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Abstract: Consensus on the stage of liver hepatocellular carcinoma (LIHC) in patients is difficult, which restricts the 
diagnosis and treatment of liver cancer. Molecular typing based on genes related to the lipid metabolism pathways 
can reflect deeper characteristics of liver cancer and complement the deficiency of the clinical staging system. In 
this study, we constructed and verified two cell subtypes: C1 and C2 in LIHC, based on six lipid metabolic pathway-
associated genes identified in two independent external validation cohorts comprising single-cell RNA-sequencing 
technology (scRNA-Seq) data and bulk RNA-seq data downloaded from Gene Expression Omnibus (GEO) database 
and The Cancer Genome Atlas (TCGA) database. The C2 subtype showed poorer prognosis, higher immune scores, 
and greater correlation with pathways associated with tumor progression as compared to the C1 subtype. Moreover, 
the sensitivity of many tested targeted drugs in C1 was relative to C2. Furthermore, Gene Set Enrichment Analysis 
(GSEA) revealed several significantly enriched oncological signatures and metabolic processes, which might help 
elucidate the underlying molecular mechanisms. At the same time, we identified there were significantly different 
metabolites in C1 and C2 subtypes using 11 LIHC tissue samples. In conclusion, we constructed two molecular 
subtypes based on the lipid metabolism-associated genes, which may provide valuable information to further study 
the pathogenesis and devise clinical management strategies for LIHC. 
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Introduction

Liver cancer is the most frequent fatal malig-
nancy, originating from epithelial or mesenchy-
mal tissues of the liver. Liver hepatocellular 
carcinoma (LIHC) is a common histologic type 
of primary liver cancer, accounting for nearly 
90% of all cases of primary liver cancer [1]. 
Over 0.5 million new LIHC cases are reported 
annually and the associated morbidity is on the 
rise [2, 3]. LIHC is now the second leading 
cause of cancer-related deaths worldwide [4], 
and is mainly caused by a viral infection and 
liver fibrosis [5]. At present, the main therapeu-
tic strategies for LIHC include hepatic resec-
tion, liver transplantation, radiotherapy, chemo-
therapy, and molecular targeted therapy, which 
are mainly decided by the clinical staging sys-

tem. Despite the development of new staging 
systems for LIHC worldwide, there is no global 
consensus on a staging system that allows for 
the comparison of existing management proto-
cols among heterogeneous populations [6],  
and personalized care for patients is lacking. 
Moreover, LIHC has a poor prognosis with a five-
year recurrence rate reaching up to 70% post-
resection and post-ablation with a five-year sur-
vival rate of 30-40% [7, 8]. 

The formation of tumors is the result of the 
accumulation of mutations in the genetic mate-
rial in cells. Tumor cells with different genomic 
alterations can develop into different subclones 
owing to cell phenotypic heterogeneity induced 
by genomic heterogeneity, leading to differen-
tial responses to therapy and metastatic poten-
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tial of tumors [9-11]. Following the development 
of the gene chip and high-throughput sequenc-
ing technologies, network biology has emerged 
as an integrative and systems-level approach 
to analyze tumor-related genes and their under-
lying regulatory mechanisms, particularly using 
the Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) databases, which 
have become essential in the field of cancer 
genomics [12]. Traditional methods of tumor 
gene expression analyses are based on large 
mixed cell samples, and the information on 
gene expression represents the average, ignor-
ing the important but small information [13]. In 
2009, Tang et al. proposed scRNA-Seq for the 
first time [14]. Using scRNA-Seq to investigate 
genomic heterogeneity and colon structures in 
intratumor cells of liver cancer not only pro-
vides a theoretical basis for accurate clinical 
classification of liver cancer, but also facilitates 
devising potential precise treatment plans 
based on molecular characteristics and dis- 
covery of new biomarkers related to diagnosis 
and prognosis. As a difficult tumor to treat, liver 
cancer has been studied extensively using the 
scRNA-Seq approach. Aizarani et al. estab-
lished a human liver cell atlas by performing 
scRNA-Seq analysis of cells from normal liver 
tissues of 9 human donors [15]. Their findings 
may advance the understanding of the patho-
genesis of liver cancer at the molecular level 
and help improve diagnostic and treatment 
strategies.

Abnormal metabolism exhibited by tumor cells 
with uncontrolled growth even in the presence 
of nutrient deficiencies is a hallmark of cancer, 
and is strongly associated with the occurren- 
ce, development, recurrence, metastasis, and 
prognosis of tumor [16-18]. On the one hand, 
carcinogenic factors disrupt the metabolic bal-
ance in the body, inducing metabolic reorgani-
zation and development of cancerous cells; on 
the other hand, reprogramming the metabolic 
system induces several biological behaviors 
involved in the proliferation, invasion, and 
metastasis of cancer cells [19, 20]. Metabolic 
reprogramming is a hallmark of cancer, among 
which, alterations in lipid metabolism are cru-
cial. Fat is the main energy storage material in 
the human body, and it not only participates in 
energy metabolism but is required for the 
growth and proliferation of cells. Lipid mole-
cules constitute the basic structure of cell 

membranes, which provide energy and func-
tion as signaling molecules. Merino Salvador et 
al. showed high alterations in lipid metabolism 
in tumor cells. Unlike normal cells that rely pri-
marily on the uptake of exogenous fatty acids 
(FA), tumor cells show enhanced nascent adi- 
pogenesis, crucial for membrane biosynthesis 
and signaling molecules [21]. Fatty acid syn-
thase (FAS, FASN) is a metabolic oncogene  
that supports tumor cell growth and survival 
and is highly expressed in many cancers [22]. 
Accumulating evidence shows that dysregula-
tion of lipid metabolism is a significant meta-
bolic alteration in cancer that not only affects 
primary tumor growth but also mediates its pro-
gression and metastasis [23]. Research on the 
molecular pathological characteristics of liver 
cancer cell metabolism is underway [24]. JIANG 
et al. found higher expression of cholesteryl 
ester in 254 liver cancer tissues as compared 
to the adjacent normal tissues through tissue 
microarray chip analysis, suggesting that lipid 
metabolism may be involved in the occurrence 
and development of liver cancer [25]. Relative 
to non-malignant liver tissues, genes involved 
in FA biosynthesis are generally up-regulated in 
most liver cancer tissues [26]. However, the 
relationship between lipid metabolism and 
related genes and the prognosis of liver cancer 
is unclear.

