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Abstract: Ferroptosis, a term coined by Dixon et al. in 2012, refers to an iron-dependent form of regulated cell death 
driven by an overload of lipid peroxides on cellular membranes. It is morphologically and mechanistically distinct 
from apoptosis and other types of regulated cell death. Many studies have confirmed that ferroptosis is involved in 
the occurrence and development of many diseases, such as neurodegenerative diseases, chronic cardiovascular 
diseases, respiratory diseases and even tumors. While in the systemic diseases of obstetrics and gynecology, the 
related researches are still limited. In this article, we retrieved PubMed and WEB OF SCI databases for articles and 
reviews published before May 6, 2022, using “ferroptosis, ferroptosis regulator, gynecological tumors” as keywords, 
and comprehensively reviewed on their basis. Here, we systematically summarize the studies on the mechanism 
and characteristics of ferroptosis, investigate the role of ferroptosis in clinical systemic diseases of obstetrics and 
gynecology, evaluate the research status, unsolved problems and further research directions of ferroptosis, so as 
to let people learn more about ferroptosis and establish a research foundation for the exploration of the treatment 
strategies for ferroptosis-mediated diseases.
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Introduction

In 2003, Dolma et al. [1] discovered that the 
compound erastin can induce the death of 
tumor cells with RAS oncogene mutation. 
Cellular ferroptosis has three characteristics, 
including the loss of lipid peroxide repair ability, 
the peroxidation of phospholipids containing 
polyunsaturated fatty acids, and the depen-
dence on redox iron. In 2012, Dixon et al. [1] 
officially named Erastin-induced cell death  
with unique morphological, biochemical and 
genetic characteristics as ferroptosis. The mor-
phology of cells with ferroptosis was manifest-
ed as obvious mitochondrial atrophy, dissolu-
tion or absence of mitochondrial cristae, 
fracture of mitochondrial outer membrane, 
exhaustion of intracellular glutathione, decre- 

ase of glutathione peroxidase 4 activity, NA- 
DPH-dependent lipid peroxidation, and iron-
dependent generation reactive oxygen [2]. The 
important products of ferroptosis process are 
reactive oxygen species (ROS) and lipid perox-
ides. Studies have shown that high levels of 
ROS in tumor cells can induce various modes of 
cell death such as ferroptosis [3]. Lipid peroxi-
dation can increase the permeability of the 
membrane, as well as modulate the shape and 
curvature of the membrane, making it easier for 
oxidants to enter and eventually inducing cell 
death [4, 5]. Studies have proved that ferropto-
sis is associated with various pathologies, such 
as ischemia-reperfusion injury, degenerative 
disease, cancer, etc. Moreover, ferroptosis has 
been found generally occurred in a variety of 
malignant tumor cells, including lung cancer, 
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breast cancer and ovarian cancer [6-12]. 
Therefore, induction of ferroptosis may be a 
promising therapy strategy for malignant tu- 
mors. 

To date, significant progress has been made in 
the specific mechanisms of ferroptosis and its 
potential influences on different courses of 
gynecological tumors, especially concerning 
cancer prevention and treatment, with the aim 
to elucidate its underlying pathogenesis and 
drug resistance mechanism and to search for 
effective biomarkers and intervention targets. 
Herein, this paper reviews the research prog-
ress and mechanism of ferroptosis, thereby 
providing new ideas for the diagnosis and tre- 
atment of gynecological malignant tumors.

