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Pan-integrin inhibitor GLPG-0187 promotes  
T-cell killing of mismatch repair-deficient colorectal  
cancer cells by suppression of SMAD/TGF-β signaling
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Abstract: Colorectal cancer is the third leading cause of cancer-related death and the third most common cause of 
cancer. As the five-year survival with advanced metastatic colorectal cancer (mCRC) is 14%, new treatment strate-
gies are needed. Immune checkpoint blockade, which takes advantage of an individual’s immune system to fight 
cancer, has an impact in the clinic; however, for CRC, it is only effective and approved for treating mismatch repair 
(MMR)-deficient cancer. Moreover, long-term outcomes in MMR-deficient mCRC suggest that most patients are not 
cured and eventually develop therapy resistance. We hypothesized that targeting TGF-β signaling may enhance 
immune-mediated T-cell killing by MMR-deficient CRC cells. Using GLPG-0187, an inhibitor of multiple integrin re-
ceptors and TGF-β, we demonstrate minimal cytotoxicity against MMR-deficient HCT116 or p53null HCT116 human 
CRC cells. GLPG-0187 promoted significant immune cell killing of the CRC cells by TALL-104 T lymphoblast cells 
and reduced phosphoSMAD2 in HCT116 p53-null cells either in the absence or presence of exogenous TGF-β. We 
observed a reduction in CCL20, CXCL5, prolactin, and TRAIL-R3, while GDF-15 was increased in TALL-104 cells 
treated with a T-cell activating dose of GLPG-0187 (4 µM). Our results suggest that TGF-β signaling inhibition by 
a general integrin receptor inhibitor may boost T-cell killing of MMR-deficient colorectal cancer cells and suggest 
that a combination of anti-GDF-15 in combination with TGF-β blockade be further investigated in the treatment of 
MMR-deficient mCRC. Our results support the development of a novel immune-based therapeutic strategy to treat 
colorectal cancer by targeting the TGF-β signaling pathway through integrin receptor blockade.
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Introduction

Chemotherapy is an established modality for 
treating colorectal cancer (CRC) [1]. Median 
overall survival for metastatic colorectal  
cancer nearly tripled over three decades to 
approximately 24 months, as documented in 
phase 3 clinical trials [2]. Advances in treat-
ment over the last 20 years include the addi-
tion of oxaliplatin and irinotecan to 5-Fluorou- 
racil, which dates back over half a century, as 

well as more recent targeted agents, including 
anti-VEGF, anti-EGFR therapies, anti-BRAF, or 
anti-KRAS therapies [1]. One of the significant 
breakthroughs in recent years has been the  
discovery of responsiveness of mismatch re- 
pair (MMR)-deficient CRC to immune check-
point blockade (ICB) therapy, with subsequent 
FDA approval in microsatellite-high MMR-
deficient colorectal cancer cells, as well as 
MMR-deficient tumors from other tissue origins 
[3-6]. 
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While overall mortality from CRC has been 
declining, the side effects of chemotherapy  
are significant, and survival rates for more 
advanced stages remain below 15%. There is a 
necessity for newer, more effective treatment 
options [7-11]. Immunotherapy was initially 
approved for the treatment of melanoma and 
since then has become the standard for many 
other types of cancer, including lung and blad-

der cancers with high tumor mutation burden 
[12, 13]. As stated above, ICB therapy has  
also become the standard of care for various 
types of cancer, including gastrointestinal-relat-
ed cancer with MMR deficiency, and ICB thera-
pies have been well tolerated. 

A significant challenge with ICB therapy is emer-
gent therapy resistance or failure to respond to 

Figure 1. Plate setup for co-cultures and experimental timeline. A. Image represents the plating for the co-culture 
experiments. The blue represents the plating of tumor cells, while the green represents immune cells. There is a 
1:1 ratio of tumor and immune cells in row B. Cells were plated in duplicates, and various doses of GLPG-0187 are 
listed. B. Timeline used for all the co-culture experiments. 

