Original Article Visualized machine learning models combined with propensity score matching analysis in single PR-positive breast cancer prognosis: a multicenter population-based study

Chaofan Li^{1*}, Yuxin Hui^{2*}, Xinyu Wei¹, Peizhuo Yao¹, Yiwei Jia¹, Mengjie Liu¹, Yusheng Wang³, Jia Li¹, Yifan Cai¹, Yu Zhang¹, Zeyao Feng¹, Yinbin Zhang¹, Shuqun Zhang¹, Chong Du¹

¹Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, P. R. China; ²Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, P. R. China; ³Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, P. R. China. ^{*}Equal contributors and co-first authors.

Received March 18, 2023; Accepted May 31, 2023; Epub June 15, 2023; Published June 30, 2023

Abstract: The characteristics of single PR-positive (ER-PR+, sPR+) breast cancer (BC) and its prognosis are not well elucidated due to its rarity and conflicting evidence. There is a lack of an accurate and efficient model for predicting survival, thereby rendering treatment challenging for clinicians. Whether endocrine therapy should be intensified in sPR+ BC patients was another controversial clinical topic. We constructed and cross-validated XGBoost models that showed high precision and accuracy in predicting the survival of patients with sPR+ BC cases (1-year: AUC=0.904; 3-year: AUC=0.847; 5-year: AUC=0.824). The F1 score for the 1-, 3-, and 5-year models were 0.91, 0.88, and 0.85, respectively. The models exhibited superior performance in an external, independent dataset (1-year: AUC=0.889; 3-year: AUC=0.846; 5-year: AUC=0.821). Further, intensified endocrine therapy did not provide a significant overall survival benefit compared to initial or no endocrine therapy (P=0.600, HR: 1.46; 95% CI: 0.35-6.17). Propensity-score matching (PSM)-adjusted data showed that there was no statistically significant difference in the prognosis between ER-PR+HER2+ and ER-PR-HER2+ BC. Patients having the ER-PR+HER2- subtype had a slightly worse prognosis than those with the ER-PR-HER2+ subtype. In conclusion, XGBoost models can be highly reproducible and effective in predicting survival in patients with sPR+ BC. Our findings revealed that patients with sPR-positive BC may not benefit from endocrine therapy. Patients with sPR+ BC may benefit from intensive adjuvant chemotherapy compared to endocrine therapy.

Keywords: Breast cancer, single PR-positive, XGBoost algorithm, SEER, neoadjuvant therapy

Introduction

Breast cancer (BC) is the second most common cancer diagnosed in women and is the primary reason for cancer-related deaths among females [1]. BC is classified into subtypes based on different molecular expression biomarkers, such as progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor 2 (HER2). The biomarkers are proven to be important predictors of prognosis and indicators for the application of targeted and endocrine therapies.

PR is an upregulated target gene of the ER and its expression is highly dependent on ER

expression [2]. Therefore, BC with a single PR (ER-PR+ or sPR-positive [sPR+]) subtype is rare and accounts for about 1.5%-3.4% of all BC cases [3-6]. The sPR+ subtype was initially considered a false-positive result of immunohistochemistry [4, 7]. With increased understanding over the years in addition to PAM50 expression [8] and ESR1 mRNA level studies [9], sPR+ BC was identified as a different subtype. Until recently, the unique clinicopathological features and prognosis of patients with sPR+ BC were being studied, which yielded conflicting evidence [6, 10-12]. There is a need for accurate and efficient tools to predict the survival in BC for aiding clinicians in designing treatment protocols. Machine learning has recently emerged

Figure 1. Flowchart describing the procedure and statistical analysis. SEER: the Surveillance, Epidemiology, and End Results; ER+/-: estrogen receptor positive/negative; PR+/-: progesterone receptor positive/negative; HER2+/-: human epidermal growth factor receptor 2 positive/negative; PSM: propensity score matching; Cox: concordance index; ROC curve: receiver operating characteristic curve; AUC: area under the curve; K-M: Kaplan-Meier; XGBoost: extreme gradient boosting.

as a hotspot for developing tools and methods to evaluate extensive, high-dimensional, and multi-modal biological data generated from clinical or preclinical research [13, 14]. It can also help create an artificial intelligence (AI) prognostic model with high testing accuracy [14]. We used six types of machine learning algorithms to create prognostic models and found that XGBoost was the most accurate. Further, considering the significant debate around the treatment options for sPR+ BC, we assessed the prognostic benefits of surgery, chemotherapy, radiotherapy, and neoadjuvant therapy in patients with this subtype.

The Surveillance Epidemiology and End Results (SEER) database was exploited in this study to examine variables affecting the prognosis in sPR+ BC. High-precision AI models were developed to predict the 1, 3, and 5-year survival in patients with sPR+ BC. This study highlights the use of developing clinical AI models to optimize

long-term follow-up and enhance insights into the treatment options for sPR+ BC.

Materials and methods

Data source and study design

The workflow of the study design and its analyses are presented in **Figure 1**. The data of females with BC analyzed in this study were obtained from the openly accessible SEER database (SEER 17 Regs study data, [changes 2010-2019] version 8.4.0). The key inclusion criteria for selecting data were patients with (1) only BC; (2) histopathological and morphological evidence per the International Classification of Cancer Diseases, Edition III (ICD-0-3); and (3) a molecular subtype of BC as ER-PR+. The key exclusion criteria were patients with (1) two or more primary cancers; (2) an unknown HER2 status; (3) TO stage; and (4) M1 or unknown M stage (for complete eligibility criteria, please see <u>Supplementary Material</u>). The primary outcomes included overall survival (OS) determined by all causes of death and breast cancer-specific survival (BCSS) determined by deaths attributable to BC. The SEER database with cancer registry data and death certificates was used to determine the OS and BCCS. Follow-up was sustained until patients died, were lost to follow-up, or until December 31, 2019, whichever came first.

XGBoost model

The XGBoost algorithm modifies the gradientboosting approach and uses Newton's method to solve for the extreme values of the loss function, conducts Taylor expansion of the loss function to the second order, and adds a regularization term to the loss function. The gradient-boosting algorithm loss and the regularization term make up the first and second parts of the objective function at training time, respectively. In addition, the XGBoost algorithm adopts the "feature subsampling" technique, which signifies selecting a subset of all features to train each tree (similar to a random forest) for amplifying the generalizing capability of the model, diversifying, and preventing overfitting. The XGBoost algorithm operates on the following principle: feature vector with the corresponding (output) category yi:

yi^=∑k=1Kfk(xi), fk∈F

Feature selection

Characteristics extracted from the SEER database, including the age at diagnosis, HER2 status, histological type, race, marital status, grade, T stage, N stage, median household income, surgery, radiotherapy, chemotherapy, and neoadjuvant therapy, were integrated into machine learning models to estimate 1-, 3-, and 5-year OS in patients with the sPR+ subtypes. The analyses were conducted before excluding patients who survived but lived for less than 1, 3, or 5 years of the follow-up cut-off date. A response variable was collected for the survival data before running the training program, with "O" denoting "death" and "1" denoting "survival". Patients were randomized in a 7:3 ratio into train data and test data. We also compared the area under the curve (AUC) value of the artificial neural network (ANN), logistic regression (LR), random forest (RF), K-Nearest Neighbor (KNN), decision tree (ID3), and XGBoost on test data. To assess the accuracy and efficiency of our model, a confusion matrix, the area under the receiver operating characteristic (ROC) curve, and ROC analysis were employed. Correctness, recall, accuracy, and F1 score are the primary assessment parameters in the confusion matrix. The calculations were as follows: correctness = (TP+TN)/(TP+TN+FN+FP); recall = TP/(TP+FN); accuracy = TP/(TP+FP); F1 score = 2* accuracy* recall/(accuracy + recall).