Ferroptosis and its metabolic characteristics

The consequence of iron accumulation

Iron is one of the essential nutrients for living 
organisms. In general, iron balance in cells is a 
balance between iron absorption, output, utili-
zation, and storage. Excess iron can cause tis-
sue damage and increase the risk of cancer. 
The most important mechanism of iron biotox-
icity is that excessive Fe2+ in cells, known as 
Fenton reaction, may result in ROS accumula-
tion and a large amount of hydroxyl free radi-
cals, which could lead to the damage of cellular 
proteins, lipids and DNA [13]. The intervention 
of iron absorption and metabolism has become 
a method to treat cancer and other diseases. 
Tumor cells can increase intracellular iron con-
tent by regulating iron metabolism pathway, 
thus making cancer tissues more sensitive to 
the way of ferroptosis. The application of iron-
based nanoparticles can induce ferroptosis in 
tumor cells, thus inhibiting tumor growth [2]. 
Studies have shown that intracellular iron over-
load could be prevented by knockout of trans-
ferrin receptor (TFRC) on the cell surface, while 
iron storage in the inert pool could be increased 
by upregulation of cytoplasmic ferritin to inhi- 
bit the occurrence of ferroptosis [14]. Simi- 
larly, inhibition of the transcription factor iron 
responsive element binding protein 2 (IREB2), 
which regulates iron metabolism, could sup-
press ferroptosis [15]. Instead, knocking out 
solute carrier family 40 member A1 (SLC40A1) 
to block intracellular iron output was proved to 
accelerate Erastin-induced ferroptosis in neu-
roblastoma cells [16]. In summary, iron meta-

bolic pathways and ferritin phagocytosis are 
key points to the regulation of ferroptosis. 

Lipid peroxidation

Lipid peroxidation refers to the loss of hydrogen 
atoms of lipid under the action of free radicals 
or lipid peroxidase, leading to oxidative break of 
lipid carbon chain and the production of lipid 
free radicals, lipid hydroperoxides and active 
aldehydes (malondialdehyde, 4-hydroxynone-
nal) as well as other cytotoxic substances. 
Eventually, the oxidative degradation of lipids 
causes cell damage [17]. The harm of lipid per-
oxidation in ferroptosis is mainly reflected in 
the oxidative degradation of important biofilm 
components, including polyunsaturated fatty 
acid (PUFA) and phosphatidylethanolamine 
(PE). PUFA is the main component of phospho-
lipids in cell and organelle membranes, and 
also an important substrate for the synthesis of 
PE, the main component in the inner layer of 
phospholipid bilayer. Phospholipid bilayer, as 
the structural basis for maintaining cell mem-
brane fluidity, plays an important role in main-
taining cell growth, proliferation, differentia-
tion, senescence, death and immunity. Lipid 
peroxidation can change the molecular configu-
ration of PUFA, destroy the fluidity and stability 
of cell membrane structure, increase the per-
meability of cell membrane, thus the cells are 
prone to rupture and death. PUFA has a high 
affinity with free radicals and the hydrogen 
atoms between its double bonds are easily oxi-
dized by free radicals. The lipid peroxidation of 
PUFA can be divided into two stages. Firstly, 
Lipid free radical Lipid ROS (L) is generated 
from active oxygen species such as hydroxyl 
radical and hydrogen peroxide by obtaining 
hydrogen atoms in PUFA. Then, the Lipid radical 
acts with oxygen molecules to create a Lipid 
peroxyl radicals (LOO-). Lipid hydroperoxide 
robs the hydrogens from other PUFA to form a 
lipid free radical and lipid hydroperoxide (LOOH). 
The lipid peroxidation free radical can continu-
ously participate in the oxidation process of 
PUFAs, resulting in a cascade reaction charac-
teristic of PUFAs lipid peroxidation. PE refers to 
glycerophospholipid in biofilms, accounting for 
about 40% of the total phospholipids in mito-
chondrial inner membrane and about 15%-25% 
of the total phospholipids in other organelles 
biofilms [18].
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PE has a variety of cellular functions, including 
being a precursor of phosphatidylcholine and 
an important substrate for post-translational 
modification, affecting membrane topology, 
promoting cell and organelles membrane fu- 
sion, oxidative phosphorylation, mitochondrial 
biogenesis and autophagy, etc. [19]. The affini-
ty between PE and free radicals is not high, and 
the oxidation sites need to be formed under the 
action of two enzymes before lipid peroxidation 
occurs [20, 21]. Apoptosis inducing factor mito-
chondria-associated 2 (AIFM2) could synergize 
with Coenzyme Q10 (CoQ10), a lipid peroxida-
tion radical scavenger, to inhibit ferroptosis in 
cells and therefore was renamed to ferroptosis 
inhibitor 1.