Notably, population changes with respect to 
liver cancer in the past several years have been 
detected. Liver cancer rates associated with 
nonalcoholic fatty liver disease (NAFLD) and 
nonalcoholic steatohepatitis (NASH), mainly 
caused by metabolic syndromes and obesity, 
are increasing gradually, even in a large pro- 
portion without underlying cirrhosis [27, 28]. 
NASH is the fastest growing indication for liver 
transplantation (LT) in the USA [29], however, 
studies on long-term outcomes and molecular 
pathological data are scarce, relative to liver 
cancer associated with other traditional liver 
diseases [30, 31]. Moreover, with the develop-
ment of tumor screening procedures for 
patients with liver cirrhosis in recent years, the 
proportion of patients with early-stage liver 
cancer in developed countries has shown a 
gradual increase [32], posing new challenges 
for prognostic risk assessment, as these 
patients often lack previously identified risk 
factors associated with a poor prognosis. Thus, 
molecular typing based on genomic features to 
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improve the clinical staging system for these 
specific populations of liver cancer patients is 
crucial [33-35].

In this study, we constructed a classifier for 
liver cancer based on six pathways related to 
lipid metabolism and analyzed the heterogene-
ity using bulk RNA-seq and scRNA-seq datas-
ets. Subsequently, we evaluated the relation-
ship between the two molecular subtypes and 
their prognostic and clinical features. We also 
identified different subtypes using non-nega-
tive matrix factorization (NMF), and distinct 
tumor microenvironment and immune charac-
teristics were detected. In conclusion, we es- 
tablished a molecular classification model for 
liver cancer based on lipid metabolism charac-
teristics, and further constructed the charac-
teristic index of each subtype, in an attempt to 
resolve the insufficiency of the clinical staging 
system. Our findings will provide research ideas 
and a theoretical basis for prognostic predic-
tion and designing individualized treatment 
strategies for LIHC patients.

Materials and methods

Data sources

The LIHC scRNA-seq dataset, GSE149614, was 
downloaded from the GEO (https://www.ncbi.
nlm.nih.gov/) database and included 10 
patients with a primary tumor (PT), 2 with por-
tal vein tumor thrombus (PVTT), 1 with meta-
static lymph node (MLN), and 8 with normal 
liver tissue (NLT). Publicly available clinical data 
and information on gene expression were 
retrieved from TCGA database (https://portal. 
gdc.cancer.gov/). Furthermore, GSE14520 was 
acquired from the GEO database to construct 
the molecular subtypes and as an independent 
cohort for the validation of molecular subtyp- 
es. GSE10143 dataset played as an external 
cohort for the validation of molecular subtypes. 
Well-annotated gene sets, representing the  
universal set of biological processes, are cru-
cial for the meaningful and insightful interpre-
tation of large-scale genomic data [36]. The 
Molecular Signatures Database (MSigDB) is a 
collection of annotated gene sets and can be 
used to perform GSEA (https://www.gsea-msig-
db.org/gsea/msigdb/index.jsp) [37]. We sc- 
reened six lipid metabolic pathway-related 
gene sets. These included biosynthesis of 
unsaturated FAs, FA metabolism, steroid bio-

synthesis, steroid hormone biosynthesis, 
alpha-Linolenic acid metabolism, and arachi-
donic acid metabolism. These gene sets are 
shown in Supplementary Table 1.

Data acquisition and processing 

TCGA-LIHC data were processed as follows: (1) 
Samples without information on clinical follow-
up were removed. (2) Ensemble ID was convert-
ed to Gene Symbol. (3) The average expression 
value was considered in the case of multiple 
Gene Symbols. 

The GSE14520 microarray dataset was pro-
cessed as follows: (1) Samples without infor-
mation on clinical follow-up were removed. (2) 
Probes were converted to Gene Symbols. (3) 
Probes corresponding to multiple genes were 
removed. (4) The average expression value was 
considered in the presence of multiple Gene 
Symbols. 

After preprocessing, a total of 360 samples in 
TCGA-LIHC, and 242 samples and 10501 gen- 
es in GSE14520 were obtained and used for 
further analysis. The flowchart of the study 
design is shown in Figure 1.

Single-sample gene set enrichment analysis 
(ssGSEA)

ssGSEA classifies marker gene sets with com-
mon biological functions, chromosomal local-
ization, and physiological regulation in a single 
sample [38]. Each ssGSEA enrichment score 
represents the absolute degree of enrichment 
of genes of a particular gene set in the corre-
sponding sample. Gene expression for a given 
sample is rank-normalized and enrichment 
scores are generated using the empirical cu- 
mulative distribution function (ECDF) of the 
genes in the signature and the remainder of  
the genes. ssGSEA was performed using the 
GSVA [39] package to obtain a hallmark gene 
set score and the hallmark gene set was 
obtained from MSigDB.

Identification of molecular subtypes using the 
consensus cluster plus algorithm

We calculated the sample scores of six lipid 
metabolism pathways in TCGA and GSE14520 
datasets by ssGSEA using the GSVA package, 
separately shown as shown in Supplementary 
Tables 2 and 3. Next, scores of these six meta-

http://www.ajcr.us/files/ajcr0144936suppltab1.csv
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bolic pathways were analyzed using the 
Consensus Cluster Plus package, using the hc 
algorithm and “canberra” as the metric dis-
tance. Consensus Cluster Plus verifies the 
rationality of clustering through resampling 
methods, which can disrupt the original datas-
et such that clustering analysis is performed on 
each resampled sample. Finally, the results of 
multiple clustering analyses are comprehen-
sively evaluated to give a consensus of evalua-
tion. A total of 500 bootstraps were performed 
and each bootstrap process included 80% of 
patients in the training set. The number of clus-
ters was set from 2-10, and the optimal classifi-
cation was determined by calculating the con-
sistency matrix and the consistency cumula- 
tive distribution function (CDF). A total of 360 
samples in TCGA_LIHC were clustered by 
Consensus Cluster Plus, and the optimal num-
ber of clusters was determined according to 
the CDF and CDF Delta area curves, which were 
used to construct metabolic subtypes for liver 
cancer. 