TP: true positive; TN: true negative; FP: false positive; FN: false negative.

External validation

To further validate the XGBoost prognostic model, we collected data from 22 patients diagnosed with sPR+ BC between November 2017 and March 2022 in the Second Affiliated Hospital of Xi'an Jiaotong University. The key exclusion criteria for patient selection were as follows: (1) below 20 years of age; (2) having second primary cancer of any type; (3) males; and (4) lost to follow-up. The follow-up proceeded until the patient's death or March 10, 2023, whichever came first. The Institutional Review Board of the Second Affiliated Hospital of the Xi'an Jiaotong University approved the retrospective cohort study. Patient informed consent was waived because the data used in this study did not have personally identifiable information.

Statistical analysis

Cox regression models were used to explore the correlation between clinicopathological features and survival. To assess the risk of patient mortality and identify independent prognostic markers, a multifactorial Cox analysis was conducted. Patients included in the analysis were categorized based on their response to neoadjuvant therapy, and the prognostic differences were compared. Multiple comparisons were corrected using the Benjamini & Hochberg method.

Propensity score matching

To better understand the prognosis in sPR+, included patients were categorized into the ER-PR+HER2- and ER-PR+HER2+ groups according to the HER2 status, and were matched to ER-PR-HER2- and ER-PR-HER2+ patients on a 1:2 propensity score, respectively. Matched variables were statistically significant in the univariate Cox. Matched parameters were:

		All Pat	ients	HEF	R2+	HE	R2-	P value
Characteristic		N-2407	0/	N-4050	20.00%	N-0447	<u> </u>	(HER2+ vs
		N=3467	%	N=1050	30.29%	N=2417	69.71%	HER2-)
Age at diagnosis	<40	390	11.25%	115	10.95%	275	11.38%	0.076
	40-49	727	20.97%	212	20.19%	515	21.31%	
	50-59	926	26.71%	313	29.81%	613	25.36%	
	60-69	776	22.38%	227	21.62%	549	22.71%	
	70-79	405	11.68%	123	11.71%	282	11.67%	
	80+	243	7.01%	60	5.71%	183	7.57%	
Race	White	2534	73.09%	751	71.52%	1783	73.77%	<0.001
	Black	516	14.88%	118	11.24%	398	16.47%	
	Other	318	9.17%	169	16.10%	212	8.77%	
	Unknown	36	1.04%	12	1.14%	24	0.99%	
Histological type	IDC	3038	87.63%	942	89.71%	2096	86.72%	0.016
	Non-IDC	429	12.37%	108	10.29%	321	13.28%	
Marital	Married	1933	55.75%	601	57.24%	1332	55.11%	0.511
	Unmarried	1339	38.62%	392	37.33%	947	39.18%	
	Unknown	195	5.62%	57	5.43%	138	5.71%	
T Stage	T1	1404	40.50%	402	38.29%	1002	41.46%	< 0.001
	T2	1486	42.86%	422	40.19%	1064	44.02%	
	тз	278	8.02%	108	10.29%	170	7.03%	
	T4	183	5.28%	68	6.48%	115	4.76%	
	Tx	116	3.35%	50	4.76%	66	2.73%	
N Stage	NO	2204	63.57%	573	54.57%	1631	67.48%	< 0.001
	N1	943	27.20%	359	34.19%	584	24.16%	
	N2	156	4.50%	57	5.43%	99	4.10%	
	N3	121	3.49%	45	4.29%	76	3.14%	
	Nx	43	1.24%	16	1.52%	27	1.12%	
Grade	I	77	2.22%	12	1.14%	65	2.69%	< 0.001
	Ш	639	18.43%	252	24.00%	387	16.01%	
	III/IV	2583	74.50%	716	68.19%	1867	77.24%	
	Unknown	168	4.85%	70	6.67%	98	4.05%	
Median household	<50,000 \$	513	14.80%	164	15.62%	349	14.44%	0.161
income (inflation ajusted)	50,000-59,999 \$	569	16.41%	171	16.29%	398	16.47%	
	60,000-69,999 \$	1152	33.23%	322	30.67%	830	34.34%	
	70,000 \$+	1233	35.56%	393	37.43%	840	34.75%	
Surgery	No	255	7.36%	94	8.95%	161	6.66%	0.048
	Yes	3193	92.10%	949	90.38%	2244	92.84%	
	Unknown	19	0.55%	7	0.67%	12	0.50%	
Radiotherapy	No/unknown	1711	49.35%	561	53.43%	1150	47.58%	0.002
	Yes	1756	50.65%	489	46.57%	1267	52.42%	
Chemotherapy	No/unknown	916	26.42%	225	21.43%	691	28.59%	<0.001
	Yes	2551	73.58%	825	78.57%	1726	71.41%	
Neoadjuvant therapy	Not given	2059	59.39%	544	51.81%	1515	62.68%	<0.001
	Yes	731	21.08%	278	26.48%	453	18.74%	
	Unknown	677	19.53%	228	21.71%	449	18.58%	

Table 1. Baseline characteristics of sPR+ patients included from the SEER database

SEER: the Surveillance, Epidemiology, and End Results; sPR+: single progesterone receptor-positive.

method = "nearest", distance = "logit", replace = FALSE, caliper = 0.01. Kaplan-Meier (K-M) survival analysis was performed on the propensity score matching (PSM)-adjusted population. The R programming language was utilized (version 4.0.2) for calculations. Statistical significance was defined as a bilateral tail value of less than 0.05.