Ferroptosis and three major antioxidant path-
ways

To prevent damage caused by iron overload 
and lipid peroxide accumulation, cells establish 
three major antioxidant mechanisms to resist 
Ferroptosis. As an important intracellular anti-
oxidant substance, glutathione peroxidase 4 
(GPX4) was firstly discovered, which hydrolyz- 
es phospholipid peroxides depending on the 
cofactor glutathione (GSH). The synthesis of 
GSH requires cysteine, which were synthesiz- 
ed from extracellular cystine transported by 
cystine/glutamate reverse transporters (Xc- 
system), as a raw material. The Xc-system con-
sists of the SLC7A11 and SLC3A2 subunits. 
Erastin and sulfasalazine (SAS) can inhibit the 
Xc-system, reduce intracellular GSH, cause cel-
lular redox imbalance and promote cellular fer-
roptosis. Studies have found that interferon γ 
secreted by CD8+ T cells can down-regulate the 
Xc-system and affect the synthesis of GSH, 
thereby promoting phospholipid peroxidation 
and ferroptosis in tumor cells [22]. Ferroptosis 
inhibitor protein 1 (FSP1) is a newly discovered 
ferroptosis inhibitor protein that can inhibit  
ferroptosis caused by GPX4 deficiency. The 
N-terminus of FSP1 protein, recruited to the 
plasma membrane by myristoylation, mediates 
NADH-dependent reduction of CoQ10 and acts 
as a free radical trapping antioxidant, thereby 
preventing lipid peroxidation. Thus NADH-FSP1-
CoQ10 inhibits phospholipid peroxidation and 
ferroptosis independently and synergistically 
with GPX4/GSH [19, 23]. In addition, Kraft et al. 
[24] found that overexpression of GTP cyclohy-
drolase 1 (GCH1) had a protective effect on 

cells treated with ferroptosis inducer RSL3, 
erastin or GPX4 gene knockout, but could not 
protect cells from apoptosis inducers. It can be 
seen that GCH1 has ferroptosis resistance, and 
its mechanism is to catalyze GTP to generate 
tetrahydrobiopterin (BH4) with redox activity. 
Furthermore, activation of GCH1/BH4 in cyste-
inease-treated cells synergistically produces 
CoQ10. These results indicated that the NADH-
FSP1-CoQ10 and GCH1/BH4 pathways act  
as endogenous antioxidant pathways indepen-
dently and could cooperate with the GPX4/GSH 
system to inhibit ferroptosis. In summary, ab- 
normalities in iron metabolism, lipid metabo-
lism and antioxidant system-specific proteins 
are associated with the sensitivity to ferropto-
sis. The studies of ferroptosis inducers also tar-
get the above specific proteins, so the applica-
tion of ferroptosis inducers in the treatment of 
tumors could be a new strategy worth explor- 
ing.

Ferroptosis regulators

One of the major challenges in cancer research 
is how to effectively kill tumor cells while leav-
ing normal cells undamaged. The use of ferrop-
tosis inducer or inhibitor to reasonably regulate 
ferroptosis is a new direction to improve the 
effectiveness and pertinence of tumor treat-
ment [25].

Inducers of ferroptosis

Dixon et al. [26] have found four ways to initiate 
ferroptosis. Thus, ferroptosis inducers can 
mainly be divided into four classes. The first 
class of ferroptosis inducers are mainly Xc- 
system inhibitors, including Erastin and Erastin 
analogues. Whether these drugs can be used 
in vivo is still under investigation. Some tumor 
cells cannot induce ferroptosis by inhibiting the 
Xc-system, which may be related to the activa-
tion of the glutathione-independent thioredoxin 
antioxidant system pathway [27]. The inducers 
of ferroptosis are shown in Table 1.

Targeting system Xc-1 class 

Erastin can selectively kill RAS-mutant tumor 
cells by directly inhibiting the activity of System 
Xc-, inducing cystine depletion and then ferrop-
tosis. Erastin also causes mitochondrial dys-
function by binding to mitochondrial voltage-
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Table 1. Ferroptosis inducers
Chemical compound Mechanism of action
Cyst(e)inase [27] Cystine depletion
Piperazine Erastin [28] System Xc-inhibitor
Imidazole ketone Erastin [29] System Xc-inhibitor
Sorafenib [30] System Xc-inhibitor
Altretamine [31] Inhibition of GPX4 activity
Withaferin A [32] Inhibition of GPX4 activity
FIN56 [33] Activate squalene synthase
Statins [34] Reduce the synthesis of coenzyme Q10
Erastin [58] System Xc-inhibitor
(1S, 3R)-RSL3 [62] Co-order binding of GPX4 at the sun-substituted cysteine site