Figure 2. Co-culture of HCT116 WT cells. A. Graph of the cell count for the various treatment groups. B. One-way 
ANOVA graph of the percent cell death for each treatment group. The x-axis displays whether there are immune and 
tumor cells in the well, and if treated with GLPG-0187, the dose is indicated. 
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treatment [14, 15]. There are several contribut-
ing factors, including the inability to recruit 
immune cells to so-called “cold” tumors or 
other immune suppressive signals or cell types 
within the tumor microenvironment (TME). 
Immune-suppressive cell types include T-regu- 
latory cells, myeloid-derived suppressor cells 
(MDSCs), or “exhausted” T-cells [16]. There are 
also immune suppressive cytokines, such as 
TGF-β, which contribute to the evasion of 
immune surveillance or tumor cell killing by 
immune cells [17, 18]. 

TGF-β binds to a serine/threonine kinase recep-
tor, followed by receptor-mediated phosphory-
lation of SMAD2 and SMAD3 [19, 20]. Activated 
SMAD2 and SMAD3 then bind to SMAD4 and 
enter the nucleus, where the protein complex 
binds to DNA and regulates the transcription of 
effector genes [21]. 

GLPG-0187 is an integrin inhibitor that pre-
vents TGF-β’s transformation from its latent  
to active form [22, 23]. Integrin receptors are 
transmembrane glycoproteins that are crucial 
in endothelial cell adhesion and migration. 

penicillin/streptomycin and 10% FBS. TALL-104 
cells were kept in ATCC RPMI media with 20% 
non-heat activated FBS and 1% penicillin/
streptomycin. All cell lines were authenticated 
and tested to ensure they were free of myco-
plasma infection. 

Western blots 

In a 6-well plate, 500,000 HCT116 p53-/-  
cells per well were plated in 2 mL of media. 
Cells were allowed to adhere overnight, and 
drug doses were added. 250,000 TALL-104 
cells were plated per well in a 12-well plated 
and allowed to adhere overnight. They were 
then treated with TGF-β or GLPG-0187. After a 
24-hour incubation, cell pellets were collect- 
ed, and lysates were further analyzed by im- 
munoblotting. Antibodies used were phospho-
SMAD2 (Cell Signaling Technology, cat # 3102) 
and RAN (BD Biosciences, cat # 610341). 

Tumor cell-immune cell co-culture 

360,000 cancer and immune cells were sepa-
rately suspended in 250 µL of media. 0.5 µL of 

Figure 3. Co-culture of HCT116 WT cells: images. Representative images 
of treatment groups post-24-hour incubation of HCT116 WT cancer cells 
with GLPG-0187 and TALL-104 immune cells. A. Image of tumor cells 
alone. B. Image of control of tumor cells and immune cells. C. Image of 
low-dose GLPG-0187 treatment. D. Image of high dose GLPG-0187 treat-
ment. Blue corresponds to live tumor cells, red signifies dead cells, and 
green corresponds to immune cells.  

GLPG-0187 functions by binding 
to and blocking the activity of 5 
RGD-integrin receptor subtypes 
which include αvβ1, αvβ3, αvβ5, 
αvβ6, and α5β1 [24]. These ef- 
fects result in the inhibition of 
endothelial cell-cell interactions, 
cell-matrix interactions, preven-
tion of angiogenesis, and metas-
tasis of tumor cells that express 
such receptors [22]. 

In the present studies, we test- 
ed the hypothesis that targeting 
TGF-β signaling may enhance 
immune-mediated T-cell killing 
by MMR-deficient CRC cells. Our 
results suggest that GLPG-0187 
inhibits TGF-β signaling and pro-
motes significant immune cell 
killing of the CRC cells by T-cells. 