		ι	Jnivariate (Cox analysis	Multivariate Cox analysis							
		OS			BCSS			OS			BCSS	
	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
Age at diagnosis												
<40	Reference			Reference			Reference			Reference		
40-49	0.809	0.581-1.127	0.210	0.792	0.557-1.126	0.194	0.969	0.675-1.391	0.865	0.911	0.622-1.336	0.633
50-59	0.912	0.666-1.249	0.567	0.901	0.646-1.258	0.540	1.069	0.757-1.509	0.707	1.080	0.751-1.553	0.677
60-69	0.994	0.721-1.370	0.970	0.795	0.558-1.131	0.202	1.114	0.777-1.596	0.558	0.925	0.623-1.372	0.698
70-79	1.842	1.327-2.556	***	1.333	0.921-1.930	0.128	2.082	1.431-3.027	***	1.620	1.063-2.469	*
80+	4.945	3.611-6.774	***	2.380	1.624-3.486	***	3.693	2.498-5.461	***	2.123	1.320-3.413	***
HER2												
Negative	Reference			Reference			Reference			Reference		
Positive	0.695	0.578-0.836	***	0.609	0.486-0.763	***	0.594	0.479-0.736	***	0.474	0.364-0.617	***
Race												
White	Reference			Reference			Reference			Reference		
Black	1.039	0.836-1.292	0.729	0.981	0.755-1.274	0.884	1.081	0.844-1.383	0.539	0.951	0.703-1.288	0.746
Other	0.601	0.441-0.819	**	0.641	0.451-0.912	*	0.563	0.391-0.811	**	0.622	0.412-0.941	*
Histological type												
IDC	Reference			Reference			Reference			Reference		
Non-IDC	1.269	1.019-1.581	*	1.185	0.909-1.545	0.209	0.992	0.766-1.285	0.952	1.015	0.746-1.383	0.923
Marital status												
Married	Reference			Reference			Reference			Reference		
Unmarried	1.642	1.394-1.935	***	1.348	1.113-1.634	**	1.069	0.886-1.291	0.487	1.006	0.805-1.257	0.960
T Stage												
T1	Reference			Reference			Reference			Reference		
T2	1.749	1.435-2.133	***	2.164	1.684-2.780	***	1.643	1.310-2.060	***	1.751	1.324-2.315	***
Т3	2.891	2.189-3.819	***	4.202	3.040-5.808	***	2.860	2.047-3.996	***	3.193	2.178-4.681	***
T4	6.357	4.910-8.230	***	9.424	6.964-12.754	***	4.740	3.380-6.645	***	5.189	3.512-7.666	***
N Stage												
NO	Reference			Reference			Reference			Reference		
N1	1.688	1.405-2.027	***	2.275	1.828-2.831	***	1.562	1.259-1.938	***	1.883	1.459-2.430	***
N2	2.728	2.025-3.676	***	3.895	2.787-5.444	***	2.464	1.743-3.484	***	3.040	2.067-4.470	***
N3	5.483	4.170-7.210	***	8.692	6.469-11.680	***	4.239	3.059-5.875	***	5.739	4.020-8.193	***
Grade												
I	Reference			Reference			Reference			Reference		
II	3.634	1.152-11.460	*	6.095	0.844-44.030	0.073	2.193	0.688-6.990	0.184	3.565	0.489-26.007	0.210
III/IV	4.274	1.373-13.300	*	9.676	1.359-68.880	*	2.665	0.846-8.401	0.094	5.023	0.698-36.154	0.109

Table 2. Univariate and multivariate Cox analysis of characteristics extracted from the SEER database

A multicenter population-based study

	on ajaotea)											
<50,000 \$	Reference			Reference			Reference			Reference		
50,000-59,999 \$	0.880	0.677-1.144	0.339	0.829	0.609-1.130	0.236	0.890	0.665-1.191	0.433	0.775	0.547-1.097	0.150
60,000-69,999 \$	0.759	0.604-0.954	*	0.758	0.581-0.989	*	0.738	0.570-0.955	*	0.711	0.526-0.963	*
70,000 \$+	0.667	0.529-0.842	***	0.635	0.483-0.834	**	0.784	0.603-1.1020	0.069	0.761	0.559-1.034	0.081
Surgery												
No	Reference			Reference			Reference			Reference		
Yes	0.243	0.198-0.298	***	0.240	0.189-0.305	***	0.557	0.419-0.740	***	0.576	0.412-0.805	**
Radiotherapy												
None/unknown	Reference			Reference			Reference			Reference		
Yes	0.542	0.461-0.639	***	0.682	0.565-0.823	***	0.705	0.580-0.856	***	0.821	0.655-1.030	0.089
Chemotherapy												
No	Reference			Reference			Reference			Reference		
Yes	0.464	0.396-0.545	***	0.735	0.601-0.899	**	0.546	0.433-0.689	***	0.635	0.478-0.844	**
Neoadjuvant therapy												
No	Reference			Reference			Reference			Reference		
Yes	0.953	0.764-1.189	0.668	1.261	0.987-1.612	0.064	/	/	/	/	/	/

Median household income (inflation ajusted)

SEER: the Surveillance, Epidemiology, and End Results. *P<0.05, **P<0.01, ***P<0.001.

Figure 2. K-M survival analysis in sPR+ patients (stratified by response to neoadjuvant therapy). A. OS of sPR+ patients; B. BCSS of sPR+ patients. CR: complete response; PR: partial response; CR/PR: complete and/or partial response to neoadjuvant therapy; NR: no response; sPR: single progesterone receptor; OS: overall survival; BCSS: breast cancer-specific survival; K-M: Kaplan-Meier.

Results

Clinical characteristics of sPR+ patients

Data from 3,467 eligible women with sPR+ BC were retrieved (2010 to 2019). The clinicopathological characteristics are shown in **Table 1** and summarized below. The age of disease onset was between 40 and 69 years; 390 (11.25%) patients were younger than 40 years and 243 (7.01%) were older than 80 years. The proportion of white patients was 73.09% and 55.75% were married. Invasive ductal carcinoma (IDC) was the predominant histopathological type (87.63%). The number of cases with staging T1, T2, T3, and T4 were 40.50%, 42.86%, 8.02%, and 5.28% respectively. A majority of patients did not have regional lymph node metastases, with 63.57% in N0 stage.

Patients with grade III or IV tumor were up to 74.50%, while only 2.22% of patients were grade I; 35.56% of patients had an annual household income of USD 70.000 and above. Further, 92.10% of patients underwent surgery, 73.58% received chemotherapy, 50.65% received radiotherapy, and 21.08% received neoadjuvant therapy; 1050 patients were HER2- (30.29%) and 2417 patients were HER2+ (69.71%). Compared to HER2-, patients with HER2+ included a higher proportion of other races, IDC and married status, and more advanced T and N stages. A higher number of patients with HER2+ received chemotherapy and neoadjuvant therapy and fewer patients received radiotherapy.

Univariable and multivariable Cox regression analysis

We performed univariable Cox regression analysis to identify variables that significantly influenced OS and BCSS in patients, including age at diagnosis, histological type, HER2 status, marital status, race, histological type, T and N stage, grade, median household

income (inflation-adjusted), surgery, radiotherapy, and chemotherapy. Interestingly, Cox regression analysis showed that neoadjuvant therapy did not benefit patients with sPR+ (**Table 2**). Thus, we further stratified patients by their response to neoadjuvant therapy for prognostic comparisons. The results showed that OS and BCSS were significantly better in only those patients who had a complete response (CR) to neoadjuvant therapy compared to those who did not receive neoadjuvant therapy or did not have a CR (**Figure 2A, 2B**).