dependent anion channels (VDAC2 and VDAC3), 
resulting in the accumulation of lipid ROS, 
which in turn activates ferroptosis. However, 
Erastin’s poor water solubility and unstable 
metabolism limit its use in vivo. Piperazine 
Erastin, a derivative of Erastin, has better water 
solubility and metabolic stability than Erastin.  
It has been reported to exhibit antitumor activ-
ity in xenograft models of human fibrosarcoma 
cells by inducing ferroptosis [28].

In addition, imidazole ketone Erastin, another 
derivative of Erastin, induced ferroptosis and 
inhibited tumor growth in mouse tumor xeno-
transplantation models [29]. Sorafenib is an 
FDA-approved multikinase inhibitor that induc-
es ferroptosis in hepatocellular carcinoma cells 
by inhibiting System Xc-, thereby achieving anti-
tumor activity. In addition to the anti-inflam- 
matory activity, sulfasalazine can also inhibit 
System Xc- and induce ferroptosis in non-Hodg-
kin’s lymphoma cells, thus inhibit the growth of 
lymphoma cells [30].

Targeting GPX4 class

Altretamine is an alkylated anti-tumor drug 
approved by FDA and mainly used in the clinical 
treatment of ovarian cancer [31]. It has also 
been shown to inhibit ferroptosis induced by 
GPX4 and the growth of diffuse large B-cell lym-
phoma cells, thereby playing an anti-tumor role 
in vitro [30]. Withaferin A, a steroidal lipid sub-
stance isolated from South African Dioxylum, 
can directly inhibit GPX4 and lead to ferroptosis 
in neuroblastoma, which provides a new strat-
egy for the treatment of high-risk neuroblasto-
ma [32].

Targeting squalene synthase-mevalerate 
pathway 

FIN56 directly binds and activates squalene 
synthase downstream of mevalonate pathway, 
reduces the synthesis of coenzyme Q10 and 
indirectly depletes or inactivates GPX4, thereby 
inducing ferroptosis [33]. Statins (such as sil-
vastatin and simvastatin) can induce ferropto-
sis in human fibrosarcoma cell lines by blocking 
the mevalonate pathway to reduce coenzyme 
Q10 synthesis [34].

Targeting Fe2+ class 

Heme oxygen-ase-1 (HO-1) catalyzes the reduc-
tion of heme to carbon monoxide, biliverdin and 
free iron, thereby increasing the level of lipid 
ROS and inducing ferroptosis [35]. By directly 
oxidizing Fe2+ and indirectly inactivating GPX4, 
FINO2 leads to the accumulation of lipid com-
pounds and depletion of cystine, then induces 
ferroptosis [36].

Ferroptosis inhibitors

Among ferroptosis inhibitors, ferroptosis inhibi-
tor 1 (Fer-1) inhibits ferroptosis by slowing the 
accumulation of lipid peroxides, which may 
result from their free radical trapping antioxi-
dant activity rather than their potency as lipoxy-
synthase inhibitors [37]. The removal of ferrop-
tosis inducers is not enough to revive ferroptosis 
cells, and the aid of ferroptosis suppressors is 
needed. Some studies [38] found that when 
Fer-1 was added after the ferroptosis inducer 
was removed, the cells undergoing ferroptosis 
could recover. Other ferroptosis inhibitors, such 
as desferramine and the antioxidant vitamin C, 
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Figure 1. Inducers and in-
hibitors of ferroptosis [25].

are unable to revive cells with the addition of 
ferroptosis inducers because they act on the 
upstream pathway that initiates ferroptosis 
rather than the downstream pathway that per-
forms it. The inducers and inhibitors of ferrop-
tosis are shown in Figure 1.