Clinical association and prognostic analysis

Wilcoxon rank sum test and t-test were utilized 
to evaluate the clinical indexes (gender, stage, 
grade, age, and events) between the two mo- 
lecular subtypes. The Kaplan-Meier (KM) sur-
vival curve combined with a log-rank test was 

most significantly enriched pathways and bio-
logical processes related to the DEGs using the 
“clusterProfiler” package in R software.

Status of immune functions between the mo-
lecular subtypes

ssGSEA (Rooney et al., 2015) was employed to 
estimate the infiltration score of immune cells 
and the activity of immune-related pathways 
using the R software packages, “GSVA” and 
“GSEA Base”. The Wilcoxon rank-sum test was 
used to compare the statistical differences 
between high- and low-risk groups.

Biological samples

11 LIHC tissue samples were obtained from  
the First Affiliated Hospital of Dalian Medical 
University. All patients signed an informed con-
sent for the use of their tissues in research 
studies.

RNA sequencing

Total RNA was extracted from the tissue us- 
ing TRIzol® Reagent (Plant RNA Purification 
Reagent for plant tissue) according the manu-
facturer’s instructions (Invitrogen) and geno- 
mic DNA was removed using DNase I (TaKara). 
Then RNA quality was determined by 2100 

Figure 1. Technical road map.

used to compare the differ-
ences in survival between the 
two molecular subtypes using 
the R package, “survival”.

Differentially expressed 
genes (DEGs) and their func-
tional enrichment analysis

DEGs were screened in  
the TCGA cohort using the 
“limma” package in R soft-
ware, with |log2FC| > 1.0 and 
false discovery rate (FDR) < 
0.05 as the cut-off values. 
The Volcano plot was gener-
ated to visualize the distribu-
tion of the identified DEGs. 
Subsequently, the Kyoto En- 
cyclopedia of Genes and 
Genomes (KEGG) and Gene 
Ontology (GO) analyses were 
performed to investigate the 
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Bioanalyser (Agilent) and quantified using the 
ND-2000 (NanoDrop Technologies). Only high-
quality RNA sample (OD260/280 = 1.8-2.2, 
OD260/230S2.0, RINN6.5, 28S: 18S^1.0, > 1 
pg) was used to construct sequencing library. 
RNA-seq transcriptome library was prepared 
following TruSeqTM RNA sample preparation 
Kit from Illumina (San Diego, CA) using 1 pg of 
total RNA. Shortly, messenger RNA was isolat-
ed according to polyA selection method by 
oligo(dT) beads and then fragmented by frag-
mentation buffer firstly. Secondly double-
stranded cDNA was synthesized using a 
SuperScript double-stranded cDNA synthesis 
kit (Invitrogen, CA) with random hexamer prim-
ers (Illumina). Then the synthesized cDNA was 
subjected to end-repair, phosphorylation and 
‘A’ base addition according to Illumina’s libr- 
ary construction protocol. Libraries were size 
selected for cDNA target fragments of 300 bp 
on 2% Low Range Ultra Agarose followed by 
PCR amplified using Phusion DNA polymerase 
(NEB) for 15 PCR cydes. After quantified by 
TBS380, paired-end RNA-seq sequencing 
library was sequenced with the Illumina HiSeq 
xten/NovaSeq 6000 sequencer (2 × 150 bp 
read length).

Transcriptomics data analysis

To identify DEGs between two different sam-
ples, the expression level of each transcript 
was calculated according to the transcripts  
per million reads (TPM) method. RSEM was 
used to quantify gene abundances. Essentially, 
differential expression analysis was perform- 
ed using the DESeq2/DEGseq/EdgeR with Q 
value w 0.05, DEGs with |log2FC| > 1 and Q 
value ≤ 0.05 (DESeq2 or EdgeR)/Q value ≤ 
0.001 (DEGseq) were considered to be signifi-
cantly different expressed genes.

Liver metabolomics analysis

Metabolites were extracted as the following 
steps: 1. 100 uL plasma/serum + 300 uL IPA 
(-20°C pre-cooled), vortex shaking for 1 min, 
stand at -20°C overnight; 2. At 1,2000 rpm 
centrifuge 4°C for 20 min, remove the super- 
natant and take 100 uL to the sample vial; 3. 
50 uL were taken to make quality control (QC) 
samples. In positive ion acquisition mode, the 
Masslynx software performs primary and sec-
ondary MS data acquisition based on the MSE 

function. Capillary voltage: 0.5 kV, cone hole 
voltage 40 V, ion source temperature 100°C, 
solvent removal gas flow rate 1000 L/h, cone 
hole gas flow rate 50 L/h, m/z 50-1200 Da in 
18 min, 0.2 sec/cycle. In anion acquisition 
mode, Masslynx software performs primary 
and secondary MS data acquisition based on 
the MSE function. Capillary voltage: 0.8 kV, 
cone hole voltage 40 V, ion source temper- 
ature 100°C, solvent removal gas flow rate 
1000 L/h, cone hole gas flow rate 50 L/h, m/z 
100-1200 Da in 18 min, 0.2 sec/cycle. The 
databases used for this experiment were 
LipidMaps and HMDB, and metabolites with P 
value < 0.05 were selected as differentially 
expressed metabolites (DEMs). For the liquid 
phase conditions, Phase A: Water: acetonitrile 
= 6:4 + 0.1% formic acid + 10 mM ammonium 
formate; Phase B: Isopropanol: acetonitrile = 
9:1 + 0.1% formic acid + 10 mM ammo- 
nium formate. The detail was showed in 
Supplementary Table 4. 

Integrative metabolomics and transcriptomics 
analysis

To analyze the relationship between metabolo-
mics and transcriptomics in 11 LIHC tissue 
samples, we made Network network using 
gephi software. Spearman correlation coeffi-
cients was calculated by WGCNA package in R 
and genes and metabolites with Spearman cor-
relation coefficients > 0.8 and P < 0.1 were 
selected.

Statistical analysis

Statistical analysis was performed using  
SPSS 22.0. Normally distributed data were 
analyzed by one-way ANOVA or t-test, and non-
normally distributed data were analyzed using 
the Kruskal-Wallis H test or Mann-Whitney 
U-test. Differential analysis for count data  
was performed using Pearson’s chi-squared 
test (α = 0.05) or Fisher’s exact test. A P- 
value < 0.05 was considered statistically 
significant.