We then performed multivariable Cox regression analysis to eliminate confounding factors and uncover the independent factors that influence OS and BCSS (**Table 2**). It showed that worse OS and BCSS were closely related to age >70 years, HER2-, and advanced T and N stage.

		Ur	nmatched C	ohort	1:2 propensity score matched (PSM) Cohort					
Characteristics	ER-PR+	HER2+	ER-PR-	HER2+	Unadjusted	ER-PR+	HER2+	ER-PR	-HER2+	PSM-adjusted
	N=1050	%	N=15728	%	P value	N=1045	%	N=2082	%	P value
Age at diagnosis					0.287					0.646
<40	115	10.95%	1415	9.00%		112	10.72%	191	9.17%	
40-49	212	20.19%	3051	19.40%		212	20.29%	433	20.80%	
50-59	313	29.81%	4915	31.25%		311	29.76%	666	31.99%	
60-69	227	21.62%	3648	23.19%		227	21.72%	446	21.42%	
70-79	123	11.71%	1811	11.51%		123	11.77%	237	11.38%	
80+	60	5.71%	888	5.65%		60	5.74%	109	5.24%	
Race					0.989					0.661
White	751	71.52%	11203	71.23%		748	71.58%	1516	72.81%	
Black	118	11.24%	1819	11.57%		117	11.20%	243	11.67%	
Other	169	16.10%	2520	16.02%		168	16.08%	303	14.55%	
Unknown	12	1.14%	186	1.18%		12	1.15%	20	0.96%	
Histological type					0.786					0.092
IDC	945	90.00%	14159	90.02%		940	89.95%	1912	91.83%	
Non-IDC	108	10.29%	1569	9.98%		105	10.05%	170	8.17%	
Marital					0.943					0.828
Married	601	57.24%	8944	56.87%		599	57.32%	1201	57.68%	
Unmarried	392	37.33%	5950	37.83%		390	37.32%	780	37.46%	
Unknown	57	5.43%	834	5.30%		56	5.36%	101	4.85%	
T stage					0.009					
T1	402	38.29%	6769	43.04%		402	38.47%	815	39.15%	0.893
T2	422	40.19%	5843	37.15%		422	40.38%	843	40.49%	
ТЗ	108	10.29%	1527	9.71%		107	10.24%	216	10.37%	
Τ4	68	6.48%	1057	6.72%		67	6.41%	130	6.24%	
Тх	50	4.76%	532	3.38%		47	4.50%	78	3.75%	
N stage					0.096					0.094
NO	573	54.57%	9042	57.49%		570	54.55%	1186	56.96%	
N1	359	34.19%	4780	30.39%		357	34.16%	687	33.00%	
N2	57	5.43%	952	6.05%		57	5.45%	123	5.91%	
N3	45	4.29%	757	4.81%		45	4.31%	72	3.46%	
Nx	16	1.52%	197	1.25%		16	1.53%	14	0.67%	

Table 3. Baseline characteristics between ER-PR+HER2+ and ER-PR-HER2+ subtypes before and after PSM

Grade					0.631					0.250
Well	12	1.14%	226	1.44%		11	1.05%	20	0.96%	
Moderately	252	24.00%	3554	22.60%		249	23.83%	444	21.33%	
Poorly	716	68.19%	10841	68.93%		715	68.42%	1497	71.90%	
Unknown	70	6.67%	1107	7.04%		70	6.70%	121	5.81%	
median household income (inflation adjusted)					<0.001					0.696
<50,000 \$	164	15.62%	1580	10.05%		159	15.22%	311	14.94%	
50,000-59,999 \$	171	16.29%	2424	15.41%		171	16.36%	346	16.62%	
60,000-69,999 \$	322	30.67%	5443	34.61%		322	30.81%	680	32.66%	
70,000 \$+	393	37.43%	6281	39.94%		393	37.61%	745	35.78%	
Radiotherapy					0.877					0.626
No/unknown	561	53.43%	8450	53.73%		560	53.59%	1095	52.59%	
Yes	489	46.57%	7278	46.27%		485	46.41%	987	47.41%	
Chemotherapy					0.525					0.081
No/unknown	225	21.43%	3511	22.32%		225	21.53%	392	18.83%	
Yes	825	78.57%	12217	77.68%		820	78.47%	1690	81.17%	
Surgery					0.106					0.119
No	94	8.95%	1247	7.93%		94	9.00%	154	7.40%	
Yes	949	90.38%	14428	91.73%		944	90.33%	1921	92.27%	
Unknown	7	0.67%	53	0.34%		7	0.67%	7	0.34%	

ER+/-: estrogen receptor positive/negative; PR+/-: progesterone receptor positive/negative; HER2+/-: human epidermal growth factor receptor 2 positive/negative; PSM: propensity score matching.

		ι	Jnmatched C	Cohort	1:2 propensity score matched (PSM) Cohort						
Characteristics	ER-PR	+HER2-	ER-PR-I	HER2-	Unadjusted	ER-PR	+HER2-	ER-PR	-HER2-	2- PSM-adjusted	
	N=2417	%	N=38262	%	P value	N=2416	%	N=4826	%	P value	
Age at diagnosis					0.005					0.951	
<40	275	11.38%	3922	10.25%		275	11.38%	556	11.52%		
40-49	515	21.31%	7345	19.20%		514	21.27%	1017	21.07%		
50-59	613	25.36%	9882	25.83%		613	25.37%	1264	26.19%		
60-69	549	22.71%	8928	23.33%		549	22.72%	1102	22.83%		
70-79	282	11.67%	5324	13.91%		282	11.67%	538	11.15%		
80+	183	7.57%	2861	7.48%		183	7.57%	349	7.23%		
Race					0.157					0.303	
White	1783	73.77%	27569	72.05%		1782	73.76%	3585	74.29%		
Black	398	16.47%	6763	17.68%		398	16.47%	803	16.64%		
Other	212	8.77%	3628	9.48%		212	8.77%	409	8.47%		
Unknown	24	0.99%	302	0.79%		24	0.99%	29	0.60%		
Histological type					0.953					0.598	
IDC	2096	86.72%	33205	86.78%		2096	86.75%	4206	87.15%		
Non-IDC	321	13.28%	5057	13.22%		320	13.25%	620	12.85%		
Marital					0.123					0.965	
Married	1332	55.11%	20530	53.66%		1331	55.09%	2725	56.46%		
Unmarried	947	39.18%	15744	41.15%		947	39.20%	1866	38.67%		
Unknown	138	5.71%	1988	5.20%		138	5.71%	235	4.87%		
T stage					0.090						
T1	1002	41.46%	15862	41.46%		1002	41.47%	1995	41.34%	0.380	
T2	1064	44.02%	16397	42.85%		1063	44.00%	2175	45.07%		
ТЗ	170	7.03%	3247	8.49%		170	7.04%	345	7.15%		
T4	115	4.76%	1864	4.87%		115	4.76%	212	4.39%		
Тх	66	2.73%	892	2.33%		66	2.73%	99	2.05%		
N stage					0.023					0.758	
NO	1631	67.48%	25118	65.65%		1630	67.47%	3294	68.26%		
N1	584	24.16%	9156	23.93%		584	24.17%	1157	23.97%		
N2	99	4.10%	2049	5.36%		99	4.10%	198	4.10%		
N3	76	3.14%	1487	3.89%		76	3.15%	135	2.80%		
Nx	27	1.12%	452	1.18%		27	1.12%	42	0.87%		

