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Abstract: Colorectal cancer (CRC) is a prevalent cancer worldwide, ranking as the third most common cancer and 
the second leading cause of cancer-related deaths. The presence or absence of lymph node metastases is one of 
the representative markers for predicting CRC prognosis, but often yields heterogeneous results. In this study, we 
conducted an integrative molecular analysis of CRC using publicly available data from The Cancer Genome Atlas da-
tabase and NCBI’s Gene Expression Omnibus. Through our analysis, we identified 372 upregulated genes that were 
differentially expressed in CRC patients. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed 
five significant pathways, including Hippo, FC-gamma, and forkhead box O signaling pathways, which are known to 
be associated with cancer. Survival analysis of 28 genes involved in these pathways led to the identification of 13 
genes with prognostic significance (P < 0.05). To validate our findings, logistic regression models were generated 
and tested in multiple cohorts, demonstrating significant accuracy. Moreover, we identified six genes (BNIP3, CD63, 
RDX, RGCC, WASF1, and WASF3) whose combination predicted the best prognosis based on survival analysis. 
This predictive model holds promise as a potential biomarker for prognosis, survival, and treatment efficacy. In 
conclusion, our study provides valuable insights into the molecular characteristics of CRC and identifies prognostic 
biomarkers. The combination of differentially expressed genes and their involvement in cancer-related pathways 
enhances our understanding of CRC pathogenesis and opens avenues for personalized treatment approaches and 
improved patient outcomes.
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Introduction

Colorectal cancer (CRC) was the third most 
common malignancy worldwide and the second 
leading cause of cancer-related deaths in 2018 
[1]. Currently, the aging population and risk fac-
tors for colorectal cancer, such as obesity, 
smoking, and lack of exercise, are expected to 
increase continuously, which, in turn, is expect-
ed to increase the incidence and mortality of 
CRC [2]. The American Joint Committee on 
Cancer tumor-node-metastasis (TNM) staging 
system is the standard for determining the 

prognosis of patients with CRC and is highly  
correlated with 5-year overall survival (OS). 
According to the TNM staging system, the 
5-year survival rate of patients with stage I CRC 
is approximately 93%, which is reduced to 
approximately 80% for patients with stage II dis-
ease and 60% for patients with stage III [3]. The 
TNM staging system has reduced accuracy in 
patient groups with different prognoses, such 
as those receiving adjuvant chemotherapy, and 
the 5-year OS varies between 50% and 90% [4]. 
Although chemotherapy is universally recom-
mended for all patients with stage III, patients 
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with stage IIIA have a significantly higher sur-
vival rate than those with stage IIB [3]. This 
highlights the need for a more accurate risk 
stratification of patients with stage III receiving 
adjuvant chemotherapy.

Microarray analysis can simultaneously evalu-
ate the expression levels of approximately 
25,000 genes and is one of the most common 
tools used to account for changes in gene 
expression levels [5-7]. Several studies from 
the early 2000s to the present have shown the 
potential of microarray analysis for predicting 
patient prognosis. For example, Arango et al. 
[8] have showed that the prognosis of patients 
with Dukes’ C CRC is better than that of TP53 
and KRAS gene mutations through microarray 
analysis of patients with Dukes’ C CRC, and 
Chang et al. [9] constructed the signatures of 
GRB2, PTPN11, ITGB1, and POSTN to confirm 
the predictability of risk groups in postopera-
tive chemotherapy patients. In addition, com-
mercial Oncotype Dx CRC, a relapse prediction 
signature based on the expression values of 18 
genes, has been released and used in the past 
[10]. However, its application in actual clinical 
practice is limited due to limitations, such as 
overfitting of the discovery dataset, lack of suf-
ficient validation, and heterogeneity between 
sequencing platforms [11, 12]. Therefore, when 
constructing a gene expression signature for 
application in clinical practice, it is essential to 
reduce the heterogeneity of expression values 
owing to the sequencing platform and valida-
tion in multiple cohorts.

In this study, we constructed a new prognostic 
signature to distinguish between low-risk and 
high-risk patients with stage III CRC using gene 
expression profiling data on the same sequenc-
ing platform from Gene Expression Omnibus 
(GEO), an open database, and validated it in 
The Cancer Genome Atlas (TCGA) and GEO 
cohorts.

