for 
CRISPR screening to calculate dependency 
scores. Among these 692 essential genes, we 
identified 584 DEGs in HCC tissues using the 
TCGA database. Using WGCNA, we categorized 
these 584 genes into three modules. The blue 
module consisted of 135 genes and was posi-
tively associated with tumor stage. These 135 
genes were mainly enriched in spliceosome, 
RNA transport, and cell cycle pathways.

We utilized the MCODE approach in Cytoscape 
to identify 10 hub genes, including SFPQ, 
HNRNPK, HNRNPL, HNRNPC, HNRNPM, KP- 
NB1, SRSF1, SSRP1, U2AF2, and RBMX, in the 
PPI network. Using Cox univariate analysis and 
Lasso, we developed a prognostic model that 
included three genes (SFPQ, SSRP1, and 
KPNB1). To further assess the reliability of the 
prognostic risk model, we performed subgroup 
analysis and external validation. The AUC of the 
ROC curves of the prognostic model was great-
er than 0.7, indicating that the prognostic model 
had good performance in predicting the prog-
nosis of patients with HCC.

We next explored the potential mechanisms 
underlying the impact of the risk score on  
prognosis. GSEA analysis revealed significant 
enrichment of signaling pathways, such as cell 
cycle, oocyte meiosis, ubiquitin-mediated pro-
teolysis, and spliceosome, in the high-risk 

Figure 7. A constructed nomogram for prognostic prediction of the HCC patients. A. Nomogram was used to assess 
the probability of survival of HCC patients based on risk score. B. Calibration curves for 1-, 3- and 5-year overall 
survival of HCC patients.
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group. All of these biological processes have 
been found to be involved in the progression of 
HCC [24], providing evidence for the rationality 
of risk score stratification in HCC patients and 
molecular hypotheses.

Additionally, we further analyzed the tumor-infil-
trating immune cell landscape in patients with 
different risk score groups. We found that the 
risk score had a positive association with the 
abundance of macrophages M0 cells. Macro- 
phages M0 are commonly referred to as non-
activated macrophages, which together with 
the M1 and M2 phenotypes constitute tumor-
associated macrophages. The altered tumor 
microenvironment, such as hypoxia, inflamma-
tion, chemicals released by tumor cells, and 
exacerbation of inflammation, may promote the 
accumulation of macrophages [25]. Macroph- 
ages have been reported to be recruited to 
tumor tissues and act as pro-angiogenic cells, 
which is significantly associated with poor over-

all survival and disease-free survival in HCC 
[25]. Therefore, the varied types of tumor-infil-
trating immune cells present in patients with 
varying risk score groups likely play a role in 
determining their distinct prognoses. None- 
theless, additional research is necessary to 
uncover the specific underlying mechanisms 
involved.

As a significant breakthrough in cancer treat-
ment, immunotherapy represented by immune 
checkpoint blockade (PD-1/L1 and CTLA-4) 
has shown promising clinical efficacy. Early 
studies have demonstrated that anti-PD-1 anti-
bodies display good clinical efficacy. However, 
only a small number of patients are able to 
achieve a durable response, so identifying suit-
able HCC patients for PD-1 immune therapy 
may be urgent and clinically meaningful [32]. 
Encouragingly, in this study, we found that the 
risk score is significantly associated with the 
response to PD-1 immune therapy. A decrease 

Figure 8. Expression and prognostic analysis of SFPQ in HCC. A. Expression analysis of SFPQ in different stages 
of HCC based on TCGA database. B. Expression analysis of SFPQ in HCC with/without metastasis based on TCGA 
database. C. Differential expression analysis of SFPQ in HCC tissue and adjacent normal tissue based on HCC cDNA 
microarray. D. Prognostic analysis of SFPQ in HCC based on HCC cDNA microarray. NS, P > 0.05; **, P < 0.01; ***, 
P < 0.001.
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Figure 9. SFPQ knockdown inhibits the proliferation of HCC cells. (A, B) The SFPQ expression in the HCC (A) Hep3B and (B) Huh-7 cells transfected with SFPQ-
shRNAs. (C, D) The proliferation of Hep3B (C) and Huh-7 (D) cells transfected with SFPQ-shRNAs was detected by CCK8. (E, F) The migrative of Hep3B (E) and Huh-7 
(F) cells transfected with SFPQ-shRNAs was detected by wound healing assay. (G, H) The invasive of Hep3B (G) and Huh-7 (H) cells transfected with SFPQ-shRNAs 
was detected by transwell assay. *, P < 0.05; **, P < 0.01.
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in the risk score was found in responders to 
PD-1 immune therapy, and patients with a 
lower risk score had better OS than those with 
a higher risk score. This strongly suggests that 
the risk score may be used as a new biomarker 
for predicting the response to PD-1 immune 
therapy.

The prognostic signature was developed using 
three genes, namely SFPQ, SSRP1, and KPNB1. 
Among these, SSRP1 and KPNB1 have been 
previously found to be related to HCC [26, 27].