Table 4. Baseline characteristics between ER-PR+HER2- and ER-PR-HER2- patients before and after PSM

Grade					0.022					0.422
Well	65	2.69%	734	1.92%		64	2.65%	100	2.07%	
Moderately	387	16.01%	6273	16.39%		387	16.02%	767	15.89%	
Poorly	1867	77.24%	29425	76.90%		1867	77.28%	3775	78.22%	
Unknown	98	4.05%	1830	4.78%		98	4.06%	184	3.81%	
median household income (inflation adjusted)					0.001					0.614
<50,000 \$	349	14.44%	4520	11.81%		348	14.40%	659	13.66%	
50,000-59,999 \$	398	16.47%	6443	16.84%		398	16.47%	806	16.70%	
60,000-69,999 \$	830	34.34%	13241	34.61%		830	34.35%	1619	33.55%	
70,000 \$+	840	34.75%	14058	36.74%		840	34.77%	1742	36.10%	
Radiotherapy					0.271					0.895
No/unknown	1150	47.58%	18655	48.76%		1150	47.60%	2251	46.64%	
Yes	1267	52.42%	19607	51.24%		1266	52.40%	2575	53.36%	
Chemotherapy					<0.001					0.936
No/unknown	691	28.59%	9167	23.96%		690	28.56%	1326	27.48%	
Yes	1726	71.41%	29095	76.04%		1726	71.44%	3500	72.52%	
Surgery					0.159					0.687
No	161	6.66%	2572	6.72%		161	6.66%	301	6.24%	
Yes	2244	92.84%	35583	93.00%		2243	92.84%	4505	93.35%	
Unknown	12	0.50%	107	0.28%		12	0.50%	20	0.41%	

ER+/-: estrogen receptor positive/negative; PR+/-: progesterone receptor positive/negative; HER2+/-: human epidermal growth factor receptor 2 positive/negative; PSM: propensity score matching.

Figure 3. PSM-adjusted OS and BCSS of ER-PR+ and ER-PR- patients (stratified by the HER2 status). A. PSM-adjusted OS of ER-PR+ and ER-PR- (HER2+); B. PSM-adjusted BCSS of ER-PR+ and ER-PR- (HER2+); C. PSM-adjusted OS of ER-PR+ and ER-PR- (HER2-); D. PSM-adjusted BCSS of ER-PR+ and ER-PR- (HER2-). PSM: propensity score matching; OS: overall survival; BCSS: breast cancer specific survival; HR: hazard ratio; CI: confidence interval; ER+/-: estrogen receptor positive/negative; PR+/-: progesterone receptor positive/negative; HER2+/-: human epidermal growth factor receptor 2 positive/negative.

Further, surgery and chemotherapy were able to prolong OS and BCSS based on multivariable Cox regression analysis. Although radiotherapy prolonged OS, it did not improve the BCSS. The prognosis was also influenced by a few social factors, including race and financial stability. In other words, patients with high-income levels and other races had a better prognosis.

Prognostic differences between ER-PR+ and ER-PR- patients stratified by the HER2 status

We compared baseline characteristics between patients with ER-PR+HER2+ and ER-PR-HER2+ subtypes (**Table 3**). T stage and median household income showed differences between the two groups. The identified imbalance was corrected using PSM. Similarly, we also compared and adjusted differences in characteristics between ER-PR+HER2- and ER-PR-HER2- subtypes (**Table 4**). PSM-adjusted data showed that there was no statistical difference in the prognosis between ER-PR+HER2+ and ER-PR-HER2+ subtypes (OS: P=0.360, hazard ration [HR]: 1.10; 95% confidence interval [CI]: 0.90-1.34; BCSS: P=0.770, HR: 1.04; 95% CI: 0.81-1.32; **Figure 3A**, **3B**). The findings also demonstrated that patients with the ER-PR+HER2subtype showed a slightly worse prognosis than those with the ER-PR-HER2- subtype (OS: P=0.024, HR: 1.14; 95% CI: 1.02-1.28; BCSS: P=0.033, HR: 1.15; 95% CI: 1.01-1.32; **Figure 3C**, **3D**).

Construction and evaluation of predictive models for estimating prognosis in patients with sPR+

Considering the results, we established an XGBoost model to predict the OS of sPR+ patients at 1 year, 3 years, and 5 years. We randomized patients into train and test data

Figure 4. Ideal number of subtrees using 10-fold cross-validation.

Parameter	Value
gamma	2
min_child_weight	5
scale_pos_weight	0.3
subsample	0.8
max_delta_step	6
alpha	2
max_depth	7
eta	0.2
nround	17

 Table 5. Main parameters of the XGBoost model

groups at a ratio of 7:3. To ensure the stability of the model and confirm the key hyperparameters, we used ten-fold cross-validation in the training set for iterative testing and tuning. The logarithmic loss function was minimized at 17 subtrees as shown in Figure 4. To achieve optimization, the "nround" parameter was determined and the model is repetitively validated and adjusted for other major hyperparameters (Table 5). We adjusted the gamma, min_child_ weight subsample and max_delta_step parameters to speed up the convergence of the model and prevent over-fitting. The scale_pos_ weight parameter was set to resolve the sample imbalance. The first subtree of the XGBoost model is illustrated in Figure 5 for understanding. For the train and validation sets, we established the predicted ROC curves and computed the corresponding AUCs. Our XGBoost model was successful in predicting the survival of sPR+ patients at 1 year (test set: AUC= 0.884; train set: AUC=0.904), 3 years (test set: AUC=0.847; train set: AUC=0.850), and 5 years (test set: AUC=0.824; train set: AUC=0.828; Figure 6). Compared to ANN (1-year: AUC= 0.827: 3-year: AUC=0.795; 5-year: AUC=0.781) and traditional machine learning algorithms, LR (1-year: AUC=0.806; 3-year: AUC=0.794; 5-year: AUC=0.784), RF (1-year: AUC= 0.811; 3-year: AUC=0.755; 5year: AUC=0.764), ID3 (1-year: AUC=0.608; 3-year: AUC= 0.623; 5-year: AUC=0.668), and KNN (1-year: AUC=0.544; 3-year: AUC=0.600; 5-year: AUC=0.595), the XGBoost mo-

del provided most accurate validations (**Table** 6).

The effectiveness and precision of the XGBoost model were assessed using a confusion matrix. The 1-year survival model showed a correctness of 0.85, recall of 0.85, accuracy of 0.99, and F1 score of 0.91 (Figure 7A); the 3-year survival model showed a correctness of 0.82, recall of 0.85, accuracy of 0.92, and F1 score of 0.88 (Figure 7B). The 5-year survival model showed a correctness of 0.79, recall of 0.84, accuracy of 0.86, and F1 score of 0.85 (Figure 7C). Thus, the models were efficient and successful in predicting survival.