Methods

Data collection and flowchart summarizing the 
study design

A flowchart summarizing the study design is 
shown in Figure 1. CRC gene expression data 
were downloaded from the open database GEO 
(https://gdc-portal.nci.nih. gov/) and the GDC 
data portal of TCGA (https://portal.gdc.cancer.

gov). The datasets included in this study were 
GSE161158 [13], GSE14333 [14], GSE17536 
[15], GSE40967 [16], and GSE17538 [17]; only 
datasets with at least 100 samples were 
included in our study. GSE161158, GSE14333, 
and GSE17536 were used for differentially 
expressed gene (DEG) screening, and GSE- 
40967 and GSE17538 were used for risk score 
construction and validation. The GSE17538 
and TCGA-COAD gene expression data and clin-
icopathological information were used as risk 
score validation datasets. There was inevitably 
a heterogeneity in the GEO data. To minimize 
heterogeneity between datasets, only the data-
sets used as the same sequencing platform 
were included in this study, and the sequencing 
platform used was GPL570 (HG-U133_Plus_2 
Affymetrix Human Genome U133 Plus 2.0 
Array). Detailed information on the datasets 
included in our study is presented in Table 1.

Transcriptome data preprocessing and DEG 
screening

Although various methods exist to reduce the 
batch effect, the Robust Multichip Average 
(RMA) method, which performs both back-
ground correction and normalization, is the cur-
rently accepted method for microarray data 
preprocessing. We performed RMA normaliza-
tion on the microarray datasets included in this 
study. Differentially Expressed Gene (DEG)s 
were screened using the R package “limma” 
[18]. The criterion for DEGs was an adjusted 
P-value < 0.05; if it was met, these were consid-
ered as DEGs.

Prognosis-related gene selection through func-
tional enrichment and survival analysis

To select prognosis-related genes, we per-
formed survival analysis using Kyoto Encyclo- 
pedia of Genes and Genomes (KEGG) pathway 
and gene expression values. First, the gene set 
was configured based on the biological func-
tion, which was performed using the R package 
“Clusterprofiler” [19]. The biological function 
term selected in our study had an adjusted 
P-value < 0.05, and genes included in the top 
five terms were considered potential target 
genes. The prognostic relevance of the genes 
included in the top five terms was then evalu-
ated. Genes were evaluated by dividing them 
into high-expression and low-expression gr- 
oups. Cutoff Finder was used to determine the 
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cutoff point for each gene expression value 
[20]. In addition, as survival analysis of individ-
ual genes has continuous variable data over 
time, Cox regression analysis was used for sur-
vival analysis. The analysis was performed 
using the Kaplan-Meier “survival ROC” pack-
age of the R package, and genes with P < 0.05 
and HR > 1 in the high expression group versus 
the low expression group were included in the 
subsequent analysis [21].

Construction of prognosis prediction model 
through prognosis-related genes

To construct a prognosis prediction model, the 
GSE17538 cohort was divided into a training 
set and a validation set 8:2 through random 
sampling using the “caret” package [22]. Genes 

associated with prognosis were subjected to 
univariate and multivariate analysis using logis-
tic regression, which was screened using the  
R packages “glmnet” and “pROC” [23, 24]. 
Logistic regression is a method of estimating 
the probability of data belonging to a certain 
category as a value between 0 and 1 and clas-
sifying the data into a more likely category 
according to that probability. This regression 
analysis method was chosen because it is com-
monly used to create predictive models using 
categorical data. In addition, to evaluate the 
discrimination power of gene combinations, 
ROC curves were created and AUROCs (Area 
Under the ROC Curves) were measured and 
compared. A risk model was constructed using 
the regression coefficients and expression val-
ues of genes significantly related to prognosis. 

Figure 1. Study design and prognostic prediction model construction. This flowchart summarizes the study design 
and the construction of the prognostic prediction model. CRC gene expression data were obtained from the GEO 
database, including GSE14333, GSE161158, GSE17536, GSE17538, and GSE40967, as well as the TCGA data-
set. Differential gene expression analysis identified a total of 552 differentially expressed genes, with 372 genes 
up-regulated and 180 genes down-regulated. Functional enrichment and survival analysis identified 13 candidate 
genes associated with prognosis. From these, a prognostic prediction model was constructed using the six genes 
with the best predictive rate. The model’s performance was validated using cross-validation on GEO data and the 
TCGA dataset.
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The risk score was calculated as follows: Risk 
score = (0.6547 × BNIP3) + (4.9617 × CD63) + 
(1.7481 × RDX) + (1.7481 × RGCC) + (1.0393 × 
WASF1) + (-1.1305 × WASF3).

To validate the risk score, cross-validation was 
performed on GEO data with survival and TCGA 
data.

