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Abstract: To develop a decision tree model based on clinical information, molecular genetics information and pre-
operative magnetic resonance imaging (MRI) radiomics-score (Rad-score) to investigate its predictive value for the 
risk of recurrence of glioblastoma (GBM) within one year after total resection. Patients with pathologically con-
firmed GBM at Huashan Hospital, Fudan University between November 2017 and June 2020 were retrospectively 
analyzed, and the enrolled patients were randomly divided into training and test sets according to the ratio of 3:1. 
The relevant clinical and MRI data of patients before, after surgery and follow-up were collected, and after feature 
extraction on preoperative MRI, the LASSO filter was used to filter the features and establish the Rad-score. Using 
the training set, a decision tree model for predicting recurrence of GBM within one year after total resection was 
established by the C5.0 algorithm, and scatter plots were generated to evaluate the prediction accuracy of the de-
cision tree during model testing. The prediction performance of the model was also evaluated by calculating area 
under the receiver operating characteristic (ROC) curve (AUC), ACC, Sensitivity (SEN), Specificity (SPE) and other 
indicators. Besides, two external validation datasets from Wuhan union hospital and the second affiliated hospital 
of Xuzhou Medical University were used to verify the reliability and accuracy of the prediction model. According to 
the inclusion and exclusion criteria, 134 patients with GBM were finally identified for inclusion in the study, and 53 
patients recurred within one year after total resection, with a mean recurrence time of 5.6 months. According to 
the importance of the predictor variables, a decision tree model for predicting recurrence based on five important 
factors, including patient age, Rad-score, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, 
pre-operative Karnofsky Performance Status (KPS) and Telomerase reverse transcriptase (TERT) promoter muta-
tion, was developed. The AUCs of the model in the training and test sets were 0.850 and 0.719, respectively, and 
the scatter plot showed excellent consistency. In addition, the prediction model achieved AUCs of 0.810 and 0.702 
in two external validation datasets from Wuhan union hospital and the second affiliated hospital of Xuzhou Medical 
University, respectively. The decision tree model based on clinicopathological risk factors and preoperative MRI Rad-
score can accurately predict the risk of recurrence of GBM within one year after total resection, which can further 
guide the clinical optimization of patient treatment decisions, as well as refine the clinical management of patients 
and improve their prognoses to a certain extent. 
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Introduction

Glioma is the most common primary malignant 
tumor of the central nervous system (CNS) in 
adults, originating from glial cells. The annual 

incidence in China is about 5-8/100000, and 
the five-year average survival rate is less than 
40% [1]. According to the histological malignan-
cy of tumor cells [2], gliomas are classified into: 
(1) low-grade gliomas (WHO grade 1-2), which 
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have a high degree of differentiation and a rela-
tively good prognosis; (2) high-grade gliomas 
(WHO grade 3-4), which are malignant tumors 
with low differentiation and strong invasion, 
and have a poor prognosis. Diffuse gliomas in 
adults are grades 2-4. As the tumor grade 
increases, the malignancy increases and the 
prognosis becomes worse. Among adult high-
grade gliomas, glioblastoma (GBM) is the most 
common and has the worst prognosis, with a 
median survival of only 8 months [3], and 
relapse eventually occurs regardless of the 
modality of treatment patients have received 
[4], so how to optimize treatment and improve 
prognosis is an urgent clinical problem.

The treatment of GBM is based on surgery, 
combined with comprehensive treatment meth-
ods such as radiotherapy and chemotherapy 
[5]. Surgery can quickly alleviate the corre-
sponding clinical symptoms of patients and 
prolong their survival, and the principle is to 
remove as much of the tumor as possible, 
which is called safe resection within the maxi-
mum extent, while ensuring the safety of 
patients, protecting neurological functions and 
important surrounding structures [6]. Although 
with the deepening of understanding of the 
genome map and biological behavior of glioma, 
more and more therapeutic methods have 
been applied to the clinical treatment of GBM, 
including targeted therapy, immunotherapy, 
and electric field therapy, the prognoses of 
most patients are still not ideal. Studies have 
shown that the 1-year survival rate of GBM 
patients is only 40.0%, while the 5-year survival 
rate is less than 6% [7]. Therefore, it is particu-
larly important to assess the prognosis of 
patients using existing clinical, pathological, 
and radiology data, and identify which patients 
are more likely to relapse in the short term after 
surgery, requiring more aggressive, even radi-
cal and more targeted treatment. 