Additionally, the clinical characteristics in the models were ranked based on their prognosisaffecting ability. Surgery, age, T stage, N stage, and radiotherapy were the top five factors affecting prognosis. Among them, surgery and radiotherapy were factors important for short-term prognostic models (1-year survival; Figure **8A**), and their ability to predict prognosis decreased as survival duration increased (**Figure 8B**). The ability of neoadjuvant therapy to predict prognosis increased in the long-term model (5-year survival; **Figure 8C**).

Validation using an external cohort

To further validate our models, we collected clinical and prognostic information from 22 patients with sPR+ BC from our hospital (<u>Supplementary Table 1</u>). The results showed that our XGBoost models exhibited good ro-

Figure 5. First tree of the XGBoost models. A. First tree of the 1-year prognostic model; B. First tree of the 3-year prognostic model; C. First tree of the 5-year prognostic model. HER2: human epidermal growth factor receptor 2; XGBoost: extreme gradient boosting.

bustness in an external independent data set (1-year: AUC=0.889 (Figure 9A); 2-year: AUC= 0.846 (Figure 9B); 3-year: AUC=0.821 (Figure 9C)). In addition, we compared the survival benefit of endocrine therapy in patients at our hospital. We found that intense endocrine therapy did not provide a significant OS benefit compared to the initial endocrine therapy or no endocrine therapy (P=0.600, HR: 1.46; 95% CI: 0.35-6.17; Figure 10).

Discussion

Currently, ER, PR, and HER2 biomarkers are used in addition to conventional prognostic factors, to identify suitable treatment and predict prognosis in BC [15, 16]. Single PR+ BC is a

unique and biologically distinct subgroup, and its presence was once debatable. The features and prognosis of sPR+ BC remain poorly understood due to its rarity and conflicting evidence. The management and treatment of sPR+ BC thus become challenging. A lack of an accurate and effective model for predicting survival further adds to the treatment challenges of clinicians. To date, our comprehensive study is the first to utilize the largest cohort and assess the clinical characteristics and prognosis of patients with sPR+ BC. We established a robust XGBoost (AI prediction) model that showed exceptional accuracy and effectiveness in predicting the survival of patients with sPR+ BC at 1, 3, and 5 years. The model helped to grade the five most important clinical characteristics

A multicenter population-based study

Figure 6. XGBoost model evaluation. A. ROC curve for the test data (1-year prognostic model); B. ROC curve for the train data (1-year prognostic model); C. ROC curve for the test data (3-year prognostic model); D. ROC curve for the train data (3-year prognostic model); E. ROC curve for the test data (5-year prognostic model); F. ROC curve for the train data (5-year prognostic model). ROC: receiver operating characteristic curve; XGBoost: extreme gradient boosting.

Table 6. Performance of prognostic models
built using machine learning algorithms on
test data (area under the ROC curve)

	1-year	3-year	5-year
	survival	survival	survival
XGBoost	0.884	0.847	0.824
ANN	0.827	0.795	0.781
LR	0.806	0.794	0.784
RF	0.811	0.755	0.764
ID3	0.608	0.623	0.668
KNN	0.544	0.600	0.595

XGBoost: extreme gradient boosting; ANN: artificial neural network; LR: logistic regression; RF: random forest; ID3: decision tree; KNN: K-Nearest Neighbor. affecting prognosis. The effectiveness and precision of the model were assessed and proved using the confusion matrix. These results demonstrated a high and successful utility of the models in the clinical space. Improved treatment for BC using precision medicine can be achieved through the implementation of machine learning for enhancing prognostic abilities in cancer.

In recent years, neoadjuvant therapy has evolved significantly as a standard for treating locally advanced resectable or unresectable BC [17, 18]. It is more widely applied for the treatment of nearly all forms of BC [19]. A

A multicenter population-based study

pathologic CR (pCR) seen with neoadjuvant treatment during surgery has been shown to improve OS [20]. In contrast, patients with a non-pCR have a poor prognosis [21]. Due to the strong association between pCR and survival, the US Food and Drug Administration (FDA) now considers a pCR with neoadjuvant therapy as a surrogate endpoint in clinical trials for drug approval [22]. Single PR+ BC is a distinct subtype identified recently, and data on the efficacy of neoadjuvant therapy in this type are limited. Surprisingly, univariate Cox regression analysis revealed that neoadjuvant therapy did not benefit patients with sPR+ BC. Further stratified analysis indicated that only patients who had a CR to neoadjuvant therapy appeared to benefit from it. Clinical trials have demonstrated a connection between pCR and improved long-term outcomes [17, 18, 23]. However, the results were less reliable due to the small sample sizes and uncertainty with subtype-specific pCR estimates in individual studies. The XGBoost model in our study helped grade the importance of clinical characteristics. We found that neoadjuvant therapy was beneficial to achieve long-term survival.

It is not clear whether the prognosis in sPR+ BC was different from that of other subtypes of BC [5, 24]. Two studies revealed that the survival of the patients with the sPR+ subtype was comparable to those with the ER-PR- subtype [25, 26]. In contrast, a study by Ethier et al. revealed that the survival in the sPR+ subtype was equivalent to that in the ER+/PR+ subtype [27]. Rakha et al. reported that no statistically significant difference in survival was seen between the two single positive hormone receptor subtypes and between single positive hormone subtypes and double negative subtypes [6]. It is noteworthy that initially the effect of HER2 on single hormone receptor positive phenotype was ignored

Figure 8. Weight of each clinical feature in the XGBoost prognostic model (ranked by their importance). Weight of clinical features in (A) 1-year, (B) 3-year, and (C) 5-year prognostic models. XGBoost: extreme gradient boosting; HER2: human epidermal growth factor receptor 2.

and the comparison was rather crude. Additionally, no study compared ER-PR+ and ER-PRsubtypes stratified by the HER2 status. In this study, PSM was introduced to adjust for differences in clinicopathological characteristics between subtypes. The PSM-adjusted data showed that there is no statistically significant difference in prognosis between the ER-PR+ HER2+ and ER-PR-HER2+ subtypes. Patients with the ER-PR+HER2+ subtype had a slightly worse prognosis than those with the ER-PR-HER2- subtype. A possible explanation is that compared to ER-PR-HER2-, the attention of treatment in patients with ER-PR+HER2- is fo-

cused on endocrine therapy, resulting in inadequate adjuvant chemotherapy. Therefore, the sPR+ subtype may be more aggressive compared to the other subtypes. The results also revealed that HER2 positivity was more common in patients with sPR+ BC, which was consistent with results from other studies [5, 24]. ER and PR markers were proven to be strong prognostic indicators of responsiveness to endocrine treatment in BC [7, 12]. HER2-blocking therapies, such as trastuzumab and/or pertuzumab, in conjunction with chemotherapy [28] and HER2targeting therapeutics, such as drug-antibody conjugate adotrastuzumab emtansine [29]. are considered the standard first-line highly efficacious treatment for HER2+ BC. No statistical difference was seen between the prognosis of ER-PR+HER2+ and ER-PR-HE-R2+, suggesting that the endocrine therapy will not benefit patients with ER-PR+HER2+ BC. This is may be because the HER2 signaling pathway was dominant in HER2+ BC with minimal influence of PR markers. A previous study has shown that patients with the sPR+ subtype had a poor prognosis with systemic endocrine treatment compared to

ER+PR+ and ER+PR- subtypes [12]. A study by Davies et al. showed that endocrine therapy with tamoxifen for 5 years did not benefit patients with sPR+ BC [30]. Our results showed that intensified endocrine therapy did not provide a significant OS benefit compared to the initial endocrine therapy. Therefore, de-escalation over intensification is recommended for endocrine therapy in patients with sPR+ BC. Further prospective studies on the response of sPR+ BC to endocrine therapy are warranted.