Results

Commonly upregulated genes and enriched 
pathways in CRC

To minimize heterogeneity arising from se- 
quencing platform variations, we exclusively 
utilized three independent research datasets 
conducted on the same platform. This approach 
allowed us to ensure consistency in our analy-
sis. Through our investigation, we discovered 
3,776 genes (Figure 2A) in the GSE17536 
dataset, 1,801 genes (Figure 2B) in GSE- 
161158, and 1,914 genes (Figure 2C) in 
GSE14333. Subsequently, we identified genes 
that exhibited differential expression across  
all three datasets, resulting in a total of  
552 common DEGs. Among these, 372 genes 
were commonly up-regulated (Figure 2D), while 
180 genes were down-regulated (Figure 2E). 
Following the identification of these common 
DEGs, our objective was to determine their 
associated biological functions and the signal-
ing pathways they participate in. To accomplish 

this, we conducted functional enrichment anal-
ysis. The top five enriched pathways of upregu-
lated genes were the Hippo signaling pathway, 
forkhead box O (FOXO) signaling pathway, regu-
lation of the actin cytoskeleton, Fc gamma 
R-mediated phagocytosis, and proteoglycans in 
cancer (Figure 2F). Notably, Hippo and FOXO 
signaling are pathways involved in cell phy- 
siological events, such as cell proliferation, 
apoptosis, and cell cycle regulation, indicating 
that their regulation is a key genomic event in 
CRC-associated tumors [25, 26]. In addition, 
Fc-gamma receptor signaling plays an immu- 
nomodulatory role as it is involved in the adap-
tive immune response by promoting antigen 
presentation or stimulating the secretion of 
inflammatory mediators [27]. Interestingly, 
Phosphatidylinositol 3-kinase is a gene involved 
in all pathways except Hippo signaling and is 
known as an oncogene in many studies [28]. 
These results led us to hypothesize the pres-
ence of general prognostic genomic biomark-
ers that control CRC-associated tumorigenesis. 
Proteoglycans in cancer and regulation of the 
actin cytoskeleton pathway, a pathway at the 
protein level, was abundant in CRC. Thus, we 
were able to identify the tendency for regulation 
to occur in various pathways, from the cellular 
level to proteins and immunity. Next, the top 
five enrichment pathways for downregulated 
genes included long-term potentiation, amphet-
amine addiction, and neurodegeneration path-
ways involved in neuronal signaling, along with 

Table 1. Patients’ characteristics
GSE14333 GSE161158 GSE17536 GSE40967 (validation) TCGA (validation)

n = 290 n = 191 n = 177 n = 585 n = 281
Stage I 44 (Duke) 33 24 (ajcc) - 43

II 94 (Duke) 76 57 (ajcc) - 104
III 91 (Duke) 82 57 (ajcc) - 81

Age < 65 125 86 78 216 129
≥ 65 165 105 99 369 152

Gender Female 126 - 81 263 132
Male 164 - 96 322 149

TNM stage T0 - - - 1 6
T1 - - - 12 42
T2 - - - 49 197
T3 - - - 379 35
T4 - - - 119 -
N0 138 109 81 314 162
N1 152 82 96 137 73
N2 -- - - 100 46
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the type 2 diabetes and insulin signaling path-
ways involved in blood sugar control (Figure 
2G). However, upregulated gene pathways are 
known to be more involved in tumorigenesis 
and progression than downregulated gene 
pathways, and 28 genes were selected from 
the upregulated gene pathways, where more 
often selected common genes were included in 
the pathway.

Variable selection and model development 
based on CRC data

Primary gene filtering was performed via sur-
vival analysis to identify prognostic genetic sig-
natures. Thirteen of the initially selected 28 
genes were selected based on a P-value < 

0.05. Selected genes and their regression coef-
ficients are listed in Table 2. Univariate Cox 
regression analysis was performed to identify 
hazard ratios (HRs) and confidence intervals 
(CIs) for selected genes. Logistic regression 
was used to select the prognostic variables 
related to the stage of CRC lymph node me- 
tastasis. To construct a prognosis prediction 
model, we used the regression coefficients and 
expression values of the selected genes in 
logistic regression analysis. In summary, we 
constructed a predictive model that exhibited 
the highest predictive power. The model incor-
porated a subset of 6 genes out of the initial 28 
genes. The genes included in the model were 
BNIP3, CD63, RDX, RGCC, WASF1, and WASF3. 
Figure 3 depicts the Kaplan-Meier plot result-