Ethics approval and consent to participate

The Ethics Committee of the First Affiliated 
Hospital of Dalian Medical University approved 
the study design.

http://www.ajcr.us/files/ajcr0144936suppltab4.xlsx
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Results

Metabolism-related subtypes

Considering that consensus clustering results 
were relatively stable at k = 2 (Figure 2A, 2B) 
and the CDF Delta area curve, we obtained  
two clusters, namely C1 and C2 (Figure 2C). 
There were significant differences in prognos- 
es between C1 and C2 (Figure 2D). In general, 
the prognosis of patients in C1 was relatively 
good, whereas that in C2 was poor. The same 
analysis was performed and consistent re- 
sults were obtained in the GSE14520 cohort 
(Figure 2E). To validate the metabolism-relat- 
ed subtypes, we performed K-M curves using 
the GSE10143 dataset. The patients in C2 
showed shorter OS compared with those in C1 
(Figure 2F) (P < 0.05). Furthermore, principal 
component analysis (PCA) was performed in 
the six lipid metabolic pathways (Supplement- 
ary Figure 1), which further supported hetero-
geneity in tumor cells and the reliability of divid-
ing liver cancer patients into two clusters.

The differences in the expression of metabolic 
pathways between metabolism-related sub-
types

Next, we compared the differences in genes 
associated with the six lipid metabolic path-
ways between the two clusters (Figure 3A) in 
TCGA database, which had significant differ-
ences in the scores for the six lipid metabolic 
pathways between the two clusters (Figure 3C). 
We performed the same analysis in the 
GSE31210 dataset and obtained similar re- 
sults (Figure 3B, 3D).

The differences in clinical characteristics be-
tween metabolism-related subtypes

To investigate whether metabolism-related 
subtypes influenced clinical characteristics, we 
compared the distribution of different clinical 
characteristics between the two clusters in 
TCGA database. The results showed significant 
differences in gender, T stage, stage, grade, 
and survival states between C1 and C2 (Figure 
4A). What’s more, significant differences in 
stage, age, and survival states between clus-
ters in the GSE14520 dataset existed (Figure 
4B).

Immune signatures between metabolism-
related clusters

First, according to the previous study [40], we 
calculated the immune cell scores for each 
sample in TCGA by ssGSEA. The wilcox.test 
showed there were significant differences in 
abundances of T cells and B cells between the 
two clusters (Figure 5A). Next, ESTIMATE was 
performed to calculate the immune scores for 
each sample in TCGA. The wilcox.test showed 
significant differences between the two clus-
ters and the score in C2 was higher than that in 
C1 (Figure 5B).

Based on the ten pathways associated with 
tumors obtained from a previous study [41], we 
calculated the enrichment scores for each  
sample in TCGA by ssGSEA. And we found sig-
nificant differences in seven pathways: the 
scores of the cell cycle, NOTCH, RAS, TP53, and 
WNT were higher in C2 than C1, whereas the 
scores of NRF1 and PI3K were higher in C1 
compared with C2 (Figure 5C). Based on the 31 
genes associated with cell cycle progression 
(CCP) identified in a previous study [42], we cal-
culated the enrichment scores for CCP in each 
sample in TCGA by ssGSEA. The enrichment 
scores for CCP in C2 were higher than in C1 
according to the results of the wilcox.test 
(Figure 5D). As shown in Figure 5A, significant 
differences in macrophage abundance were 
obtained between the two clusters. Macro- 
phages play an important role in immune regu-
lation through antigen processing and presen-
tation, Toll-like receptor signaling pathway, and 
natural killer cell-mediated cytotoxicity path- 
way which can kill tumor cells by mediating the 
antibody-dependent cell-mediated cytotoxicity 
(ADCC) effect. Thus, we analyzed the genes 
associated with these pathways in the MSigDB 
database by GSEA and calculated the scores of 
them for each sample by ssGSEA. Only the anti-
gen processing and presentation score had sig-
nificant significance between the two clusters 
and it was higher in C2 than C1 (Figure 5E-G).

Apart from macrophages, T cells including Type 
2 T helper cells showed significant differences 
in abundance between the clusters. Thus, we 
extracted the genes associated with Th1 and 
Th2 cell differentiation and the IL-17 signaling 
pathway and calculated the scores for each 
sample by ssGSEA. The wilcox.test showed  
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Figure 2. Metabolism-related subtypes. A: CDF curve for samples in TCGA-LIHC cohort; B: Cumulative distribution function (CDF) Delta area curve for samples in 
TCGA-LIHC cohort. The Delta area curve of consensus clustering indicates the relative change in the area under the CDF curve for each category number k as com-
pared to k-1. The horizontal axis represents the category number, k, and the vertical axis represents the relative change in the area under the CDF curve; C: Sample 
cluster heatmap at consensus k = 2; D: KM curves for the prognosis of patients in TCGA belonging to the two subtypes; E: KM curves for the prognosis of patients 
in the GSE14520 cohort belonging to the two subtypes. F: KM curves for metabolism-related subtypes in GSE10143.
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Figure 3. Differences in the expressions of metabolic pathways in metabolism-related subtypes. A: Heatmaps for two subtypes based on the expression of genes 
in the six lipid metabolism pathways in TCGA dataset; B: Heatmaps for two subtypes based on the expression of genes in the six lipid metabolism pathways in the 
GSE14520 cohort; C: Boxplots showing differences in six lipid metabolism pathway scores between the two subtypes in TCGA dataset; D: Boxplots showing differ-
ences in six lipid metabolism pathway scores between the two subtypes in the GSE14520 cohort.
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Figure 4. Differences in the clinical characteristics between metabolism-related subtypes. A: Comparison of the distribution of different clinical features between 
two molecular subtypes in TCGA dataset; B: Comparison of the distribution of different clinical features between two molecular subtypes in the GSE14520 cohort.
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Figure 5. Immune signatures between metabolism-related clusters. A: The differences in immune cell scores between two subtypes in TCGA predicted by ssGSEA; 
B: The differences in immune cell scores between two subtypes in TCGA predicted by ESTIMATE; C: The differences in ten tumor-associated pathways among two 
subtypes; D: The differences in CCP scores between two subtypes in TCGA-LIHC dataset; E: The differences in scores for the Toll-like receptor signaling pathway 
between the two subtypes in TCGA dataset; F: The differences in scores for natural killer cell-mediated cytotoxicity between the two subtypes in TCGA dataset; G: 
The differences in scores for antigen processing and presentation between the two subtypes in TCGA dataset; H: The differences in scores for Th1 and Th2 cell 
differentiation between the two subtypes in TCGA dataset; I: The differences in scores for the IL-17 signaling pathway between the two subtypes in TCGA dataset.
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that the scores in C2 were significantly higher 
than in C1 (Figure 5H, 5I).