As a form of machine learning, radiomics can 
transform a large amount of medical image 
data into data that can be used for mining, to 
establish and train models, providing clinical 
decision support and being used for disease 
diagnosis and prognosis evaluation [8]. 
Decision tree is a kind of model for decision 
making based on a tree structure, which is one 
of the commonly used data mining algorithms. 
It classifies data sets through several condi-

tional discrimination processes, and finally 
obtains the required classification results [9]. 
From a structural perspective, the starting 
point of the decision tree model is the root 
node, the intermediate decision-making pro-
cess is the internal node, and the classification 
result is the leaf node. Compared with other 
classification algorithms, decision tree has effi-
cient data mining and processing capability, 
with the ability to handle both classification and 
prediction problems at the same time, and the 
results are highly interpretable and more intui-
tive [10]. Currently, decision tree models have 
been widely used in clinical research, including 
building predictive tools for disease diagnosis 
or prognosis, identifying and exploring key fac-
tors that affect prognoses of diseases, and so 
on [11-13]. However, few studies have reported 
the use of decision tree models for predicting 
short-term recurrence of GBM after total resec-
tion, but such predictions may be more mean-
ingful than survival predictions. Mastering the 
key risk factors that affect recurrence can  
further guide clinical optimization of patients 
treatment decisions, while refining patients 
clinical management, and improving patients 
prognoses to a certain extent. 

In this study, a decision tree model based on 
basic clinical information, molecular genetics 
information, pre-operative magnetic resonance 
imaging (MRI) features and radiomics-score 
(Rad-score) was developed to investigate its 
predictive value for the risk of recurrence of 
GBM within one year after total resection. 

Patients and methods

Patients

This study was approved by the institutional 
review board of Huashan Hospital, Fudan 
University (Number: KY2021-066). We retro-
spectively analyzed the data of pathologically 
confirmed GBM patients at Huashan Hospital, 
Fudan University from November 2017 to June 
2020. Besides, two datasets of GBM patients 
from Wuhan union hospital and the second 
affiliated hospital of Xuzhou Medical University 
were utilized as external validation.

Inclusion and exclusion criteria

Inclusion criteria: (1) patients aged above 18 
years; (2) pre-operative Karnofsky Performance 
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Status (KPS) ≥ 70; (3) patients met the GBM 
diagnosis of the 2021 WHO CNS tumor classifi-
cation criteria; (4) the postoperative evaluation 
of the tumor resection extent was “total resec-
tion” (Brain MRI examination was performed 
within 24-72 hours after surgery, and the 
enhanced tumor area on contrast enhanced-T1 
weighted imaging (CE-T1WI) sequence was 
completely removed); (5) complete post-opera-
tive molecular genetics information (Isocitrate 
dehydrogenase (IDH) mutation, Telomerase 
reverse transcriptase (TERT) promoter muta-
tion, O6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation, and 1p/19q co-
deletion); (6) standardized radiotherapy and 
chemotherapy were performed after surgery; 
(7) brain MRI examination was performed with-
in one week before surgery; (8) complete fol-
low-up brain MRI and clinical information within 
one year after surgery; (9) brain MRI was 
acquired using a 3.0T scanner (Discovery 
MR750W; GE Healthcare, Milwaukee, WI, USA), 
and the sequences include T1 weighted imag-
ing (T1WI), T2 weighted imaging (T2WI), T2-fluid 
attenuated inversion recovery (T2-Flair), diffu-
sion weighted imaging (DWI) and CE-T1WI. 