Figure 2. Commonly differentially expressed genes (DEGs) and enhanced pathways in colorectal cancer (CRC). A-C. 
Volcano plot visualizing DEGs between CRC lymph node-negative and CRC lymph node-positive data sets. D and 
E. 372 up-regulated genes and 180 down-regulated genes based on P < 0.05. F and G. Enhanced pathway using 
KEGG analysis for DEGs.
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Table 2. Gene filter using survival analysis
GEO40967 GEO17538

HR 95% CI P-value HR 95% CI P-value
Gene
    BNIP3 0.64 0.47-0.88 0.0051 11.89 1.63-86.48 0.0019
    CD63 0.66 0.49-0.9 0.0074 2.49 1.33-4.67 0.0034
    FBXO32 1.85 1.12-3.04 0.014 2.31 1.3-4.13 0.0035
    ITGB5 1.94 1.25-3.04 0.0029 2.32 1.08-4.95 0.026
    PTK2 2.74 1.53-4.92 0.00043 1.99 1.22-3.54 0.0017
    RDX 1.67 1.2-2.31 0.0018 2.33 1.32-4.13 0.0027
    RGCC 1.99 1.31-3.01 0.00093 3.59 1.29-10.01 0.009
    SDC2 2.7 1.33-5.49 0.0042 2.17 1.21-3.89 0.008
    STK3 1.36 1.01-1.83 0.0045 2.61 1.45-4.73 0.00096
    THBS1 4.42 2.07-9.43 0.00003 2.48 1.41-4.38 0.0012
    WASF1 1.63 1.09-2.44 0.015 3.13 1.59-6.16 0.00051
    WASF3 0.6 0.39-0.93 0.021 2.16 1.07-4.33 0.027
    WWTR1 1.72 1.21-2.43 0.0029 3.03 1.6-5.73 0.00034

Figure 3. Survival analysis of individual genes included in the CRC survival prediction model. In the figure, red lines 
represent groups with high expression values for the respective gene, while blue lines indicate groups with low ex-
pression values. The x-axis represents the survival probability, and the y-axis represents the survival time. A. BNIP3; 
B. CD63; C. RDX; D. RGCC; E. WASF1; F. WASF3.
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ing from the univariate survival analysis of 
these selected genes. The final risk model, 
using the calculated risk score, had a value of 
78.59.

Validation of prognostic prediction models us-
ing external data

To confirm the prognostic significance, Kaplan-
Meier survival analyses were performed using 
log-rank tests on one additional GSE17538 and 
TCGA dataset. The results of the validation 
cohort were significant, with P = 0.00065 for 
GSE17538 (Figure 4A) or P = 0.038 for TCGA 
(Figure 4B). In addition, as a result of checking 
the AUC by creating an ROC curve to evaluate 

the result, it improved to 0.821 (Figure 4C). 
These results indicated that our predictive 
model based on the identified prognostic 
genetic features had selective predictive poten-
tial along the stages of CRC to lymph node 
metastasis.

Validation of protein expression levels in CRC 
of prognostic genes

We used the Human Protein Atlas to examine 
the protein levels of six genes used in our prog-
nostic prediction model for CRC. For compari-
son, we observed the stained results in glandu-
lar cells and tumor cells. In normal cell types, 
WASF1 showed a moderate intensity, while in 

Figure 4. Validation of prognostic prediction models using external data. The result of survival analysis of the model 
created in the development cohort in the validation cohort. A. GEO data. B. TCGA-COAD data. C. ROC graph of the 
final model.



A new prognostic marker for predicting the prognosis of colorectal cancer

3228	 Am J Cancer Res 2023;13(7):3221-3233

tumor cells, it exhibited a weak intensity in six 
cases, moderate intensity in seven cases, and 
strong intensity in nine cases. RDX was not 
detected in any normal cell types, but in tumor 
cells, it showed a negative intensity in ten 
cases, weak intensity in seven cases, and mod-
erate intensity in two cases. BNIP3 exhibited a 
weak intensity in all normal cell types, whereas 
in tumor cells, it showed a weak intensity in five 
cases, moderate intensity in twelve cases, and 
strong intensity in two cases. RGCC exhibited a 
strong intensity in all normal cell types, while in 
tumor cells, it showed a moderate intensity in 
six cases and a strong intensity in thirteen 
cases. CD63 exhibited a weak intensity in all 
normal cell types, while in tumor cells, it showed 
a negative intensity in ten cases, weak intensity 
in eight cases, and moderate intensity in eight 
cases. WASF3 was not detected in any cells 
(Figure 5; Table 3).