DEGs between metabolism-related subtypes

The results showed that there were 365 DEGs 
in TCGA dataset (Figure 6A), among which 233 
genes were up-regulated while 46 were down-
regulated genes in the GSE14520 dataset 
(Figure 6B). Overlapping analysis suggested 
that 179 up-regulated genes and 31 down-reg-
ulated genes were common between the data-
sets (Figure 6C). Subsequently, we screened 
protein-protein interaction through STRING 
(https://cn.string-db.org/) using a confidence 
score cut-off of ≥ 0.4. 190 genes showing sig-

nificant interactions among the 210 genes 
were visualized in Cytoscape. The degree of  
the network was estimated using Analyze 
Network in Cytoscape. The higher the degree, 
the more central the gene in the network, which 
implied that the corresponding gene held great-
er importance (Supplementary Table 5). Table 
1 showed the genes with Degree ≥ 30.

Finally, GO and KEGG pathway enrichment 
analysis were performed to examine the func-
tional characteristics of these 190 genes using 
Web Gestalt R. The results of GO analysis 
revealed that these genes were significantly 
enriched in 218 biological process (BP) terms, 
61 molecular function (MF) functions and 22 

Figure 6. Differential gene expression analysis between metabolism-related subtypes. A: Differentially expressed 
genes between the two subtypes in TCGA dataset; B: Differentially expressed genes between the two subtypes in 
the GSE14520 dataset; C: The common differentially expressed genes between the two subtypes in TCGA and 
GSE14520 datasets; D: Close interactions among 190 genes.

http://www.ajcr.us/files/ajcr0144936suppltab5.csv
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cellular component (CC) functions (FDR < 0.05). 
The top 10 most significant ones are listed 
(Supplementary Figure 2A-C). The results of 
KEGG analysis (FDR < 0.05) showed that the- 
se marker genes were significantly enriched in 
26 pathways (Supplementary Figure 2D). The 
detailed information of KEGG and GO enrich-
ment results are provided in Supplementary 
Table 6.

Unsupervised clustering and dimensionality 
reduction

First, cells that met the following criteria were 
filtered: (1) Each gene was expressed in at least 
3 cells, and each cell expressed at least 250 
genes. (2) Cell expressed 100 UMIs at least, 
more than 100 genes, and less than 6000 
genes. (3) Less than 30% mitochondrial gene 
expression in UMI counts. PercentageFeature- 
Set was used to calculate the proportion of 
mitochondrial genes and rRNA. As shown in 
Supplementary Figure 3A, UMI and mRNA were 
significantly correlated with the content of  
mitochondrial genes, while UMI/mRNA was not. 
Supplementary Figure 3B, 3C showed the  
Violin diagrams before and after quality control, 
respectively.

Further, we normalized the data of 4 samples 
separately using “Log Normalize”. Variable gen- 
es were selected using FindVariableFeatures. 
The ScaleData function was used to scale all 

genes and perform PCA dimensionality reduc-
tion to identify anchor points. Dim = 35 was 
chosen. And then we used the FindNeighbors 
and FindClusters functions in Seurat to per-
form cell clustering (Resolution = 0.9). Finally, 
51 cell clusters were obtained. Immune cell 
clusters were identified by PTPRC (CD45) 
expression in a total of 42,451 cells (Supple- 
mentary Figure 3D, 3E).

Next, we chose 42,451 immune cells, and vari-
able genes were selected after normalization 
and identification of anchor points by PCA 
dimensionality reduction. Dim = 30 was cho-
sen. We used the FindNeighbors and Find- 
Clusters functions in Seurat to perform cell 
clustering (Resolution = 0.1). Finally, 20 cell 
clusters were obtained. RunTSNE function was 
used to perform t-SNE dimensionality reduc- 
tion in 42,451 immune cells. We also visualized 
the cell clusters using the RunTSNE function 
(Figure 7A) based on the expression of known 
immune marker genes (Supplementary Figure 
4). Figure 7B showed different t-SNE dia- 
grams. t-SNE plots showed the cell distribution 
between tumor and normal tissues, the distri-
bution of 17 cell clusters and the distribution of 
cells after annotation (Figure 7C-E). Table 2 
listed the statistics of the number of cells in 
each sample before and after filtering. The 
FindAllMarkers function was used to screen 
marker genes in 7 subgroups using logfc = 0.5 
(fold difference) and Minpct = 0.35 (the small-
est expression ratio of differential genes), al- 
ong with corrected P < 0.05. Here we only 
showed the expression of the top 5 marker 
genes with the most prominent contributions in 
each cluster (Figure 7F). Marker genes were 
listed in Supplementary Table 7.

Furthermore, we analyzed the proportions of 
tumor and para-tumor tissues in 8 cell clusters 
(Figure 7G). KEGG pathway enrichment analy-
sis was performed using the cell markers of the 
7 cell clusters using the clusterProfiler package 
(Figure 7H). No significantly enriched pathway 
in CD4 T cells was identified.