Research progress of ferroptosis in gyneco-
logical tumors

Correlation between ferroptosis and breast 
cancer

Breast cancer is the most common cancer 
among women, with 1.7 million people diag-
nosed worldwide and approximately half a mil-
lion people dead from this disease each year 
[39]. Although surgical resection, radiotherapy, 
chemotherapy, endocrine therapy and targeted 
therapy have been applied for treatment, the 
prognosis of patients with breast cancer is still 
not satisfactory [40]. Therefore, there is an 
urgent need to develop novel therapeutic man-

agement for these patients who require more 
precise interventions. In recent years, studies 
have found that ferroptosis plays a crucial role 
in the evolution of breast cancer. It is known 
that cystine is an important material resource 
for the synthesis of GSH, so the reduction of 
cystine, GSH and GPX4 can lead to ferroptosis 
of breast cancer cells and further inhibit tumor 
growth [41, 42]. GPX4 expression is usually 
upregulated in breast cancer, which is closely 
associated with increased expression of SLC- 
7A11 and SLC3A2, two subunits of the cystine-
glutamate reverse transporter (xCT). Mean- 
while, xCT can also interact with MUC1-C and 
CD44 variant (CD44v) in TNBC to up-regulate 
GSH level and inhibit the occurrence of ferrop-
tosis, resulting in the high proliferation and 
invasion activity of tumor cells [43, 44]. In addi-
tion, a variety of genes/proteins, non-coding 
RNAs (ncRNAs) and signaling pathways are in- 
volved in the regulatory process of ferroptosis 
in breast cancer. For example, by targeting 
SLC7A11/xCT, miR-5096 increases the accu-
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mulation levels of ROS, OH-, lipid ROS and iron 
in milk adenocarcinoma cells, while reduces 
GSH level and mitochondrial membrane poten-
tial, thereby causing mitochondrial contraction 
and partial crest loss, that is, inducing ferropto-
sis in breast cancer cells, which further inhibits 
the proliferation, migration and invasion of 
breast cancer cells [45]. miR-324-3p and miR-
382-5p induce ferroptosis and inhibit the pro-
gression of breast cancer through binding to 
the 3’-UTR of GPX4 and SLC7A11 [37, 46]. 
However, circRNA RHOT1 can inhibit the occur-
rence of ferroptosis through the miR-106a-5p/
STAT3 axis, thus promoting the progression of 
breast cancer [47]. Glycogen synthase kinase-
3β (GSK-3β) can up-regulate nuclear factor  
erythroid 2-related factor 2 (NF-E2), and the 
expression of NF-E2 and GPX4 inhibit the fer-
roptosis of tumor cells and promote the evolu-
tion of tumor [48]. Stearoyl-coa desaturase-1 
(SCD1) is a fatty acid binding protein-4 (FABP4) 
in the tumor microenvironment and serves as a 
protective agent, which can rescue the cancer 
cells from ferroptosis induced by oxidative 
stress [49]. Overactivation of PI3K-AKT-mTOR 
signaling pathway is also mediated by sterol 
regulatory element binding protein 1 (SREBP1)/
SCD1 mediated lipid synthesis to suppress  
the occurrence of death [50] iron in recurrent 
breast cancer epithelial mesenchymal transfor-
mation (EMT) regulators TWIST and SNAIL sig-
nificantly induce Ferroptosis in tumor cells in  
a DDR2-dependent manner [51]. In addition, 
ACSL4 and KLF4 are also key molecules in the 
ferroptosis signaling pathway, which can inhibit 
the ferroptosis of milk adenocarcinoma cells 
and maintain their malignant biological charac-
teristics [52]. The role of tumor suppressor p53 
in ferroptosis is also of concern; the related 
research has found that its inhibition or promo-
tion effect on ferroptosis in tumors mainly 
depends on the surrounding cell environment 
[53]. The results of current researches report 
that p53 mainly promotes ferroptosis in breast 
cancer, but its specific molecular mechanism 
remains to be further explored. Another central 
event that causes ferroptosis in tumor cells is 
intracellular iron accumulation. Studies have 
found that high-saturation iron saturated 
Lactoferrin/Holo-Lactoferrin (Holo-Lf) can sig-
nificantly increase the iron content in breast 
cancer cells (MDA-MB-231) and promote ROS 
generation, thus leading to ferroptosis in cells; 
however, low saturation lactoferrin can up-regu-

