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Abstract: Maintaining and transferring intact genomes from one generation to another plays a pivotal role in all liv-
ing organisms. DNA damage caused by numerous endogenous and exogenous factors must be adequately repaired, 
as unrepaired and accumulated DNA mutations can cause severe deleterious effects, such as cell death and can-
cer. To prevent adverse consequences, cells have established DNA damage response mechanisms that address 
different forms of DNA damage, including DNA double-strand breaks, mismatches, nucleotide excision, and base 
excision. Among several sources of exogenous DNA damage, bacterial infections cause inflammation in the host, 
generating reactive oxygen species (ROS) and causing oxidative DNA damage. Recent studies have revealed the 
importance of the oral microbiome in inflammation and several systemic host diseases. Dysbiosis of oral bacteria 
can induce chronic inflammation, which enhances ROS-induced DNA damage, and improperly repaired damage can 
lead to carcinogenesis. This review describes the various DNA repair pathways that are affected by chronic inflam-
mation and the discovery of the DNA damage response induced by oral bacteria such as Porphyromonas gingivalis 
and Fusobacterium nucleatum.
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Introduction

Intact genome transfer to daughter cells is  
an important task in living organisms. Various 
exogenous and endogenous factors constantly 
affect genomic integrity, and the resulting 
genomic damage can have deleterious effects 
on cells, such as cancer [1]. In addition, accu-
mulated mutations in oncogenes and tumor 
suppressor genes caused by DNA-damaging 
agents are associated with cancer develop-
ment [2, 3]. Exogenous factors include ultravio-
let (UV) radiation, ionizing radiation, toxic chem-
icals, bacterial or viral infections, and chronic 
inflammation, which can cause various types of 
DNA damage [4-6]. As an endogenous damag-
ing factor, DNA can be damaged during replica-
tion. In addition, reactive oxygen species (ROS) 
and oxidative chemicals produced by the mito-
chondria cause DNA damage [7]. To preserve 

the intact genome from various factors that 
cause DNA damage, cells develop several  
DNA repair mechanisms, including DNA double-
strand break repair (DSBR), mismatch repair 
(MMR), nucleotide excision repair (NER), and 
base excision repair (BER), depending on the 
type of DNA damage [8, 9].

Bacterial infections induce various immune 
responses, including inflammation, in host cells 
[7, 10]. Chronic infections cause the release of 
various inflammatory cytokines that induce ch- 
ronic inflammatory responses in host cells. In 
addition to inflammation, bacterial infections 
generate ROS and reactive nitrogen species 
(RNS) in response to the bacteria or their meta-
bolic products, which can lead to the accumula-
tion of genetic mutations in host DNA [11, 12]. 
Furthermore, DNA damage increases the risk of 
cancer (Figure 1) [13]. 
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Figure 1. Proposed model of how oral bacterial infection affects the DNA damage response.

Emerging evidence has suggested that bacte-
rial infections are risk factors for various types 
of cancer [3]. Helicobacter pylori (H. pylori) 
infection induces chronic inflammation and 
increases the risk of gastric cancer [14, 15]. 
Several studies have reported the detection  
of Fusobacterium nucleatum (F. nucleatum) in 
colorectal cancer tissues, thus explaining bac-
terial infection-mediated carcinogenesis [7,  
16, 17]. The oral cavity contains the second-
largest microbiota after the gut [18]. Approxi- 
mately 6 million bacteria from >700 species 
reside in the oral cavity, and it is well known 
that bacterial dysbiosis is related to various 
types of cancer, diabetes, and several systemic 
diseases, including periodontal disease [12, 
19]. Among the major periodontal bacteria, the 
roles of F. nucleatum and Porphyromonas gin-
givalis (P. gingivalis) in different types of can-
cers have been thoroughly studied. Oral bacte-
rial infection is known to induce DNA damage 
and regulate the expression of DNA damage 
response genes [12, 20, 21]. Table 1 lists the 
DNA damage response triggered by bacterial 
infections in various cell types. 