Materials and methods 

Cell culture 

HCT116 p53-/-, wild type, and 
TALL-104 cells were maintained 
in a CO2 incubator at 37 degrees 
Celsius. HCT116 cells were kept 
in McCoy’s 5A medium with 1% 
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blue CMAC dye was added to the cancer cells, 
and 0.25 µL of Green CMFDA was added to  
the immune cells. Both vials of cells were  
incubated for one hour, then spun down and 
washed three times before plating. The cancer 
cells were plated at a confluency of 10,000 
cells per well and allowed to adhere overnight. 
The TALL-104 cells were then added to a third 
of the cancer cells at a 1:1 ratio. The appropri-
ate wells were then treated at 0.5 µM GLPG-
0187, 1 µM GLPG-0187, or 2 µM GLPG-0187, 
and the plate was then incubated. The first row 
of the 48-well-plate consisted of only cancer 
cells at the various doses of GLPG-0187, its 

second row was a 1:1 ratio of T-cells and can-
cer cells at the different doses of GLPG-0187, 
and the third row consisted solely of TALL-104 
T-cells at the various drug doses (Figure 1A). 
The wells were then imaged at 10× magnifica-
tion, with two fields of view per well, at 2 hours 
and 24 hours post immune cell addition (Figure 
1B). 

Cytokine profiling 

Using a Luminex 200 Instrument (Luminex 
Corporation, Austin, TX), a custom R&D sys-
tems Human Premixed Multi-Analyte Kit (R&D 

Figure 4. Co-culture of HCT116 WT cells. This is a replicate to confirm the results of Figure 3. 

Figure 5. Co-culture of HCT116 p53-/- cells: images. A. Graph of the cell count for the various treatment groups. 
B. One-way ANOVA graph of the percent cell death for each treatment group. The x-axis displays whether there are 
immune and tumor cells in the well, and if treated with GLPG-0187, the dose is indicated. 
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Systems, Inc., Minneapolis, MN; LXSAHM-60) 
was run according to the manufacturer’s 
instructions. Cell culture supernatant levels 
were measured, and analyte values were 
reported in picograms per milliliter (ρg/mL). 

Results 

GLPG-0187 mediated immune-killing effects of 
TALL-104 T-cells towards CRC cells 

Co-cultures of tumor and immune cells were 
assessed by viability assays and fluorescence 
microscopy to examine the effects of GLP-0187 
on each cell line and, more importantly, test 
whether there is a significant difference in the 
effect when immune cells and cancer cells 
were cultured together. At the different doses 
of the integrin inhibitor, the effect on tumor 
cells alone and immune cells alone was ob- 
served, and then in combination. The cells in 
each well were counted to determine whether 
there was a significant decrease in tumor cell 
count at the higher doses of GLPG (Figure 2A). 
Additionally, a one-way ANOVA was performed 
to compare the test wells with the control  

were analyzed for alterations in pSMAD2 levels. 
RAN was used as a protein loading control in 
both cell lines’ immune blots. We evaluated a 
range of doses, including 1 µM, 2 µM, 4 µM, 6 
µM, and 8 µM GLPG-0187 on p-SMAD2 levels. 
We observed that the higher the dose of GLPG-
0187, the lower the intensity of the band of 
p-SMAD2 (Figure 7A). In the TALL-104 immune 
cells, lysates consisted of control and treat-
ment groups of 100 ρM of TGF-β and 2 µM, 4 
µM, and 8 µM of GLPG-0187. In the lysates 
treated with TGF-β, there was a significant 
increase in the band intensity at the molecular 
weight of p-SMAD2, and at higher doses of 
GLPG-0187, the p-SMAD2 bands were not  
visualized (Figure 7B). 