late the expression of SLC7A11 and increase 
the production of GSH, thereby inhibiting the 
ferroptosis of MDA-MB-231 cells [54]. Disrup- 
tion of the function of CISD2 in human breast 
cancer cells results in the immediate destruc-
tion of mitochondrial labile iron and the en- 
hancement of mitochondrial ROS level, leading 
to the activation of ferroptosis [55]. Iron autoph-
agy is also one of the main ways to regulate fer-
ritin level and iron content in the body, while 
ferritin deposition is the key to induce ferropto-
sis. Iron transport is also one of the main rea-
sons for the increase of iron contents in cells. 
Ferro-portin 1 (FPN1) is an iron-carrying pro-
tein, and knockout of this gene can lead to 
intracellular iron overload and ferroptosis [56, 
57]. Therefore, ferroptosis plays an important 
role in the evolution of breast cancer and induc-
ing ferroptosis of tumor cells can effectively 
prevent its malignant progression, so as to 
improve the survival and prognosis of patients.

The treatment of breast cancer that mainly 
focus on regulating ferroptosis

Breast cancer has become the most common 
malignant tumor in Chinese women, with the 
treatment strategies including surgery, chemo-
therapy, endocrine therapy, radiation therapy 
and targeted therapy. However, the probability 
of breast cancer recurrence and metastasis 
caused by drug resistance is still high. Sun et 
al. [47] found that lidocaine inhibited the grow- 
th and metastasis of breast cancer and ovarian 
cancer cells. The underlying mechanism is the 
induction of ferroptosis mediated by up-regulat-
ing miR-382-5p, thereby inhibiting the level of 
SLC7A11. Based on RNA sequence analysis, Li 
et al. [48] and Song et al. [49] found that cur-
cumin can promote iron overload in breast can-
cer cells through the HO-1 pathway, as well as 
down-regulate GPX4 expression to trigger fer-
roptosis in breast cancer cells. Moreover, inhi-
bition of GPX4 can enhance the sensitivity of 
TNBC cells to gefitinib. Wu et al. [50] demon-
strated that regulating the balance between 
GSK-3β/Nrf2 can enhance the sensitivity of 
breast cancer to ferroptosis caused by Erastin, 
which is a promising treatment intervention. 
Zhang et al. [58] showed that circRNA RHOT1 
promoted breast cancer progression and in- 
hibited iron ptosis through the miR-106a-5p/
STAT3 axis. The study shows the significant role 
of ferroptosis in the treatment of breast cancer, 
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especially for the drug-resistant cancer. This 
may partly explain the poor response of AR 
receptor inhibitors to LAR type breast cancer in 
clinical trials [59].

The correlation between ferroptosis and ovar-
ian cancer

Ovarian cancer (OVCA) is one of the most lethal 
malignancies with a five-year relative survival 
below 50% by virtue of its high recurrence rate 
and inadequate early detection methods. For 
OVCA patients, modern treatment approaches 
include debulking surgery, chemotherapy, an- 
giogenesis inhibitors, poly ADP-ribose poly-
merase (PARP) inhibitors, and immunotherapy 
depending on the histological type and staging 
of the tumor. However, in most cases, simple 
standard treatment may not satisfactory; th- 
us, more effective strategies of treatment are 
urgently needed [59]. In recent years, studies 
have shown that ferroptosis plays an important 
role in the development of ovarian cancer. 
Compared with normal ovarian tissues, iron 
metabolism in malignant ovarian tissues is 
seriously disturbed. The shift to an “iron-seek-
ing” phenotype appears to be an early event in 
the development of malignant ovarian cancer, 
and similar changes observed in the precursor 
lesions further support this idea. However, the 
increased dependence on iron, known as “iron 
addiction”, promotes the growth and invasion 
of tumor cells. And the presence of high iron 
levels in tumor cells also provide an opportunity 
for targeted intervention through ferroptosis. 
According to relevant studies, Zhang et al. [73] 
treated ovarian cancer cells with superpara-
magnetic iron oxide incubated with human 
serum, which further increased the contents of 
iron and superoxygenated lipids and eventually 
induced ferroptosis during the initiation of P53 
in ovarian cancer cells. Ma et al. [60] have 
found that miR-424-5p inhibits ACSL4 by 
directly targeting the 3’-UTR of ACSL4 in ovari-
an cancer cells, which subsequently reduces 
erastin and RSL3-induced ferroptosis. Chan et 
al. [61] found that MAP30, the main active 
ingredient of momordica momordica, increas- 
ed the production of ROS in ovarian cancer 
cells in a dose-dependent manner, while de- 
creased the ratio of GSH/GSSG and the expres-
sion of Gpx4 protein, thus inducing the occur-
rence of ferroptosis in ovarian cells. The combi-
nation of MAP30 and cisplatin has a synergistic 