Our study may have some potential limitations despite its promising results. First, metastases

Figure 9. External validation data of XGBoost models. ROC curve for the (A) 1-year, (B) 3-year, (C) 5-year prognostic models. ROC: receiver operating characteristic curve; AUC: area under the curve; XGBoost: extreme gradient boosting.

patients with sPR+ BC, such as the type of endocrine therapy, were not available in the SEER database, thereby further limiting our research. Despite this, our article still yields surprising results.

Third, the treatment data of

Conclusions

We analyzed the clinical characteristics and prognosis of patients with sPR+ BC and constructed machine-learning prognostic models to predict survival. These models were exceptionally reproducible and effective in predicting survival. Possible predictive variables for sPR+ patients were identified. Our findings implied that endocrine therapy may not be beneficial for patients with sPR+ BC and that intensive adjuvant chemotherapy is recommended instead.

Figure 10. K-M survival analysis in single PR+ patients (stratified by endocrine therapy). K-M: Kaplan-Meier; HR: hazard ratio; CI: confidence interval; initial endocrine therapy: 5 years of treatment with tamoxifen or aromatase inhibitors; intensified endocrine therapy: 5 years of tamoxifen or aromatase inhibitor therapy followed by either its continuation or concomitant ovarian function inhibitor therapy.

tend to have an extremely poor prognosis and hence sPR+ BC cases with distant metastases were excluded to avoid bias in prognostic comparisons, thereby limiting the study population to some extent. Second, according to the SEER database, a CR is defined based on clinical findings, i.e., the clearance of known tumors/ lesions from lymph nodes, which somewhat differs from the pCR defined in some studies.

Acknowledgements

We appreciate the efforts of the entire SEER database personnel in terms of data gathering, maintenance, distribution, and other tasks. We also want to express our gratitude to the entire development team of the R programming package for generously sharing the code. This work was funded in part by the National Science Foundation of China (82174164, to S.Q.Z., 81901886, to C.D.), Shaanxi Administration of Traditional Chinese Medicine (2021-ZZ-JC019, to C.D.), the Key Research and Development Program of Shaanxi (2022SF-411, to C.D.), and the Fundamental Research Funds for the Central Universities (xzy012020040, to C.D.).

Disclosure of conflict of interest

None.

Address correspondence to: Shuqun Zhang and Chong Du, Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, P. R. China. E-mail: shuqun_zhang1971@163.com (SQZ); duchong@ xjtu.edu.cn (CD)

References

- [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249.
- [2] Horwitz KB, Koseki Y and McGuire WL. Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. Endocrinology 1978; 103: 1742-1751.
- [3] Keshgegian AA and Cnaan A. Estrogen receptor-negative, progesterone receptor-positive breast carcinoma: poor clinical outcome. Arch Pathol Lab Med 1996; 120: 970-973.
- [4] De Maeyer L, Van Limbergen E, De Nys K, Moerman P, Pochet N, Hendrickx W, Wildiers H, Paridaens R, Smeets A, Christiaens MR, Vergote I, Leunen K, Amant F and Neven P. Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? J Clin Oncol 2008; 26: 335-336; author reply 336-338.
- [5] Rhodes A and Jasani B. The oestrogen receptor-negative/progesterone receptor-positive breast tumour: a biological entity or a technical artefact? J Clin Pathol 2009; 62: 95-96.
- [6] Rakha EA, EI-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, Nicholson RI, Lee AH, Robertson JF and Ellis IO. Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol 2007; 25: 4772-4778.
- [7] Nadji M, Gomez-Fernandez C, Ganjei-Azar P and Morales AR. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol 2005; 123: 21-27.

- [8] Schroth W, Winter S, Büttner F, Goletz S, Faißt S, Brinkmann F, Saladores P, Heidemann E, Ott G, Gerteis A, Alscher MD, Dippon J, Schwab M, Brauch H and Fritz P. Clinical outcome and global gene expression data support the existence of the estrogen receptor-negative/progesterone receptor-positive invasive breast cancer phenotype. Breast Cancer Res Treat 2016; 155: 85-97.
- [9] Itoh M, Iwamoto T, Matsuoka J, Nogami T, Motoki T, Shien T, Taira N, Niikura N, Hayashi N, Ohtani S, Higaki K, Fujiwara T, Doihara H, Symmans WF and Pusztai L. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat 2014; 143: 403-409.
- [10] Li Y, Yang D, Yin X, Zhang X, Huang J, Wu Y, Wang M, Yi Z, Li H, Li H and Ren G. Clinicopathological characteristics and breast cancer-specific survival of patients with single hormone receptor-positive breast cancer. JAMA Netw Open 2020; 3: e1918160.
- [11] Dauphine C, Moazzez A, Neal JC, Chlebowski RT and Ozao-Choy J. Single hormone receptorpositive breast cancers have distinct characteristics and survival. Ann Surg Oncol 2020; 27: 4687-4694.
- [12] Bardou VJ, Arpino G, Elledge RM, Osborne CK and Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol 2003; 21: 1973-1979.
- [13] Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 2006; 8: 537-565.
- [14] Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV and Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 2021; 13: 152.
- [15] Nicolini A, Ferrari P and Duffy MJ. Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol 2018; 52: 56-73.
- [16] Lindström LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, Hatschek T, Skoog L and Bergh J. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 2012; 30: 2601-2608.
- [17] Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz AB Jr, Hoehn JL, Lees AW, Dimitrov NV and Bear HD. Effect of preoperative chemotherapy on

the outcome of women with operable breast cancer. J Clin Oncol 1998; 16: 2672-2685.