Modulation of cytokine profiling in GLPG-0187 
treated tumor and immune cells 

Cytokine profiling was performed on control 
and 4 µM GLPG-0187 lysates to determine 
whether cytokine production was altered at 
higher doses of GLPG-0187. Heat maps of cyto-
kine levels and the full change of 4 µM GLPG-
0187 versus the control (Figure 8). Cytokines 

Figure 6. Co-culture of HCT116 p53-/- cells. Representative images of 
treatment groups post-24-hour incubation of HCT116 p53-/- cancer cells 
with GLPG-0187 and TALL-104 immune cells. A. Image of tumor cells 
alone. B. Image of control of tumor cells and immune cells. C. Image of 
low-dose GLPG-0187 treatment. D. Image of high dose GLPG-0187 treat-
ment. Blue corresponds to live tumor cells, red signifies dead cells, and 
green corresponds to immune cells.  

wells (Figure 2B). Representative 
images were taken of each well 
of interest to display what was 
taking place - where blue repre-
sents cancer cells, green immune 
cells, and red dead cells (Figures 
3, 4). We observed a decrease  
in the tumor cell count and a sig-
nificant increase in percent cell 
death, suggesting that integrin 
inhibitor GLPG-0187 has a po- 
tent effect on increasing immune 
T-cell killing of CRC cells. Similar 
results were observed in HCT116 
p53-/- cells (Figures 5, 6), indi-
cating that the effects of GLPG-
0187 to increase T-cell killing of 
tumor cells was p53-indepen- 
dent. 

Suppression of TGF-β signaling 
by GLPG-0187 in CRC and TALL-
104 cells 

Western blots were then perfor- 
med on colorectal cancer cells 
and immune cells to evaluate  
the effects of GLPG-0187 on 
TGF-β and p-SMAD signaling. Cell 
lysates, following treatment with 
different doses of GLPG-0187, 
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CCL4, Angiopoietin 1, and IL6 showed the most 
significant differences in the CRC cells (Figure 
9A), and in the TALL-104 cells, cytokines CCL20, 
GDF-15, CXCL5, TRAILR3, prolactin, and IL2 
showed the greatest alterations (Figure 9B). 

Discussion 

The results all point to the conclusion that at 
higher doses of an integrin inhibitor in CRC  
cells and immune cells, there is suppression of 
phospho-SMAD signaling. Western blots con-
firmed that TGF-β signaling inhibition by a gen-
eral integrin receptor inhibitor boosts T-cell kill-
ing of MMR-deficient colorectal cancer cells. 
Furthermore, in immune cells, by using a con-
trolled dose and a lysate treated with TGF-β, 
the suppression of the phospho-SMAD signal-
ing was observed. In the cytokine profiles, the 
higher dose of GLPG-0187 significantly redu- 

ced the levels of cytokines such as CCL4, 
Angiopoietin 1, and IL6 - which at high levels all 
typically correlate to a poor prognosis in CRC. 
The results showed that the strategy holds 
promise even in p53-deficient CRC cells. 

Limitations of our study include the lack of in 
vivo experiments, the number of cell lines, and 
the types of ways in which TGF-β was inhibited. 
Given this, the future direction of this study 
would include experiments with CRC cell lines 
beyond HCT116, such as MMR-proficient cells. 

Our results suggest that inhibition of integrins 
and TGF-β may have beneficial therapeutic 
effects within the immune tumor microenviron-
ment. Our results support the development of a 
novel immune-based therapeutic strategy to 
treat colorectal cancer by targeting the TGF-β 
signaling through integrin receptor blockade.

Figure 7. The effect of varying doses of GLPG-0187 on TGF-β pathway in HCT116 p53-/- Cells or TALL-104 Immune 
Cells post-24-hour Incubation. These immunoblots include cancer cells (A) or immune cells (B) at various doses of 
GLPG-0187. This experiment probes for pSMAD2 and uses RAN as a protein loading control.  

Figure 8. Cytokine levels of TALL-104 immune cells and HCT116 p53-/- cells post 24-hour incubation with GLPG-
0187. A. Heat map of the various cytokines. B. Full change from the control to the high dose of GLPG treatment.  
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