effect on cisplatin cisplatin-induced cytotoxi- 
city of ovarian cancer cells, and the combined 
intraperitoneal injection of low-dose cisplatin 
and MAP30 can significantly inhibit the tumor 
spread and growth of mice with ovarian cancer 
mice.

The treatment of ovarian cancer that mainly 
focus on regulating ferroptosis

At present, platinum drug resistance is one of 
the major problems remained to be solved in 
the treatment of gynecological malignant tu- 
mors. It was reported that overexpression of 
transcriptional coactivator with PDZ-binding 
motif (TAZ), a sensor of cell density, sensitizes 
OVCA cells to ferroptosis. Meanwhile, in chemo-
resistant recurrent OVCA cells, lower level of 
TAZ decreases OVCA cells’ sensitivity to ferrop-
tosis [62]. In platinum-tolerant OVCA cells, one 
study inspected that expression of Wnt recep-
tor Frizzled-7 (FZD7) positively alters glutathi-
one metabolism pathways including GPX4. Po- 
sterior to exposure to GPX4 inhibitors, FZD7+ 
platinum-tolerant OVCA cells are more likely to 
experience ferroptosis, opening new avenues 
for platinum-tolerant OVCA treatment. In addi-
tion, Qi et al. [63] confirmed that erastin can 
act as a cofactor to enhance the toxicity of ovar-
ian cancer cells by promoting the production of 
ROS and inducing ferroptosis in conjunction 
with cisplatin. Drug inhibition of PARP is a prom-
ising therapeutic strategy for advanced ovarian 
cancer (BRCA1/2 germline mutation) lacking 
homologous recombination pathways. Hong et 
al. [64] have found that P53-dependent down-
regulation of SLC7A11 is one of the main phar-
macological mechanisms. In addition, ferropto-
sis inducers (FINS) can reverse PARP inhibitor 
resistance in BRCA1/2 ovarian cancer cells 
and xenografts. Futhermore, Yang et al. [65] 
have reported that the susceptibility of ovarian 
cancer cells to ferroptosis was negatively cor-
related with the degree of cell integration, and 
the knockdown of the density-related receptor 
protein TAZ could enhance the resistance of 
ovarian cancer cells to ferroptosis.

Ferroptosis is concerned with cervical cancer 
and endometrial cancer

Wu et al. [66] found that circEPSTI1 expression 
was significantly up-regulated in cervical can-
cer tissues and promoted the proliferation of 
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cervical cancer cells through miR375/409-
3P/515-5P-SLC7A11 axis. It is suggested that 
circEPSTI1 may be a therapeutic target or can-
didate prognostic marker for cervical cancer. Qi 
et al. [63] found that the gene profiles of elevat-
ed-expressed TFRC, ACACA and SQLE as well 
as low-expressed PHKG2 were highly correlat-
ed with the poor prognosis of patients with cer-
vical cancer through a comprehensive analysis 
the genetic data of 60 cervical cancer cases. 
Among them, TFR1 encoded by TFRC is an 
indispensable transporter for cellular iron 
absorption. At present, studies concerning fer-
roptosis in other gynecological are limited. Yin 
et al. [67] identified a new prognostic feature  
of 8 FRG (MDM2, GPX4, PRKAA2, PRNP, 
SLC11A2, ATP5MC3, PHKG2 and ACO1), which 
can potentially predict the prognosis of endo-
metrial cancer. In addition, Wang et al. [68] 
found that the silencing of PTPN18, a member 
of the protein tyrosine phosphatase family 
associated with the occurrence and develop-
ment of multiple human cancers, may induce 
ferroptosis in endometrial cancer by targeting 
the p38/Gpx4/XCT axis.