Discussion

The global burden of CRC is projected to 
increase by 60%, resulting in 2.2 million new 
cases and 1.1 million deaths by 2030 [29]. In 
addition, since lymph flow in the primary tumor 
site was first identified, many studies have 
attempted to classify metastatic lymph nodes 
to accurately predict CRC [30]. Prognosis  
prediction using microarray analysis, which is 
one of the methods, is most often used through 
a change in gene expression level [5-7]. 
Examination of the expression patterns of CRC 
lymph node-associated genes in previous stud-
ies has identified unique molecular characteris-
tics between lymph node-positive and negative 
tumors [31, 32]. However, the stage specificity 
of CRC lymph node-positive tumors remains 
unknown. Thus, we developed a prognostic 
gene signature based on the stage of CRC 
lymph node metastasis using multiple cohorts 
containing CRC lymph node information.

Cell bioactivity is regulated by complex net-
works that maintain a steady state from the cell 
cycle to proliferation [33]. When these path-
ways are damaged, cancer develops through 
cell damage. KEGG pathway enrichment analy-
sis showed that genes upregulated in the CRC 
lymph node metastasis-positive group were 
included in the Hippo signaling pathway and 
Fox O signaling pathway. The Hippo signaling 
pathways are frequently deregulated in human 

cancers by controlling several cellular functions 
that are central to tumorigenesis, including pro-
liferation and apoptosis [33]. In a subgroup of 
the AKT signaling pathway, the FOXO signaling 
pathway was found to be involved in tumorigen-
esis by phosphorylating and inactivating the 
FOXO transcription factor, thereby mediating 
the expression of genes important for apopto-
sis, such as the Fas ligand gene [25]. We also 
found that Fc-gamma receptor signaling was 
involved in the modulation of subsequent 
immune responses [34, 35]. Fc gamma recep-
tor signaling is known to be involved in antitu-
mor activity through the modulation of immuno-
modulatory antibody activity. This result is 
probably because the above pathway is associ-
ated with the accumulation of intracellular 
damage and the progression of tumorigenesis 
during the lymph node metastasis stage. 
Misregulation of the Insulin signaling pathway, 
particularly the pathway of downregulated 
genes, causes type 2 diabetes mellitus. Factors 
associated with insulin resistance, such as 
hyperinsulinemia, hyperglycemia, and hypertri-
glyceridemia, are also associated with CRC car-
cinogenesis [36]. These pathways are charac-
terized by increased insulin concentrations dur-
ing the early stages of the disease. Many prog-
nostic predictors of patient survival have been 
developed for the gene expression profiles of 
patients with CRC based on clinical data, 
including the presence or absence of lymph 
node metastasis [36-39]. The six genes includ-
ed in our prediction model, BNIP3, CD63, RDX, 
RGCC, WASF1, and WASF3, are crucial players 
in cell cycle progression, apoptosis regulation, 
migration, and adhesion, and have significant 
associations with various types of cancer. 
BNIP3, a member of the BCL2 family, is involved 
in apoptosis and autophagy regulation [40]. 
Altered BNIP3 expression is strongly linked to 
clinical outcomes in cancer. Reduced BNIP3 
expression is associated with poor prognosis, 
aggressive tumor behavior, and decreased 
patient survival [41]. CD63 plays a crucial role 
in cancer metastasis, enabling the spread of 
cancer cells from the primary tumor to distant 
sites [42]. Changes in CD63 expression levels 
are closely associated with clinical outcomes 
and prognosis across various cancer types [43, 
44]. RDX, a member of the ERM (ezrin-radixin-
moesin) family of cytoskeletal proteins, is sig-
nificantly associated with cancer metastasis 
and invasion [45]. A previous paper profiling 
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pancreatic cancer according to the presence or 
absence of lymph node metastasis confirmed 

that radixin had a significantly higher expres-
sion level at the protein level [46]. These results 