This review discusses DNA damage repair path-
ways, including DSBR, MMR, BER, and NER, 

which are affected by chronic inflammation, 
recent findings on the effect of the oral mi- 
crobiome on the DNA damage response, and 
their possible link to cancer development. 

DNA damage repair

DNA double-strand break repair (DSBR)

DSBs are considered the most dangerous type 
of DNA damage because both strands of DNA 
are affected, and unrepaired DNA commonly 
causes mutations, such as chromosome trans-
location and large insertion and deletion muta-
tions. DSBs are induced by various stimuli, 
including ionizing radiation, X-rays, toxic chemi-
cals, and ROS [8, 22]. As ROS generate DSBs, 
bacterial infection, and infection-mediated in- 
flammation, which are the major sources of 
ROS, are highly related to DSBR. DSBs are 
repaired through four pathways: homologous 
recombination (HR), nonhomologous end join-
ing (NHEJ), single-strand annealing (SSA), and 
alternative end joining (alt-EJ) (Figure 2) [8, 23, 
24]. 

Among the four DSBR pathways, HR and NHEJ 
are well studied. The choice of repair mecha-
nism among the four DSBRs depends on the 
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Table 1. Bacterial infection-mediated DNA damage response
Cell type Bacterial infection DNA damage response Reference
Oral squamous cell carcinoma Fusobacterium nucleatum NHEJ (Ku70) [40]
Head and neck squamous cell carcinoma Fusobacterium nucleatum MMR (MSH2, MSH6, MLH1) [21]
Human trophoblast Porphyromonas gingivalis ATR, p-ATR (Ser428) [88]
Gastric epithelial cells Helicobacter pylori MMR (MSH2, MSH6) [61]
Gastric epithelial cells Helicobacter pylori BER (APE1) [78, 79]
Colorectal cancer cell Enteropathogenic Escherichia coli MMR (MSH2, MLH1) [97]

Figure 2. DNA double-strand break repair pathway.

length of the 3’ single-stranded DNA (ssDNA) 
generated through DNA end resection, which is 
an early step in the repair process, and the 
phase of the cell cycle [8]. HR primarily occurs 
in proliferating cells and during the S and G2 
cell cycle phases because of the use of sister 
chromatids as templates to replace damaged 
DNA, distinguishing it from other repair mecha-
nisms [8]. Ataxia-telangiectasia mutated (ATM), 
and ATM- and Rad3-Related (ATR) recognize 
DSBs and activate BRCA1. Subsequently, the 
MRE11-RAD50-NBS1 (MRN) complex initiates 

the resection of the broken DNA ends, which 
generates 3’ overhangs in ssDNA [25, 26]. 
Once short-range DNA resection is initiated by 
the MRN complex together with CtIP, the Ku 
protein, which belongs to the initial NHEJ pro-
cess, cannot bind to the resected DNA; there-
fore, the downstream repair process is res- 
tricted to HR, alt-EJ, and SSA [8]. Long-range 
resection then occurs through EXO1 or Bloom 
syndrome protein (BLM)/Werner syndrome he- 
licases (WRN) together with DNA replication 
helicase/nuclease 2 (DNA2), and the resulting 
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cruited for processing these ends. The Ku het-
erodimer, together with the DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs), 
forms a complex called DNA-dependent protein 
kinase (DNA-PK) [39]. F. nucleatum infection 
reduces the expression of Ku70 in oral squa-
mous cell carcinoma (OSCC) [40]. This indicates 
that F. nucleatum infection may inhibit the ini-
tial steps of NHEJ repair. To remove damaged 
DNA, the recruited DNA-PKcs and the endonu-
clease Artemis are activated to initiate end pro-
cessing. X-family DNA polymerases, such as 
DNA polβ, polμ, and polλ, participate in NHEJ. 
Polμ and polλ bind to Ku through the N-terminal 
BRCA1 C terminus (BRCT) domain. These poly-
merases fill structural gaps [41]. Then several 
downstrem ligase complexes are recruited, 
such as X-ray repair cross-complementing pro-
tein 4 (XRCC4), XRCC4-like factor (XLF), DNA 
ligase IV, and paralogs of XRCC4 and XLF 
(PAXX), with the help of aprataxin and PNK-like 
factor (APLE) [42-46].