The treatment of endometrial cancer that 
mainly focus on regulating ferroptosis

In the studies related to lipid metabolism in 
endometrial cancer, visceral fat-specific adipo-
kine, an adipokine secreted by visceral fat, 
stimulates apoptosis of endometrial cancer cell 
by activating the JAK signaling pathway and the 
upregulation of P53, which induces ferroptosis 
in cells by inhibiting the expression of SLC7A11. 
According to the lipidomics analysis, peroxi-
somes provide substrates for ferroptosis th- 
rough synthesizing polyunsaturated ether ph- 
ospholipids [69]. Relevant research suggests 
that inhibitors targeting endometrial cancer 
cells, such as GPX4 and FSP1, can down-regu-
late the sensitivity of ferroptosis [70]. Previous 
studies have shown that ferroptosis is associ-
ated with tumor metastasis and recurrence, 
and endometrial cancer is no exception. FA- 
NCD2, an inhibitor of ferroptosis, is a nuclear 
protein involved in DNA damage repair that 
inhibits iron accumulation and lipid peroxida-
tion in erastin-induced ferroptosis [71]. FANCD2 
overexpression is often associated with lym-
phatic vascular invasion and advanced tumor 
development in type I endometrial carcinoma, 
and is prone to recurrent in type II endometrial 

carcinoma, with the 5-year survival rate lower 
than that of other patients. Accumulating evi-
dence suggests that induction of ferroptosis 
may be an effective approach to combat tumor 
drug resistance. Wang et al. [68] found that 
PTEN silencing affected the proliferation of 
human endometrial cancer KLE cells by target-
ing p-p38/GPX4/xCT pathway to induce ferrop-
tosis. Moreover, studies have found that the 
natural compound juglone can induce cellular 
oxidative stress in endometrial cancer cells, 
thus resulting in ferroptosis [72, 73]. Sulfasa- 
lazine, an inhibitor of the glutamine transporter, 
is more toxic in paclitaxel-resistant cells and 
induces cell death via ferroptosis in endome-
trial serous carcinoma [74]. In conclusion, fer-
roptosis plays an important role in proliferation, 
invasion, metastasis and drug resistance of 
endometrial cancer, and its underlying mecha-
nism remains to be explored in the future.

Outlook on the treatment of gynecological 
malignancies

In order to maintain the high demand for cell 
proliferation, cancer cells must engage in meta-
bolic pathways that regulate amino acid syn- 
thesis, glycolysis, oxidative phosphorylation, 
the tricarboxylic acid cycle, and the pentose 
phosphate pathway. Line coordination repro-
gramming makes cancer cells heavily depen-
dent on intracellular antioxidant mechanisms 
and exhibit increased iron requirements. This 
could lead to a targetable susceptibility to iron 
death and provide new ideas for the discovery 
of new cancer therapeutic targets. Current 
studies on iron death in gynecological malig-
nancies mainly focus on the antioxidant path-
way SLC7A11/GSH/GPX4. Iron homeostasis, 
lipid metabolism and mechanisms related to 
FSP1 and DHODH remain to be further explored 
and studied. In addition, The unique advantage 
of inducing ferroptosis in cancer treatment is 
that it can not only improve the sensitivity of 
chemoradiotherapy and targeted therapy, but 
also synergistically activate immune cells, cre-
ating opportunities for ferroptosis inducers to 
become suitable enhancers of immune check-
point inhibitors [75]. New ferroptosis inducers 
are under constant development. The US FDA 
has used attriamine, sorafenib and silica 
nanoparticles as ferroptosis inducers to treat 
tumors, among which sorafenib has been 
approved for the treatment of hepatocellular 



Ferroptosis in gynecological malignant tumor

2759	 Am J Cancer Res 2023;13(7):2751-2762

carcinoma [76]. However, its efficacy in the 
treatment of gynecological malignant tumors 
remains to be further studied and explored. 
Ferroptosis inducer is expected to be a new 
generation of adjuvant anticancer drugs to 
improve the prognosis of cancer patients.
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