Abnormal metabolism at the single-cell level

Although tumor and normal tissues were select-
ed when sampling, tumor tissues may contain 
some normal cells. To further demonstrate the 
conclusion obtained from bulk RNA-seq analy-
sis, whereby activated metabolic pathways may 
be associated with poor prognosis based on 
the metabolic pathway enrichment score which 

Table 1. The degree information of crucial genes
Name Degree
CYP3A4 44
FTCD 40
AGXT 40
CYP2E1 37
APOA1 37
SERPINC1 36
C8A 36
APOC3 35
CYP2C9 34
CYP7A1 33
HRG 33
SLC2A2 32
HGD 31
TAT 31
NR1I2 31
F9 30
F13B 30
CPB2 30

http://www.ajcr.us/files/ajcr0144936suppltab6.csv
http://www.ajcr.us/files/ajcr0144936suppltab6.csv
http://www.ajcr.us/files/ajcr0144936suppltab7.csv


Lipid metabolism heterogeneity in LIHC

2826 Am J Cancer Res 2023;13(7):2814-2840



Lipid metabolism heterogeneity in LIHC

2827 Am J Cancer Res 2023;13(7):2814-2840

Figure 7. Unsupervised clustering and dimensionality reduction. A: t-SNE plot for 21 sample distributions; B: Different types of t-SNE plots; C: t-SNE plots of cell 
distributions between tumor and normal tissues; D: t-SNE plot of the distribution in 17 subtypes; E: t-SNE plots of cell clusters after cellular annotation; F: Dot plot 
for the top 5 marker genes in clusters after annotation; G: The proportions and cell numbers of annotated cell clusters between cancer and para-cancerous tissues; 
H: Dot plot for KEGG enrichment analysis in subpopulations annotated cell clusters.
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was higher in C2 as compared to C1, we distin-
guished malignant cells from normal cells in 
the sc-RNA seq immune cells data by compar-
ing the copy number variations (CNV) using the 
copykat package. A total of 19435 malignant 
cells, 16398 normal cells, and 6618 unknown 
cells were identified. Next, we predicted the 
scores for lipid metabolism-related subtypes 
(Figure 8) based on the 179 co-up-regulated 
genes (marker genes of C1) and 31 co-down-
regulated genes (marker genes of C2) screened 
by ssGSEA as shown in Figure 6. In the micro-
environment, the scores for C1 in malignant 
cells were lower than normal cells, however, the 
scores of C2 in malignant cells were higher 
than in C1, consistent with the results of bulk 
RNA-seq analysis, which meant the prognosis 
of C1 was good but that of C2 was poor.

Interactions between malignant and immune 
cells

Cell-cell L/R pairs analysis was performed by 
cellphoned packbag in 35833 cells including 
19435 malignant cells and 16398 normal 
cells. P < 0.001 was used for screening, and  
38 L/R pairs were found to play an important 
role in the interaction between malignant cells 
and normal immune cells (Figure 9A). Further- 
more, 11 L/R pairs played an important role in 
the interaction between malignant cells and 
normal immune cells (Figure 9B) and between 
normal immune cells and malignant cells 
(Figure 9C). The 11 L/R pairs were as followed: 
CD8_LCK, KLRB1_CLEC2D, FAM3C_CLEC2D, 
CD2_CD58, CD160_TNFRSF14, CD55_ADG- 
RE5, CLEC2B_KLRF1, ICAM1_AREG, TNFSF- 
14_TNFRSF14, SELL_SELPLG, and LAMP1_ 
FAM3C.

The relationship between metabolism of ma-
lignant cells and the tumor immune microen-
vironment 

Although malignant cells dominate the lipid 
metabolism patterns in tumors, we aimed to 

identify the role of TME and whether it influ-
enced the metabolism of malignant cells. 
However, environmental factors cannot be 
directly incorporated into the metabolic analy-
sis, thus, we chose two factors, hypoxia and 
angiogenesis, for our assessment. Genes  
associated with the hallmark-hypoxia pathway 
were used to calculate the hypoxia and angio-
genesis scores in malignant cells based on  
the screened 24 genes using ssGSEA. ssGSEA 
was used to calculate the scores of the six  
lipid metabolic pathways in malignant cells. 
Pearson’s chi-squared test was used to analyze 
the relationship between hypoxia scores, angio-
genesis scores, and the six lipid metabolic 
pathways (Figure 10A). The results showed 
that hypoxia scores were negatively associated 
while angiogenesis scores were positively asso-
ciated with alpha-linolenic acid metabolism.

Next, immune cells in 19435 malignant cells 
were assessed. As shown in Table 3, immune 
cells in malignant cells were almost MDM, and 
only one Mast cell and T cell were identified. We 
compared the scores of different immune cells 
between C1 and C2 (Figure 10B). The scores of 
C1 were significantly lower than those of C2 for 
all immune cells, indicating that poor prognosis 
in C2 was advantageous in the malignant cell 
microenvironment.

Finally, correlational analysis for C1, C2, hypox-
ia scores, angiogenesis scores, and the 6 lipid 
metabolic pathways was performed (Figure 
10C). The result showed that the scores of C1 
were significantly associated with steroid hor-
mone biosynthesis and FA metabolism.

Analysis of drug sensitivity between the metab-
olism-related clusters

Based on the analysis of the two metabolism-
related clusters, we identified significant differ-
ences in metabolic pathways and TME between 
them, which play an important role in tumor 
resistance. We further studied the influence  
of the targeted drugs in the two metabolism-
related clusters using the pRRophetic package 
in R. The sensitivity to many targeted drugs, 
including cisplatin, rapamycin, and MG-132 in 
C1 was higher than in C2 (Figure 11).

Network analysis of differential metabolites 
and genes

According to the genes in Table 1, we divided 
11 LIHC tissue samples into T and CK group 

Table 2. Statistics of cell counts before and 
after sample filtration
Sample raw_count clean_count percent %
N1 4243 4052 95.5
N2 2466 2249 91.2
T1 2642 2345 88.76
T2 3203 2571 80.27
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(Figure 12A). Then DEMs was got in both nega-
tive and positive ionization modes (Figure 12B, 
12C). To further analysis the relationship 
between genes and DEMs, we constructed a 
fully connected network of differentially metab-
olites and genes (Figure 12D). Next, genes  
and metabolites with Spearman correlation 
coefficients > 0.8 and P < 0.1 were selected. 
We got 7 genes: CPB2, CYP3A4, TAT, HGD, 
CYP2E1, NR1I2, CYP7A1 were significantly 
associated with 11 differentially metabolites 
(Figure 12E).