Exclusion criteria: (1) previous history of brain 
tumors; (2) lesion was predominant hemor-
rhage; (3) artifacts on MRI images; (4) other 
treatment before surgery; (5) non-recurrent 
patients followed up for less than one year after 
surgery; (6) incomplete clinical data.

MRI scanning parameters

Brain MRI scanning parameters are shown in 
Table 1. The scanning range of all sequences 
covers the entire brain. The contrast agent 
Gadodiamide injection (GE Pharmaceuticals) is 
injected through the elbow vein using a dose of 
0.1 mmol per kilogram of body weight for 
CE-T1WI scanning. After the injection of the 
contrast agent, a transverse CE-T1WI scanning 
is started immediately, and after the injection 
of the contrast agent, 20 ml of physiological 
saline is used to rinse.

Analysis of clinical data and MRI image fea-
tures

Preoperative data: (1) Basic information of the 
patient: gender, age, pre-operative KPS, tumor 
location, and the number of brain lobes involved 
in the tumor. (2) Preoperative MRI image fea-
ture score: tumor enhancement, tumor edema, 
tumor cystic necrosis, and tumor DWI/ADC sig-
nal intensity. The above MRI image features 
were graded and scored by two radiologists 
with more than 10 years of experience in neu-
ro-oncology radiology diagnosis (specific scor-
ing criteria are shown in Table 2). The compre-
hensive MRI image feature score (MRI-score) 
for each patient was obtained by adding the 
scores.

Postoperative data: (1) Molecular genetics 
information: IDH mutation, MGMT promoter 

Table 1. Brain MRI scanning parameters
Sequence Parameters
T1WI TR = 2992 ms; TI = 869 ms; TE = 24 ms; Matrix = 320 × 320; FOV = 240 × 240 mm2; Thickness = 5 mm; Interval = 1.5 mm

T2WI TR = 4599 ms; TE = 102 ms; Matrix = 320 × 224; FOV = 240 × 240 mm2; Thickness = 5 mm; Interval = 1.5 mm

T2-Flair TR = 8000 ms; TI = 2100 ms; TE = 160 ms; Matrix = 256 × 256; FOV = 240 × 240 mm2; Thickness = 5 mm; Interval = 1.5 mm

DWI TR = 4800 ms; TE = 74 ms; Matrix = 128 × 130; FOV = 240 × 240 mm2; Thickness = 8 mm; Interval = 0.94 mm

CE-T1WI TR = 2992 ms; TI = 869 ms; TE = 24 ms; Matrix = 320 × 320; FOV = 240 × 240 mm2; Thickness = 5 mm; Interval = 1.5 mm
Abbreviations: TR = Repetition time; TI = Inversion time; TE = Echo time; FOV = Field of view.

Table 2. Scoring criteria for pre-operative MRI image feature of GBM
MRI image features Level I (1 point) Level II (2 points) Level III (3 points)
Tumor enhancement Equivalent to or lower than normal 

brain parenchyma enhancement
Greater than normal brain parenchyma 
enhancement but weaker than vascular 
enhancement

Equivalent to or stronger than 
vascular enhancement

Tumor cystic necrosis None Range ≤ 50% of total tumor volume Range > 50% of total tumor volume

Tumor edema The distance from the outermost 
edge of edema to the edge of the 
tumor < 2 cm

2 cm < distance from the outermost edge 
of edema to the edge of the tumor < 1/2 
of unilateral cerebral hemisphere