DSBRs are frequently disrupted in numerous 
types of cancers. Mutations in either the germ-
line or somatic cells of the BRCA1 and BRCA2 
genes, which are important for HR, increase 
the susceptibility to ovarian, breast, prostate, 
and pancreatic cancers [47-49]. Furthermore, 
mutations in RAD51 and PALB2 have been 
observed in breast and ovarian cancers [50-
52]. In addition to HR-related genes, NHEJ fac-
tors such as Ku70/Ku80, DNA-PKcs, XRCC4, 
and LIG4 are associated with the development 
of various types of cancer [53]. 

Mismatch repair (MMR)

MMR proteins recognize DNA mismatches and 
insertion/deletion loops (IDLs) at DNA damage 
sites [54]. Germline mutations in several MMR 
genes accelerate the onset of various cancers, 
such as nonpolyposis colorectal cancer (HN- 
PCC) [55, 56]. MMR protein expression can be 
altered by mutations in MMR genes and chron-
ic inflammation, which increases the levels of 
inflammatory cytokines and ROS [57]. Mismat- 
ched DNA is recognized by two heterodimeric 
protein complexes: Escherichia coli MutSα 
(eukaryotes MSH2 and MSH6) and MutSβ 
(eukaryotes MSH2 and MSH3). MutSα recog-
nizes one or two mismatches, whereas MutSβ 
recognizes larger mismatches and IDLs [58]. 
After the MutS heterodimer binds to mis-
matched DNA, MutL complexes (eukaryotic 

long ssDNA is coated with replication protein  
A (RPA) [27-29]. Next, the RPA subunits are 
replaced with RAD51 recombinase through 
BRCA2 and PALB2, and the RAD51 filament 
searches for a homologous sequence in the  
sister chromatid [29]. After the homologous 
sequences in the sister chromatid are recog-
nized by RAD51, strand invasion occurs, gener-
ating a displacement loop (D-loop). Polymerase 
δ then synthesizes a new sequence using  
sister chromatid information, creating a cross-
shaped structure called the Holliday junction. 
Several enzymes are involved in the dissolution 
and resolution of the Holliday junction, includ-
ing the BLM helicase-topoisomerase IIIa-RMI1-
RMI2 complex, GEN1 endonuclease, and MU- 
S81-EME1 [29-32]. Because HR uses sister 
chromatid information as a template, the 
repaired DNA is less mutagenic than that 
repaired using Alt-EJ, SSA, or NHEJ. 

The SSA anneals the end resection that occurs 
across tandem repeat sequences. In the SSA, 
ssDNA coated with RPA is replaced with RAD52, 
and the remaining nonhomologous 3’ ssDNA 
tails are removed by the ERCC1/XPF complex 
[33]. DNA ligase I then seal the nicks. During 
this process, some deletions may occur in tan-
dem repeats [34]. 

After short-range resection of the MRN com-
plex, ssDNA with microhomology (3-6 homolo-
gous sequences) is repaired by alt-EJ, also 
referred to as DNA polymerase θ (POLθ)-
mediated end-joining (TMEJ) [35]. Because 
POLθ does not have a 3’ to 5’ proofreading 
function, it exhibits error-prone polymerase 
characteristics [36]. The TMEJ process involves 
the base pairing of microhomologous sequenc-
es, flap trimming, gap filling, and ligation. Dur- 
ing this process, mutations such as deletions, 
insertions, and base substitutions may occur. 
POLθ synthesizes DNA using primers contain-
ing microhomologous sequences, and the gap 
is ligated by ligases I and III and XRCC1 [37]. 

NHEJ repairs DSBs with blunt ends and short 
ssDNA structures at the damage site, irrespec-
tive of the cell cycle phase [8]. In NHEJ, the Ku 
heterodimer (Ku70/Ku80) binds to DSBs and 
recruits downstream proteins to process bro-
ken ends [38]. NHEJ repairs diverse types of 
broken DNA ends, including 5’ overhangs, 3’ 
overhangs, blunt ends, and damaged bases. 
Consequently, various NHEJ proteins are re- 
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Figure 3. Model of DNA damage repair pathway. A. Mismatch repair (MMR). B. Nucleotide excision repair (NER). C. 
Base excision repair (BER).