Discussion

At present, the treatment of liver cancer faces 
huge challenges of difficulty in prevention, late 
detection, and few available therapeutic tar-
gets. Targeted immunotherapy shows low over-
all response rates and varies greatly among 
patients, mainly due to the lack of knowledge  
of the molecular subtypes and factors driving 
the progression of liver cancer. At present, the 
clinical decisions for liver cancer treatment are 
often based on the TNM staging system, which 

Figure 8. Abnormal metabolism at the single-cell level. A: Scores for malignant cells (cancer cells) and non-ma-
lignant cells (normal cells) in C1 and C2; B: The differences in scores between malignant cells (cancer cells) and 
non-malignant cells (normal cells) in C1; C: The differences in scores between malignant cells (cancer cells) and 
non-malignant cells (normal cells) in C2.
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Figure 9. Interactions between malignant and immune cells. A: The network shows the number of significant inter-
actions between different cell populations, with thicker lines representing higher numbers of interactions (more 
ligand receptors); B: Dot plot of ligand-receptor pairs between malignant cells and normal immune cells; C: Dot plot 
of ligand-receptor pairs between normal immune cells and malignant cells. The color represents the magnitude of 
the interaction, and the larger the point, the smaller the significance (p-value).
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relies on dividing the patients into different 
stages according to clinical features associat- 
ed with prognosis, especially pathological fac-
tors [43]. The clinical factors associated with 
the prognosis of liver cancer mainly reflect the 
extent of tumor spread including tumor size, the 
number of tumor nodules, vascular invasion, 
distant metastasis, and severity of liver dam-
age including protein synthesis and detoxifica-
tion, and liver decompensation symptoms [44]. 
Despite great progress made in guiding clinical 
practice for tangible therapeutic benefits for 
patients with liver cancer based on the classifi-
cation methods of pathological diagnosis. 
However, it is difficult to reflect the biological 
nature of the tumor, especially essential differ-
ences at the molecular level, because tumor 
biological features can be defined only at the 
tissue level [45]. At the same time, it’s notewor-
thy that despite in the same TNM stage, signifi-
cant differences in survival time and responses 
to the therapy across patients are found owing 
to the high heterogeneity of LIHC.

With the advancement and popularization of 
high-throughput sequencing technology and 
parallel detection technology, related research 
and applications in the field of biomedicine 
have advanced. Traditional bulk RNA sequenc-
ing is based on tissue samples and reflects  
the average expression in cell populations. 
However, extensive heterogeneity is present 
between cells, which plays an important role in 
the response to targeted therapy in tumors. In 
recent years, scRNA-seq, which can reveal the 

expression of all genes in the whole genome at 
the single-cell level along with tumor heteroge-
neity, has been vigorously developed [46, 47].

The development of scRNA-seq has provided 
new methods for the investigation of liver can-
cer. Zhang et al. harvested 42 samples from 
eight LIHC patients and evaluated tumor het-
erogeneity by whole-exome sequencing, RNA 
sequencing, mass spectrometry-based pro-
teomics and metabolomics, cytometry by time-
of-flight, and single-cell analysis [48]. Hou et al. 
used scTrio-seq and simultaneously assessed 
the genome, methylome, and transcriptome at 
the single-cell level, to analyze 25 single cells 
derived from a LIHC tissue sample and found 
two subpopulations showing distinct DNA copy 
numbers, DNA methylation, RNA expression. 
Higher copy number variations and methyla- 
tion levels were associated with a greater likeli-
hood of metastasis [49]. These studies com-
prehensively reveal the mechanism and driving 
factors of liver cancer from multi-dimensional, 
multi-omics, and multi-system perspectives, 
facilitating the development of new and precise 
diagnostic and treatment strategies.

As the pivotal organ for carbohydrate, lipid, and 
protein metabolism, metabolic function is the 
most important feature of the liver tissue. 
Several factors lead to metabolism disorders of 
the liver and are implicated in liver cancer. In 
recent years, cases of liver cancer caused by 
NAFLD/NASH associated with metabolic syn-
dromes and obesity are on the rise, highlight- 

Figure 10. The relationship between metabolism of malignant cells and the tumor immune microenvironment. (A) 
Correlational analysis of hypoxic type scores and angiogenesis scores with six lipid metabolism pathways; (B) A 
differential analysis based on lipid metabolism-related subtypes; (C) The correlational analysis of the hypoxia-type, 
angiogenesis, and six lipid metabolism pathway scores with the subtypes; in (A-C), the thickness of the correspond-
ing lines represent the absolute values of the correlation between angiogenesis scores, hypoxia scores, C1 scores, 
C2 scores, and lipid metabolism pathways. The type of line shows a positive or negative correlation, and the color 
indicates the magnitude of significance.

Table 3. The composition of malignant cells
C0 C11 C1 C17 C4 C2 C5 C10 C12 C13 C14 C15 C16 C9 C18 C6 C7 C8 C19

NKT 12359 792 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Monocyte 0 0 457 63 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Macrophage 0 0 0 0 0 85 59 57 151 207 41 94 29 0 0 0 0 0 0

T cell 0 0 0 0 0 0 0 0 0 0 0 0 0 818 396 0 0 0 0

CD4 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1241 0 0 0

B cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 870 0 0

CD8 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 612 0

Mast cell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45
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Figure 11. Analysis of drug sensitivity between the clusters (****P < 0.0001, ***P < 0.001, **P < 0.01).
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Figure 12. The relationship between DEGs and DEMs in 11 LIHC tissue samples. A: 11 LIHC tissue samples were devided into 2 groups according to the DEGs; B: 
The DEMs in negative and positive ionization modes; C: The DEMs in positive ionization modes; D: A fully connected network of differentially metabolites and genes; 
E: The network of significantly associated metabolites and genes.
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ing the importance of lipid metabolism in hepa-
tocarcinogenesis. Studies show that increased 
de novo synthesis of lipids is a common feature 
of many human cancers [50]. FA turnover is 
high in tumor cells to meet the energy and syn-
thetic requirements for their [51]. Moreover, 
FAS and the key enzymes that catalyze FAS are 
overexpressed in human malignant tumors. 
Lipolytic enzymes that hydrolyze monoacylglyc-
erols to release free FAs are overexpressed in 
aggressive tumor cells; inhibiting FAS can sup-
press the proliferative activity of several malig-
nant tumor cell lines [52]. Luo et al. found that 
tumor-associated macrophages (TAMs) from 
tumor-bearing mice have higher lipid content 
with decreased phagocytic potency as com-
pared to macrophages from tumor-free mice 
[53], suggesting that these tumors can evade 
the body’s immune surveillance through mech-
anisms involving changes in tumor lipid pools 
and accumulation of lipids and FAs [54].