Range > 1/2 of unilateral cerebral 
hemisphere

DWI/ADC DWI shows equal or low signal; ADC 
signal does not decrease

DWI shows slightly high signal; ADC signal 
decreases

DWI shows significant high signal; 
ADC signal decreases

Abbreviations: DWI = Diffusion weighted imaging; ADC = Apparent diffusion coefficient.
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methylation, 1p/19q co-deletion, and TERT pro-
moter mutation. (2) Start time of radiotherapy: 
All patients received three-dimensional confor-
mal radiotherapy after surgery, with a conven-
tional fractionation and a total radiation dose in 
the range of 54-60 Gy. The starting time of 
post-operative radiotherapy was divided into 
early (within 2-6 weeks after surgery) and  
non-early (beyond 6 weeks after surgery). (3) 
Temozolomide (TMZ) adjuvant chemotherapy 
cycle: All patients received radiotherapy and 
concurrent TMZ chemotherapy, and then con-
tinued to use the TMZ adjuvant chemotherapy 
regimen. During radiotherapy, TMZ was admin-
istered orally at a dose of 75 mg/(m2·d) for 42 
consecutive days. Four weeks after the end  
of concurrent radiotherapy and chemotherapy, 
adjuvant chemotherapy was administered with 
an oral TMZ dose of 150-200/(m2·d) for 5 con-
secutive days, with a chemotherapy cycle of 
every 28 days. TMZ adjuvant chemotherapy 
cycle was divided into standard cycle (6 cycles) 
and extended cycle (> 6 cycles).

Evaluation of postoperative recurrence: Post-
operative recurrence was determined by a  
multidisciplinary team of experts including neu-
rosurgery, radiology, radiotherapy, neuro-oncol-
ogy, pathology, and neurology based on the 
follow-up MRI images and clinical manifesta-
tions of patients after surgery, with reference to 
the “Guidelines for the Diagnosis and Treatment 
of Gliomas in China (2022 Edition)”. This guide-
line stipulates that the brain MRI (plain scan 
and contrast enhancement) within 24-72 hours 
after surgery should be used as the baseline 
radiology data, and the RANO standard [14] 
should be used as the evaluation standard for 
treatment efficacy, which is shown in Table 3. 
Besides, perfusion weighted imaging (PWI), the 
ratio of choline (Cho)/N-acetylaspartate (NAA) 
and Cho/creatine (Cr) in magnetic resonance 
spectroscopy (MRS) should be used as the 

basis for distinguishing tumor recurrence, 
pseudo-progression, and radiation necrosis.

MRI data pre-processing: First, we performed 
an anonymous operation on the image informa-
tion of all patients included in the study. Then, 
in order to match the region of interest (ROI) 
with the images of all MRI sequences, we used 
the linear differential resampling method in 
SimpleITk software package (version 2.1.1.1, 
https://simpleitk.readthedocs.io/en/master/
index.html), resampling all images to 240 × 
240 × 24 with interval of 1 × 1 × 4 mm3. After 
that, by using Advanced Normalization Tools 
(ANTs) (https://github.com/ANTsX), all MRI 
sequences (T1WI, T2WI, T2-Flair, and DWI) were 
registered to CE-T1WI sequence. Then, we uti-
lized the feature scaling method provided in 
SimpleITK to normalize the image grayscale 
value to 0-255.

MRI image segmentation: The MRI image seg-
mentation of tumors was based on the expert 
consensus on MRI image labeling of CNS 
tumors released in China in 2021, and the judg-
ment of glioma components was based on the 
research of Zacharaki et al. [15]. MRI image 
segmentation of all tumors was performed by a 
radiologist with more than 10 years of experi-
ence in neuro-oncology radiology diagnosis. 
The tumors were segmented on T2-Flair and 
CE-T1WI axial images, using the semi-automat-
ic tool ITK-SNAP (version 4.0.0, http://www.itk-
snap.org/pmwiki/pmwiki.php). All tumors were 
delineated in two parts, named ROI1 and ROI2: 
(1) ROI1 represented the maximum anomaly 
region of the tumor, including the tumor body 
and peri-tumoral edema. It was delineated on 
the T2-Flair image as an area displaying abnor-
mal high signal, represented in green; (2) ROI2 
represented the tumor area, which was delin-
eated on the CE-T1WI image, with yellow repre-
senting the tumor enhancement area and red 
representing the non-enhancement area of the 

Table 3. RANO criteria for evaluation of therapeutic efficacy in gliomas
CR PR SD PD