MLH1-PMS1, MLH1-PMS2, or MLH1-MSH3) are 
recruited, and the downstream repair process 
is activated. To distinguish mismatched DNA 
from the existing normal DNA strand, E. coli 
uses DNA methylation at the A residue in the 
5’-GATC-3’ sequence. The existing DNA strand 
is methylated at A, whereas the newly synthe-
sized DNA is not. Therefore, the MutL complex 
can distinguish and repair error-containing 
strands using the methylation code. Various 
methods are used to recognize DNA sequences 
containing mismatches in eukaryotes. In the 
lagging strand, short Okazaki fragments with 
gaps are identified as newly synthesized DNA. 
In the leading strand, proliferating cell nuclear 
antigen (PCNA) binding may indicate newly syn-
thesized DNA. The MLH1-PMS2 interaction 
with the back face of PCNA in the direction of 
DNA synthesis can be used to discriminate 
newly synthesized DNA [59]. MutL creates a 
single-stranded nick near the lesion, EXO1 
removes the nucleotides of the mismatched 
strand, and the polymerase δ synthesizes a 
new sequence (Figure 3A) [60]. H. pylori infec-
tion reduces the expression of MMR proteins 
such as MSH2 and MSH6 in gastric epithelial 
cells [61]. This suggests that H. pylori infection 

enhances the accumulation of DNA mutations 
and increases the risk of carcinogenesis. In 
addition, F. nucleatum infection is associated 
with the MMR pathway. In head and neck squa-
mous cell carcinoma (HNSCC), F. nucleatum 
infection reduces the expression of MSH2, 
MSH6, and MLH1 [21]. These findings indicate 
that both H. pylori and F. nucleatum infections 
accelerate cancer cell development by inhibit-
ing the MMR pathway. 

Nucleotide excision repair (NER)

NER recognizes and eliminates various bulky 
adducts and helix-distorting DNA lesions, such 
as pyrimidine dimers, 6-4 photoproducts, and 
cyclobutene pyrimidine dimers (CPD), which  
are generated by UV irradiation and genotoxic 
chemicals [62]. Defects in the NER genes have 
been implicated in various autosomal reces-
sive disorders, including Cockayne syndrome, 
xeroderma pigmentosum, and trichothiodystro-
phy [63]. There are two pathways of eukaryotic 
NER: global genomic NER (GG-NER) and tran-
scription-coupled NER (TC-NER), which are dis-
tinguished by the methods used to recognize 
DNA lesions (Figure 3B) [63]. In GG-NER, dam-
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age-sensing proteins, including XPC-RAD23-
CETN2, recognize helix distortions in both tran-
scribed and untranscribed DNA [64, 65]. TC- 
NER repairs actively transcribed DNA lesions. 
Stalled RNA polymerase in DNA lesions serves 
as a recognition signal in the TC-NER. In addi-
tion to the initial recognition step, GG-NER and 
TC-NER use the same incision, repair, and liga-
tion processes. After damage recognition, a 
dual incision is created to remove the lesion by 
various proteins, including transcription factor 
II H, XPG, and the XPF/ERCC1 complex [66]. 
Then, DNA polymerases δ, ε, and κ fill the gap 
and ligaseIII-XRCC1 seals the nick [67, 68].

Base excision repair (BER)

BER recognizes and removes various small and 
non-helical distorting base lesions generated 
by deamination, methylation, alkylation, and 
oxidation [69]. This damage is caused by sev-
eral factors, such as spontaneous DNA decay, 
ROS, radiation, and toxic chemicals [70]. Be- 
cause BER repairs a variety of DNA damage 
induced by ROS, it is considered a critical 
defense repair mechanism against ROS-induc- 
ed mutations. DNA lesions repaired by BER 
typically involve small base adducts that are 
not sufficiently destructive to induce apoptosis. 
However, the accumulation of mutations in 
oncogenes and tumor suppressor genes can 
ultimately lead to carcinogenesis [22]. Abnor- 
malities in BER genes, such as UNG, TDG, and 
SMUG, have been associated with various can-
cers, including colorectal, gastric, and breast 
cancer [71-74].