SSRP1 is one of the subunits of the facilitated 
chromatin transcription complex and is involved 
in processes such as transcriptional regulation, 
DNA replication, cell cycyle and DNA repair [28-
30]. Studies have indicated that up-regulated 
SSRP1 is related to poor pathological features 
and poor prognosis in a variety of tumor, includ-
ing bladder cancer [31], breast cancer, colorec-
tal cancer [32], and HCC. In HCC, downregula-
tion of SSRP1 was found to cause cell cycle 
arrest in G0/G1 phase and promote apoptosis, 
and elevated SSRP1 decreased cell sensitivity 
to chemotherapeutic drugs [27, 33]. MiR-497, a 
post-transcriptional regulator of SSRP1, was 
found to effectively suppress SSRP1 expres-
sion [27]. Silencing of SSRP1 in colorectal can-
cer activated AKT pathway and inhibited prolif-
eration, migration, and invasion [34]. In CRC, 
SSRP1 was upregulated and related to Dukes 
stage of tumors, and miR-28-5p was found to 
be another upstream target of SSRP1 [32]. 
Altered expression of SSRP1 in tumor leads to 
changes in EMT-related signaling molecules 
that contribute to tumor progression [35, 36].

KPNB1 is a soluble nuclear transport receptor 
that transports proteins or RNA out or into of 
the nucleus by binding directly to proteins via 
the non-classical transport pathway or forming 
KPNA/importin β1/protein trimers via the clas-
sical transport pathway [37-39]. This nuclear 
transport system has been found to be related 
to cell cycle and mitosis, and therefore its dys-
regulation is associate with tumor genesis and 
tumor progression [40, 41]. Elevated level of 
KPNB1 has been found in several types of 
tumors, including liver cancer [42], lung cancer 
[43, 44], gastric cancer [45], cervical cancer 
[38, 46], and prostate cancer [47]. In HCC 
patients, the expression of KPNB1 was relat- 
ed to tumor histological differentiation, and 
KPNB1 was found to be involved in regulating 

the HCC cells proliferation of HCC [42, 48]. 
Knockdown of KPNβ1 expression caused IκBα 
to be downregulated in the cytoplasm, and 
NF-κB, which originally formed a complex, was 
translocated into the nucleus and induced 
apoptosis [48]. Similarly in prostate cancer, tar-
geting KPNB1 was found to significantly inhibit 
the NF-κB’ nuclear translocation, inducing 
reduction in apoptosis and tumorsphere forma-
tion in cancer cells [47]. In neuropathic pain, 
miR-101 inhibited the activation of NF-κB by 
targeting KPNB1 mRNA to control the nuclear 
translocation of p65 [49]. In colorectal cancer, 
KPNB1 knockdown significantly reduced the 
proliferation and invasion of CRC cells by EMT 
related signal expression [50]. At present, there 
is no study report on the effect of SFPQ on the 
HCC cells proliferation. In the study, knockdown 
SFPQ could inhibit the HCC cells proliferation, 
migration, and invasion.

Although risk score has shown good perfor-
mance in predicting the prognosis of HCC, there 
are still some limitations that need to be 
addressed. Firstly, although the prognostic 
value of risk score has been validated in exter-
nal cohorts, an independent cohort consisting 
of more HCC patients is needed to further vali-
date the model. Secondly, we did not directly 
analyze the potential mechanisms of risk  
score in the development and progression of 
HCC. In vitro studies are needed to further vali-
date the potential mechanisms revealed by 
bioinformatics.

Conclusion

The current study focused on the identification 
core essential genes that are important in the 
proliferation and survival in HCC using DepMap 
database. Three core genes including SFPQ, 
SSRP1 and KPNB1 were identified through 
WGCNA, univariate Cox analysis and LASSO 
analysis were to construct a prognostic model. 
In addition, konckdown SFPQ could inhibit  
the HCC cells proliferation, migration, and 
invasion. 
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Supplementary Figure 1. GSEA analysis. Patients with HCC were divided into two groups based on the risk score using mean value as a cutoff. (A-F) GSEA was 
carried out using the TCGA database, high-risk score group enriched in cell cycle (A), oocyte meiosis (B), ubiquitin-mediated proteolysis (C), spliceosome (D), base 
excision repair (E), and DNA replication (F) pathways.
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Supplementary Figure 2. Kaplan-Maier survival curves of HCC patients 
based on risk score models. (A, B) Prognostic analysis of HCC patients with 
(A) age ≤ 60 years and (B) age > 60 years. (C, D) Prognostic analysis of HCC 
patients with (C) female HCC patients and (D) male HCC patients. (E, F) Prog-
nostic analysis of HCC patients with (E) grade 1-2 and (F) grades 3-4. (G, H) 
Prognostic analysis of HCC patients with (G) stage I-II and (H) stage III-IV. (I, 
J) Prognostic analysis of HCC patients with (I) stage T1-T2 and (J) stage T3-
T4. (K, L) Prognostic analysis of HCC patients with (K) M0 as well as (L) M1 
and MX. (M, N) Prognostic analysis of subgroups of HCC patients with differ-
ent tumor-related lymph node metastases, N0 (M) as well as N1 and NX (N).  