CE-T1WI None Reduction ≥ 50% Variation range from -50% ~ +25% Increase ≥ 25%

T2-Flair Stable or decreased Stable or decreased Stable or decreased Increased

New lesion None None None Yes

Hormone use None Stable or decreased Stable or decreased Not applicable*

Clinical symptoms Stable or improved Stable or improved Stable or improved Deteriorated

Conditions to be satisfied All of the above All of the above All of the above Any one of the above
Footnote: *Disease progression is considered to occur when there is a persistent worsening of clinical symptoms, but an increase in hormone dosage should not be used 
solely as a basis for disease progression. Abbreviations: CR = Complete response; PR = Partial response; SD = Stable disease; PD = Progressive disease.
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tumor. The above two parts of segmentation 
required simultaneous reference to all MRI 
sequences. A representative tumor ROI delin-
eation is shown in Figure 1. 

Radiomics feature extraction and selection

The PyRadiomics (Version 3.0, https://pyradio- 
mics.readthedocs.io/en/latest/features.html) 
was used to force extraction of two-dimension-
al features, using slice average features instead 
of three-dimensional features, and a total of 
4306 features were extracted. Then, least 
absolute shrinkage and selection operator 
(LASSO) filter was utilized to filter the features 
and establish the Rad-score.

Decision tree model establishment

All enrolled patients were randomly divided into 
training and test sets, with a ratio of 3:1. Using 

the training set, a decision tree model was 
established utilizing C5.0 algorithm, and the 
depth of the decision tree was limited to 5 lay-
ers. The process of establishing and verifying 
the decision tree model is shown in Figure 2, 
including data input, data filtering, data type 
determination, model training, and model test-
ing. During model testing, a scatter chart was 
generated to evaluate the prediction accuracy 
of the decision tree.

Decision tree model evaluation and statistical 
methods

The prediction performance of the decision 
tree model was evaluated by calculating area 
under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity (SEN), specificity 
(SPE), positive prediction value (PPV), negative 
prediction value (NPV), accuracy (ACC), false 

Figure 1. A case of WHO grade 4 glioblastoma, (A, B) are T2-Flair images, and (C, D) are CE-T1WI images. (B) Rep-
resents the maximum anomaly region of the tumor delineated in green. (D) Represents the tumor region, yellow 
represents the enhancement region of tumor, and red represents the non-enhancement region of tumor.

Figure 2. The analysis stream of decision tree development and validation, including processes of data input, data 
filtrating, data type determination, model training, and model testing.



Decision tree for predicting short-term recurrence of glioblastoma

3454 Am J Cancer Res 2023;13(8):3449-3462

positive rate (FPR), false negative rate (FNR), 
and Youden’s index (YI). 

All statistical analyses were conducted using R 
software version 4.1.3 and SPSS Modeler 18.0.

Results 

Baseline characteristics

According to the inclusion criteria, a total of 
192 patients were recruited for this study, and 
58 patients were excluded: 6 cases had a his-
tory of brain tumor in the past; 5 cases had 
lesions with predominant hemorrhage; 12 
cases had artifacts on MRI images; 9 cases 
had received treatment before surgery; 15 
cases had no recurrence after a follow-up of 
less than one year; 11 cases had incomplete 
clinical data. Finally, 134 GBM patients with 
IDH wild-type were identified for inclusion in the 
study, and the training set and test sets were 
divided randomly with a ratio of 3:1. 

The basic clinical information, molecular genet-
ics information, and pre-operative MRI image 
feature score of 134 GBM patients are shown 
in Table 4. There were 53 cases of recurrence 
within 1 year after surgery, including 34 males 
and 19 females, and the average recurrence 
time was 5.6 months. The MRI manifestations 
of tumor recurrence were diverse, presenting 
as mass type, nodular type, diffuse type, or 
marginal type. The vast majority of tumor recur-
rences occurred within the original surgical 
area, while only 3 cases had distant recurrenc-
es (more than 3 cm from the edge of the surgi-
cal area).