BER is initiated by DNA glycosylases, such as 
UNG, SMUG, MBD4, TDG, and MPG, which rec-
ognize and remove damaged bases and form 
apurine/apyrimidine (AP) sites (Figure 3C). The- 
se AP sites are cleaved by an AP endonuclease 
(APE1), followed by DNA synthesis and ligation, 
to complete the BER process [75, 76]. The 
cleaved AP sites are processed through two 
pathways: short-patch BER and long-patch 
BER. Short-patch BER removes and replaces 
only a single damaged base, whereas long-
patch BER removes 2-10 nucleotides near the 
damaged base and synthesizes them [69]. 
Short-patch BER occurs in both proliferating 
and non-proliferating cells through APE1, DNA 
polymerase β, and DNA ligase I or III (LIG1/3) 
[77]. Long-patch BER mainly occurs in prolifer-

ating cells, and DNA polymerase δ or ε recog-
nizes the AP sites cleaved by APE1 and synthe-
sizes 2-10 DNA nucleotides. The synthesized  
5’ flap sequence is cleaved by FEN1, flap  
endonuclease, and DNA ligase I (LIG1) to seal 
the gap [77]. Several studies have shown that 
microbiome dysbiosis affects BER repair. H. 
pylori infection increases APE1 expression in 
human gastric epithelial cells [78]. Another 
study demonstrated that APE1 induction de- 
creases p53-mediated apoptosis in H. pylori-
infected gastric epithelial cells [79]. In a mouse 
model of defective MPG, H. pylori infection 
resulted in more severe gastric lesions [80]. 

Oral bacteria with DNA-damaging effects

Fusobacterium nucleatum

F. nucleatum is a gram-negative bacterium and 
a major oral microbe associated with the devel-
opment of colon cancer and OSCC. The signifi-
cant role of F. nucleatum in OSCC and colorec-
tal cancer has been recognized in several 
studies [12, 81-83]. F. nucleatum causes 
chronic inflammation and downregulates mul- 
tiple DNA repair pathways, suggesting that F. 
nucleatum is an important contributor to car- 
cinogenesis. 

Geng et al. showed that F. nucleatum infection 
increases the expression of the phosphorylat-
ed form of Histone H2A (γH2AX), a hallmark of 
DNA damage [40]. Together with the increased 
number of DSBs in the infected cells, the  
DNA damage repair proteins Ku70 and p53 
were decreased. In addition, they showed that 
cell proliferation was increased by reducing 
p27 expression, a cell cycle regulator, following 
F. nucleatum infection [40]. These data sug-
gest that F. nucleatum infection increases the 
proliferation of tongue squamous cell carcino-
ma by inducing DNA damage through the Ku70/
p53 pathway. 

FadA, a pathogen of F. nucleatum, is known to 
induce DNA damage and increase cell prolifera-
tion in colorectal cancer in Apc(Min/+) mice 
through the upregulation of chk2, which is acti-
vated through the E-cadherin/β-catenin path-
way [84]. In contrast, infection of F. nucleatum 
with a FadA knockout strain did not have the 
same effect, indicating the importance of FadA 
of F. nucleatum in the DNA damage response. A 
cohort study showed that F. nucleatum induc- 
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es a DNA damage response in colorectal can-
cer. Okita et al. reported that colorectal cancer 
tissues with high microsatellite instability (MSI) 
features contain more F. nucleatum DNA than 
those with MSI-low features [85]. It was also 
shown that F. nucleatum infection induced 
γH2AX expression in several colon cancer cell 
lines. These data suggest that F. nucleatum 
infection leads to increased DNA damage in 
human colorectal cancer. Hsueh et al. reported 
that F. nucleatum impairs DNA MMR and MSI  
in HNSCC [21]. The presence of F. nucleatum 
was negatively correlated with DNA MMR pro-
teins, including MSH2, MSH6, and MLH1, in 
HNSCC tissues. The expression of MMR genes 
is suppressed by the upregulation of miR-205-
5p, which is activated by TLR4- and MYD88-
dependent signaling pathways in F. nucleatum-
infected cancer cell [21].