- [18] von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Konecny GE, Denkert C, Nekljudova V, Mehta K and Loibl S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30: 1796-1804.
- [19] Kaufmann M, von Minckwitz G, Bear HD, Buzdar A, McGale P, Bonnefoi H, Colleoni M, Denkert C, Eiermann W, Jackesz R, Makris A, Miller W, Pierga JY, Semiglazov V, Schneeweiss A, Souchon R, Stearns V, Untch M and Loibl S. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006. Ann Oncol 2007; 18: 1927-1934.
- [20] Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, Mc-Neese MD, Buzdar AU, Hortobagyi GN and Singletary SE. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 1999; 17: 460-469.
- [21] Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE Jr, Pazdur R, Ditsch N, Rastogi P, Eiermann W and von Minckwitz G. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384: 164-172.
- [22] Prowell TM and Pazdur R. Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 2012; 366: 2438-2441.
- [23] Mieog JS, van der Hage JA and van de Velde CJ. Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev 2007; 2007: CD005002.
- [24] Chan M, Chang MC, González R, Lategan B, del Barco E, Vera-Badillo F, Quesada P, Goldstein R, Cruz I, Ocana A, Cruz JJ and Amir E. Outcomes of estrogen receptor negative and progesterone receptor positive breast cancer. PLoS One 2015; 10: e0132449.

- [25] Yu KD, Jiang YZ, Hao S and Shao ZM. Molecular essence and endocrine responsiveness of estrogen receptor-negative, progesterone receptor-positive, and HER2-negative breast cancer. BMC Med 2015; 13: 254.
- [26] Zheng H, Ge C, Lin H, Wu L, Wang Q, Zhou S, Tang W, Zhang X, Jin X, Xu X, Hong Z, Fu J and Du J. Estrogen receptor-negative/progesterone receptor-positive and her-2-negative breast cancer might no longer be classified as hormone receptor-positive breast cancer. Int J Clin Oncol 2022; 27: 1145-1153.
- [27] Ethier JL, Ocaña A, Rodríguez Lescure A, Ruíz A, Alba E, Calvo L, Ruíz-Borrego M, Santaballa A, Rodríguez CA, Crespo C, Ramos M, Gracia Marco J, Lluch A, Álvarez I, Casas M, Sánchez-Aragó M, Carrasco E, Caballero R, Amir E and Martin M. Outcomes of single versus double hormone receptor-positive breast cancer. A GEICAM/9906 sub-study. Eur J Cancer 2018; 94: 199-205.
- [28] Swain SM, Kim SB, Cortés J, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Knott A, Clark E, Ross G, Benyunes MC and Baselga J. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2013; 14: 461-471.
- [29] Diéras V, Miles D, Verma S, Pegram M, Welslau M, Baselga J, Krop IE, Blackwell K, Hoersch S, Xu J, Green M and Gianni L. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 2017; 18: 732-742.
- [30] Early Breast Cancer Trialists' Collaborative Group (EBCTCG); Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, McGale P, Pan HC, Taylor C, Wang YC, Dowsett M, Ingle J and Peto R. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771-784.

Supplement Material

1. Breast cancer patients with estrogen receptor negative, progesterone receptor negative, and human epidermal growth factor 2 positive (ER-PR-HER2+) from SEER database.

Inclusion criteria were as follows:

1) BC was the patients' one and only cancer that had been identified;

2) All cancer patients showed histopathological and morphological evidence in accordance with the International Classification of Cancer Diseases Edition III (ICD-0-3);

3) The molecular subtype of breast cancer is ER-PR-HER2+.

Exclusion criteria were as follows:

1) Patients suffering from two or more primary cancers (N=5048);

2) Patients with TO stage (N=56);

3) Patients with M1 or unknown M stage (N=1865).

2. Breast cancer patients with estrogen receptor negative, progesterone receptor negative, and human epidermal growth factor 2 negative (ER-PR-HER2-) from SEER database.

Inclusion criteria were as follows:

1) BC was the patients' one and only cancer that had been identified;

2) All cancer patients showed histopathological and morphological evidence in accordance with the International Classification of Cancer Diseases Edition III (ICD-0-3);

3) The molecular subtype of breast cancer is ER-PR-HER2-.

Exclusion criteria were as follows:

1) Patients suffering from two or more primary cancers (N=14515);

2) Patients with TO stage (N=119);

3) Patients with M1 or unknown M stage (N=2816).

Follow up is sustained until patients died, loss to follow-up, or December 31, 2019.

A multicenter population-based study

Name	Marital	Median	Age	Race	Grade	Hist	Т	Ν	Surgery	Radiation	Chemotherapy	Neoadjuvant	HER2	Endocrine therapy	survival_month	status
Not available	Married	NA	40-	Other	Ш	IDC	NA	NA	1	1	1	0	1	Initial	60	0
Not available	Married	NA	60-69	Other	III	IDC	T1	NO	1	0	1	0	0	intensify	47	1
Not available	Married	NA	70-79	Other	NA	IDC	NA	N1	1	0	0	1	1	Initial	11	1
Not available	Married	NA	70-79	Other	NA	IDC	T1	NA	1	1	0	0	0	Not given	37	1
Not available	Married	NA	40-49	Other	NA	IDC	NA	NO	1	0	1	0	0	Initial	13	0
Not available	Married	NA	60-69	Other	NA	IDC	T1	N1	1	1	1	1	0	intensify	60	0
Not available	Married	NA	40-49	Other	NA	No_IDC	Т3	NO	1	1	1	1	1	Initial	60	0
Not available	Married	NA	50-59	Other	NA	IDC	Т3	N1	1	1	1	1	1	Initial	25	1
Not available	Married	NA	50-59	Other	NA	IDC	T2	NO	1	0	0	0	1	intensify	9	1
Not available	Married	NA	70-79	Other	NA	IDC	T2	N2	1	1	1	1	1	Initial	20	0
Not available	Married	NA	40-49	Other	NA	IDC	NA	NO	1	0	1	0	0	Initial	50	0
Not available	Married	NA	50-59	Other	NA	IDC	T2	N1	1	1	1	1	0	Initial	53	0
Not available	Married	NA	50-59	Other	NA	IDC	T4	N2	1	1	1	1	1	intensify	22	1
Not available	Married	NA	50-59	Other	NA	No_IDC	NA	NO	1	1	1	0	0	intensify	60	0
Not available	Married	NA	60-69	Other	NA	IDC	T2	N1	1	1	1	1	0	Initial	60	0
Not available	Married	NA	60-69	Other	NA	IDC	NA	NO	0	0	1	0	0	Initial	6	1
Not available	Married	NA	60-69	Other	NA	IDC	T1	N2	1	1	1	1	0	Not given	17	0
Not available	Married	NA	50-59	Other	Ш	IDC	NA	NO	1	0	1	0	0	intensify	60	0
Not available	Married	NA	40-	Other	III	IDC	T2	N1	1	0	0	1	1	Initial	10	1
Not available	Unmarried	NA	40-49	Other	NA	IDC	T1	NO	1	0	1	0	0	intensify	60	0
Not available	Married	NA	40-49	Other	NA	IDC	NA	NA	1	0	1	0	0	intensify	45	0
Not available	Married	NA	40-49	Other	NA	IDC	T2	NO	1	1	1	0	0	intensify	38	0

Supplementary Table 1. Baseline characteristics of single PR positive breast cancer patients included from our hospital