Taken together, this study is the first to analyze 
the heterogeneity of liver cancer from the per-
spective of lipid metabolism. Here we classified 
360 LIHC samples from TCGA based on six  
lipid metabolic pathway-associated genes, and 
assigned them to two molecular subtypes (C1 
and C2), exhibiting different clinical features 
and prognostic outcomes. Apart from metabol-
ic activity, significant differences in clinical fea-
tures and immune characteristics between the 
two subtypes were present and closely related 
to the prognosis. In general, patients in C2 
showed poor prognosis, lower scores for lipid 
metabolic pathways, a higher proportion of 
deaths, higher T-stage, more advanced staging, 
and higher immune scores as compared to 
those in C1. To verify the effectiveness of this 
classifier in predicting prognosis, we further 
validated it in the GSE10143 and GSE149614 
datasets, which confirmed significant differ-
ences in the survival time between the two sub-
types. The sensitivity to many targeted drugs in 
the C1 group was significantly higher than that 
in C2, suggesting that patients in C1 could ben-
efit substantially from targeted therapy.

ssGSEA was performed to further assess the 
two subtypes, and the results showed that dif-
ferent genes were significantly enriched based 
on tumor features and metabolism characteris-
tics. The expression of several tumor-related 
pathways was significantly higher in the C2  

subtype than in the C1 subtype, suggesting 
that tumors of the C2 category were more 
aggressive, consistent with the clinical charac-
teristics, including advanced stage, high de- 
gree of differentiation, and high mortality. 
Compared with the C2 subtype, metabolism-
related pathways were enriched in the C1 sub-
type and were mostly associated with the phys-
iological and metabolic functions of hepato-
cytes such as FA metabolism, biosynthesis  
of unsaturated FAs, and alpha-linolenic acid 
metabolism, indicating that the hepatocyte 
function was more complete. Thus, the C1 sub-
type showed a better prognosis than the C2 
subtype. The analysis of TME showed signifi-
cant differences in B cell, T cell, and macro-
phage scores between the two subtypes. The 
results of bulk RNA-seq showed that the 
enriched scores of malignant cells in C2 with a 
poor prognosis were higher than those in C1. 
Furthermore, malignant cells dominated the 
lipid metabolism pattern of tumors and influ-
enced their metabolism through the TME. 
Moreover, the two subtypes showed strong con-
cordance with molecular subtypes obtained 
from previous studies in different LIHC popula-
tions, which supported the molecular typing 
based on the lipid metabolism function for liver 
cancer. These findings suggest that molecular 
typing can reflect the relationship between liver 
cancer at the molecular and pathological  
levels, and is worthy of further in-depth 
investigation.

High heterogeneity in liver cancer poses sub-
stantial barriers to improving patient outcom- 
es. There are numerous published studies 
employing gene chips and next-generation 
sequencing for liver cancer [55-57]. Breuhahn 
et al. distinguished LIHC into group A (65%)  
and group B (35%) based on clustering using 
the most variable genes; cDNA microarray  
analyses provided subtyping for LIHC related to 
intratumor inflammation and tumor cell apopto-
sis [58]. Chiang et al. characterized copy num-
ber variant alterations and gene expression 
profiles and identified 5 classes based on the 
clustering of gene expression, further support-
ed by the molecular data [59]. Dong et al. used 
Cox regression as well as SVM-RFE and FW- 
SVM algorithms to analyze DNA methylation 
data and constructed a model using three risk 
categories to predict the overall survival, show-
ing satisfactory predictive power [60]. Hoshi- 
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da et al. performed a meta-analysis of gene 
expression profiles in a dataset comprising  
603 patients, in an attempt to obtain universal 
molecular classifications for liver cancer. They 
found distinct molecular subclasses in several 
datasets [61], which supported the view that 
although the results of integrated genomic, 
transcriptomic, and epigenomic analyses ac- 
ross different studies vary, the high-frequency 
genes and the main pathways are consistent 
[62]. Regardless of the clinical heterogeneity 
across liver cancer patient populations world-
wide, certain global features are shared at the 
molecular level.

Of course, several aspects need improvement 
and further investigation for utilizing molecular 
typing based on the metabolic functions in liver 
cancer. First, obtaining information more easily, 
given that analyses usually require complete 
gene data to assess the activity of pathways 
based on enrichment using scRNA-sq. The 
roles of specific metabolic and signaling path-
ways across metabolic subtypes of liver cancer 
and the differences need to be elucidated in 
the future. The effects of metabolic subtypes of 
liver cancer on the patient’s systemic metabolic 
status and the crucial factors affecting the 
prognosis of these patients warrant further 
studies. In the future, we plan to perform more 
experiments to validate the results of this study 
and use more rational bioinformatic strategies 
to improve the model. Several changes have 
occurred in the population of liver cancer in the 
past several years. The proportions of early 
liver cancer cases and those caused by non-
hepatitis virus are increasing [63, 64], the 
molecular characteristics and typing are thus 
essential in liver cancer research. 

Conclusion

In summary, we constructed lipid metabolism 
subtypes using six lipid metabolism-related 
pathways, which may be used as independent 
prognostic factors for liver cancer. We further 
analyzed the characteristic differences in the 
tumor immune microenvironment and drug 
sensitivities between the two subtypes to 
assess the prognostic risk of liver cancer 
patients, which provides support for the clinical 
diagnosis based on the stage, individualized 
treatment strategies, and prognostic prediction 
for liver cancer.
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Supplementary Figure 1. PCA for two datasets based on six lipid metabolism pathways.
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Supplementary Figure 2. The results of GO and KEGG enrichment analyses. A: BP annotation map for common genes; B: CC annotation map for common genes; C: 
MF annotation map for common genes; D: KEGG annotation map for common genes.
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Supplementary Figure 3. Preprocessing of sc-RNA-Seq data. A: The relationship between mitochondrial genes and UMI/mRNA quantity; the relationship between 
UMI and mRNA quantity; B: The relationship between mRNA/UMI/mitochondrial content/rRNA content in each sample before filtering; C: The relationship between 
mRNA/UMI/mitochondrial content/rRNA content in each sample after filtering; D: Violin plot for the gene expression of CD45; E: The sample distribution map for 
PCA dimensionality reduction and the anchor point map for PCA.

Supplementary Figure 4. TSNE plot showing the expression of marker genes.