Figure 5. Protein expression patterns of six prognostic predictive genes from normal colon and primary colorectal 
tumor origin. A. Immunohistochemical staining of WASF1 protein showed moderate expression in normal colon tis-
sue and moderate to high expression in CRC, representing 73% of cases. The highest staining intensity observed 
was strong, accounting for 33% of cases. B. Immunohistochemical staining of RDX protein showed no staining in 
normal colon tissue, while weak staining was predominant in CRC, accounting for 37% of cases. Moderate intensity 
staining was observed in 11% of cases. C. Immunohistochemical staining of BNIP3 protein showed weak expression 
in normal colon tissue, whereas moderate intensity staining was the most prevalent in CRC, accounting for 63% of 
cases. Strong intensity staining was observed in 11% of cases. D. Immunohistochemical staining of RGCC protein 
showed strong expression in normal colon tissue, while moderate intensity staining was the most prevalent in CRC, 
accounting for 31% of cases. The highest staining intensity observed was strong, accounting for 68% of cases. E. 
Immunohistochemical staining of CD63 protein showed weak expression in normal colon tissue, while weak inten-
sity staining was the most prevalent in CRC, accounting for 33% of cases. Moderate intensity staining was observed 
in 25% of cases. F. Immunohistochemical staining of WASF3 protein showed negative staining in both normal and 
CRC tissues.
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and our results suggest the possibility of RDX 
as a potential biomarker to predict the pres-
ence or absence of lymph node metastasis. 
RGCC (Response Gene to Complement-32) has 
garnered attention for its involvement in cancer 
[47]. Expression levels of RGCC have been 
studied as potential prognostic markers across 
multiple cancers [48]. Increased RGCC expres-
sion is correlated with unfavorable clinical out-
comes, including shorter overall survival and 
disease-free survival in some cancer types. 
WASF1, also known as WAVE1, is a member of 
the WASP family and plays a critical role in 
tumor cell migration and invasion [49]. It con-
tributes to the formation of invadopodia, spe-
cialized protruding structures that facilitate 
cancer cell invasion by breaking down the 
extracellular matrix. High WASF1 expression 
has been suggested as a potential prognostic 
marker, as it is associated with worse progno-
sis, advanced cancer stage, and reduced over-
all survival in certain cases [50]. WASF3, also 
known as WAVE3, is another member of the 
WASP family and is involved in metastasis 
across various cancer types [49]. WASF3 drives 
the process of epithelial-mesenchymal transi-
tion (EMT), allowing cancer cells to acquire 
invasiveness and metastatic capabilities. High 
WASF3 expression is associated with worse 
prognosis, advanced disease stage, and, in 
some cases, reduced overall survival [51]. 
These genes, BNIP3, CD63, RDX, RGCC, 

WASF1, and WASF3, play pivotal roles in cancer 
biology and have demonstrated significant clin-
ical relevance as potential prognostic markers 
and targets for therapeutic intervention in met-
astatic cancers. However, studies that can pre-
dict the prognosis at each stage in patients 
with positive lymph node metastasis are lack-
ing. Therefore, we developed a set of prognos-
tic genes for lymph node metastasis. Various 
regression analyses have been performed to 
develop prognostic gene signatures. Among 
them, we used logistic regression, which is the 
most commonly used method for risk analysis. 
Risk scores were calculated for 6 out of 13 sig-
nificant gene combinations. The validation 
results using the risk scores were mostly vali-
dated using additional validation sets.

Conclusion

This study utilizesd multiple cohorts to estab-
lish and validate the prognostic genetic charac-
teristics of lymph node metastasis in patients 
with CRC. A prognostic predictive model based 
on six gene combination features suggests that 
it may play an important role in developing a 
step-by-step treatment strategy, even in the 
lymph node-positive status of patients with 
CRC. This model ensures a similar reproducibil-
ity in other patients with CRC. Collectively, 
these findings are expected to provide effective 
results as potential biomarkers for prognosis, 
survival, and treatment.

Table 3. Intensity of protein staining in glandular cells and tumor cells of genes predicting CRC prog-
nosis

Gene
Glandular cells Tumor cells

Antibody
Staining Intensity Staining Intensity

WASF1 Medium: 3 Moderate: 3 Not detected: 4
Low: 7
Medium: 8
High: 3

Weak: 6
Moderate: 7
Strong: 9

HPA004105

RDX Not detected: 3 Negative: 3 Not detected: 17
Medium: 2

Negative: 10
Weak: 7
Moderate: 2

HPA000763

BNIP3 Low: 3 Weak: 3 Low: 5
Medium: 12
High: 2

Weak: 5
Moderate: 12
Strong: 2

HPA003015

RGCC High: 2 Strong: 2 Medium: 6
High: 13

Moderate: 6
Strong: 13

HPA035638

CD63 Low: 3 Weak: 3 Not detected: 10
Low: 6
Medium: 4

Negative: 10
Weak: 8
Moderate: 6

HPA010088

WASF3 Not detected: 3 Negative: 3 Not detected: 24 Negative: 24 HPA066228
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