Porphyromonas gingivalis

P. gingivalis, a gram-negative anaerobe, is a 
well-known periodontal bacterium that is st- 
rongly associated with the pathogenesis and 
inflammation of periodontal disease [86]. P. 
gingivalis has been found in several types of 
cancers of the digestive system, including 
OSCC, esophageal squamous carcinoma, and 
pancreatic cancer [87]. Chronic infection with 
P. gingivalis and F. nucleatum promotes OSCC 
by activating IL-6-STAT3 signaling in a mouse 
model [83]. Gallimidi et al. also showed that P. 
gingivalis and F. nucleatum infections increa- 
se IL-6 expression through Toll-like receptors in 
human OSCC cells. In addition, infection with 
both pathogens induced the expression of 
genes related to cancer cell survival, prolifera-
tion, and aggressiveness, such as TNF-α, cyclin 
D1, MMP-9, and heparinase. Therefore, the 
proliferation of human OSCC cells is stimulat- 
ed by infection [83]. Inaba et al. reported that 
the DNA damage response was stimulated by 
P. gingivalis infection through FAS and p53 
accumulation [88]. They showed that total ATR 
and phospho-ATR (Ser428) levels increased 
after P. gingivalis infection and activated down-
stream Chk2 and p53 phosphorylation. These 
processes increased G1 cell cycle arrest and 
apoptosis in P. gingivalis-infected human tro-
phoblast HTR-8 cells [88]. In addition, it has 
been reported that P. gingivalis infection acti-
vates the p38 and JNK pathways, together with 
the activation of downstream HSP27 and p21, 
which cause G1 cell cycle arrest and apoptosis 

in HTR-8 cells [89]. Aquino-Martinez et al. 
reported a connection between P. gingivalis 
infection and osteocyte senescence, which is 
important for P. gingivalis-induced inflamma-
tion-related periodontal diseases. P. gingivalis-
derived lipopolysaccharides (LPS) treatment 
increased γH2AX expression and senescence-
associated secretory phenotype factors, such 
as Icam1, Il6, Mmp12, and Mmp13, in primary 
osteocyte-like bone cells [20]. The mRNA 
expression of p16, p21, and p53 and the per-
centage of SA-b-gal-positive cells also incre- 
ased in P. gingivalis-derived LPS-treated cells. 
These data suggest that P. gingivalis LPS in- 
duces DNA damage and senescence in oste- 
ocytes.

Conclusion

Approximately 20% of all human cancers are 
linked to bacterial and viral infections, such as 
those caused by H. pylori, human papillomavi-
rus (HPV), and hepatitis B and C virus [90-92]. 
Emerging evidence has shown that infection 
and infection-mediated chronic inflammation 
have numerous effects on cancer develop-
ment. Furthermore, DNA mutations and disrup-
tion of DNA damage repair are the leading 
causes of cancer development due to infec- 
tions. 

Extensive research has been conducted on the 
effect of gut microbiota dysbiosis on inflamma-
tion and the development of colorectal can-
cers. For instance, pks-positive E. coli has been 
found to promote the formation of colorectal 
cancer [93]. Additionally, infection by Strepto- 
coccus bovis contributes to cancer develop-
ment by enhancing the inflammatory process 
[94]. Enterococcus faecalis produces hydroxyl 
radicals and H2O2 that can cause DNA damage 
in the colonic epithelial cells of the host [95]. 

The oral microbiome is particularly well known 
for its association with periodontal diseases, 
which are closely related to the development  
of various cancers, including oral, pancreatic, 
digestive tract, prostate, breast, lung, and lym-
phatic cancers [12, 96]. Several studies on the 
DNA damage response of the oral microbiome 
have focused on F. nucleatum and P. gingivalis. 
As the importance of the effects of oral micro-
biomes on human health increases, further 
studies must focus on the effects of these oral 
microbiomes on cells, especially on the DNA 
damage response.
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