In addition, basing on the inclusion and exclu-
sion criteria, 37 GBM patients from Wuhan 
union hospital and 26 GBM patients from the 
second affiliated hospital of Xuzhou Medical 
University were enrolled as the external valida-
tion datasets.

Rad-score establishment

LASSO filter was utilized to filter 4306 MRI 
radiomics features extracted from CE-T1WI 
sequence, and ultimately 12 optimal features 
were retained, including gray level co-occur-
rence matrix (glcm) feature (n = 4), gray level 
dependency matrix (gldm) feature (n = 1), gray 
level run length matrix (glrlm) feature (n = 3), 
gray level size zone matrix (glszm) feature (n = 

3), and neighboring gray tone difference matrix 
(ngtdm) feature (n = 1). According to the region-
al distribution, 6 features came from the maxi-
mum anomaly region, and 6 features came 
from the tumor region. The Rad-score formula 
established based on optimal characteristics is 
shown in Table 5, and the Rad-score distribu-
tion is shown in Figure 3. The average Rad-
score for recurrent patients was 0.64 ± 0.05, 
and the average Rad-score for non-recurrent 
patients was 0.49 ± 0.07. There was a signifi-
cant statistical difference between the two 
groups (two independent sample T test, t = 
8.458, P < 0.001***), which indicated that the 
Rad-score established based on the 12 opti-
mal features can predict the stratification of 
recurrence outcomes of GBM within one year 
after total resection.

Establishment and validation of decision tree 
model

The order of importance of the predictive vari-
ables for each decision tree is shown in Figure 
4. Patient age, Rad-score, MGMT promoter 
methylation, pre-operative KPS, and TERT pro-
moter mutation were important for predicting 
recurrence in GBM patients within one year 
after total resection. Based on these predictive 
variables, a decision tree model for recurrence 
of GBM patients within one year after total 
resection was generated, as shown in Figure 5. 

Figure 6 shows a scatter plot (including training 
and test sets) that evaluates the consistency 
between predicted and actual recurrence. 
There is good consistency between the predict-
ed recurrence and actual recurrence status of 
the two sets. Most of the scatter points are 
located on the diagonal line, and the fitting line 
is near the asymptotic line of “y = x”, showing 
excellent consistency.

The prediction performance indicators of the 
decision tree model are shown in Table 6, and 
the ROC curve is shown in Figure 7. The model 
achieved AUC: 0.850, ACC: 0.898, SEN: 0.816, 
SPE: 0.950 in the training set, and AUC: 0.719, 
ACC: 0.833, SEN: 0.867, SPE: 0.810 in the test 
set, respectively. The above results show that 
the decision tree model has good prediction 
performance.

In external validation, the prediction model 
achieved an AUC of 0.810, an ACC of 0.811, a 
SEN of 0.810, a SPE of 0.813 based on the 
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dataset from Wuhan union hospital; the predic-
tion model achieved an AUC of 0.702, an ACC of 
0.808, a SEN of 0.786, a SPE of 0.833 based 
on the dataset from the second affiliated hospi-
tal of Xuzhou Medical University.  

Discussion

GBM is the most common primary malignant 
brain tumor in adults, accounting for more than 
half of all gliomas [16]. Currently, the treatment 

Table 4. Baseline characteristics of the enrolled patients
Characteristics Overall (N = 134) Training set (N = 98) Testing set (N = 36)
Gender
    Male 83 (62%) 58 (59%) 25 (69%)
    Female 51 (38%) 40 (41%) 11 (31%)
Age (years)
    < 50 56 (42%) 41 (42%) 15 (42%)
    ≥ 50 78 (58%) 57 (58%) 21 (58%)
KPS
    ≤ 80 76 (57%) 57 (58%) 19 (53%)
    > 80 58 (43%) 41 (42%) 17 (47%)
Location
    Frontal lobe 72 (54%) 56 (57%) 16 (44%)
    Temporal lobe 27 (20%) 21 (21%) 6 (17%)
    Parietal lobe 14 (10%) 9 (9%) 5 (14%)
    Insular lobe 8 (6%) 5 (5%) 3 (8%)
    Occipital lobe 5 (4%) 4 (4%) 1 (3%)
    Others 8 (6%) 3 (3%) 5 (14%)
Hemisphere
    Left 84 (63%) 54 (55%) 30 (83%)
    Right 50 (37%) 44 (45%) 6 (17%)
Lobe involvement
    Single 111 (83%) 81 (83%) 30 (83%)
    Multiple 23 (17%) 17 (17%) 6 (17%)
MRI-score
    < 9 50 (37%) 39 (40%) 11 (31%)
    ≥ 9 84 (63%) 59 (60%) 25 (69%)
MGMT promoter methylation
    Yes 61 (46%) 45 (46%) 16 (44%)
    No 73 (54%) 53 (54%) 20 (56%)
1p/19q co-deletion
    Yes 20 (15%) 11 (11%) 9 (25%)
    No 114 (85%) 87 (89%) 27 (75%)
TERT promoter mutation
    Yes 60 (45%) 44 (45%) 16 (44%)
    No 74 (55%) 54 (55%) 20 (56%)
Start time of postoperative radiotherapy
    Early 71 (53%) 51 (52%) 20 (56%)
    Non-early 63 (47%) 47 (48%) 16 (44%)
TMZ adjuvant chemotherapy cycle
    Standard 69 (52%) 49 (50%) 20 (56%)
    Extended 65 (48%) 49 (50%) 16 (44%)
Abbreviations: KPS = Karnofsky Performance Status; MRI-score = Magnetic resonance imaging-score; MGMT = O6-methylgua-
nine-DNA methyltransferase; 1p = The short arm of chromosome 1; 19q = The long arm of chromosome 19; TERT = Telomer-
ase reverse transcriptase; TMZ = Temozolomide.
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of GBM is based on surgery within the maxi-
mum extent of safe resection, supplemented 
by postoperative radiotherapy and chemother-
apy. However, the prognosis of patients is still 
poor. According to incomplete statistics, the 
1-year survival rate of GBM patients is only 
40.0%, while the 5-year survival rate is less 
than 6% [17]. In recent years, in order to further 
improve the survival rate and prognosis of 
patients, a large number of basic experiments 
and clinical studies on GBM have been carried 
out worldwide, and human understanding of 
the genome map and biological behavior of 
GBM has gradually deepened. At the same 
time, the continuous development and wide-
spread application of new micro-surgical tech-
niques have improved the total resection rate 
of GBM to a certain extent [18]. In addition, the 
application of new therapeutic methods, includ-
ing targeted therapy, immunotherapy, and elec-
tric field therapy, in GBM treatment has also 
achieved certain results [19, 20]. 

Therefore, it is particularly important to assess 
the prognosis of patients using existing clinical, 
pathological, and radiology data, and identify 

which patients are more likely to relapse in the 
short term after surgery, requiring more aggres-
sive, even radical and more targeted treatment. 
By integrating the basic clinical information, 
molecular genetics information, pre-operative 
MRI image features and Rad-score of GBM 
patients, and analyzing the importance of pre-
dictive variables, we find that age, pre-opera-
tive KPS, Rad-score, MGMT promoter methyla-
tion, and TERT promoter mutation are important 
predictive factors for recurrence within 1 year 
after total resection in GBM patients. Combining 
the above predictive factors, a decision tree 
model is established, trained and tested. The 
model achieves AUC: 0.850 in the training set 
and AUC: 0.719 in the test set.

Many studies have shown that although the 
prognosis of GBM patients is generally poor, 
the prognosis of elderly patients is significantly 
worse than that of young patients, and their 
median survival period is shorter [21]. With the 
increasing degree of population aging, the inci-
dence rate of GBM in elderly patients is rising 
[22]. Compared with young patients, older 
patients are more likely to suffer from chronic 
diseases such as diabetes and hypertension, 
and their immunity and metabolic function will 
also decline accordingly. Their tolerance to 
treatment is relatively poor, including trauma 
caused by surgery and adverse reactions 
caused by post-operative radiotherapy and 
chemotherapy. Babu et al. [23] conducted a 
retrospective study of 120 newly diagnosed 
GBM patients between 2004 and 2010, and 
found that age was an important prognostic 
factor. Luo et al. [24] supposed that indicators 
such as age < 55 years old, IDH mutation, and 
total tumor resection suggested a good progno-
sis for GBM patients. The research by Zhang et 
al. [25] indicated that older age, IDH wide-type, 
and lower degree of tumor resection were inde-
pendent predictors of shorter survival in GBM 
patients.

Table 5. Rad-score formula
Rad-score = 0.32013 × log-sigma-4-mm-3D_glszm_LowGrayLevelZoneEmphasis_CE-T1WI_MAR + 0.25611 × wavelet-HH_gldm_DependenceEn-
tropy_CE-T1WI_MAR + 0.20272 × exponential_glcm_Imc1_CE-T1WI_Tumor + 0.07867 × square_ngtdm_Coarseness_CE-T1WI_MAR + 0.07621 
× exponential_glcm_Imc2_CE-T1WI_Tumor + 0.0724 × squareroot_glcm_ClusterProminence_CE-T1WI_Tumor + 0.03685 × log-sigma-4-mm-
3D_glrlm_ShortRunHighGrayLevelEmphasis_CE-T1WI_Tumor + 0.02929 × logarithm_glcm_Correlation_CE-T1WI_Tumor + 0.02244 × log-sigma-
3-mm-3D_glrlm_LongRunLowGrayLevelEmphasis_CE-T1WI_MAR + 0.0206 × squareroot_glszm_SmallAreaEmphasis_CE-T1WI_MAR + 0.01341 × 
log-sigma-5-mm-3D_glszm_LowGrayLevelZoneEmphasis_CE-T1WI_Tumor + 0.01032 × log-sigma-4-mm-3D_glrlm_LongRunLowGrayLevelEmpha-
sis_CE-T1WI_MAR
Abbreviations: glszm = Gray Level Size Zone Matrix; CE-T1WI = Contrast enhanced-T1 weighted imaging; MAR = Maximum anomaly region; gldm = Gray level dependence 
matrix; glcm = Gray level co-occurrence matrix; ngtdm = Neighboring gray tone difference matrix; glrlm = Gray level run length matrix.

Figure 3. Rad-score distribution in GBM patients with 
and without recurrence.
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According to the statistical report from the 
Central Brain Tumor Registry of United States 
(CBTRUS) [16], GBM is more common in men. 
In this study, there were 83 male and 51 female 
patients. No significant correlation was found 
between gender and recurrence within 1 year 
after surgery. Carson et al. [26] opined that 
gender and ethnicity cannot be used as indica-
tors of prognosis in patients with glioma. 
However, Patil et al. [27] analyzed the data from 
two clinical trials, NRG/RTOG 0525 and NRG/
RTOG 0825, and found that women with GBM 
had a longer median survival and overall sur-
vival (OS) than men. We believe that the corre-
lation between gender and GBM prognosis is 
uncertain, and prospective, multi-centered, 
and larger clinical trials are needed to evaluate 
it. KPS is a universal quality of life evaluation 
standard for cancer patients, originally used to 
assess whether cancer patients can tolerate 
chemotherapy. The higher the score, the better 
the patient’s physical condition, and more con-
ducive to tolerating the side effects caused by 
tumor treatment [28]. Several studies [25, 27] 
showed that GBM patients with KPS above 80 
had better post-operative status and longer 
survival time, which is basically consistent with 
the results of this study.

The MRI manifestations of glioma reflect the 
tumor’s cellular heterogeneity, neovasculariza-
tion, destruction of the blood brain barrier, and 
infiltration of surrounding tissues [29]. In this 
study, the mean MRI-score of 134 GBM 
patients is 9 points, and the mean MRI-score of 

is one of the important methods for the diagno-
sis and differential diagnosis of glioma, and the 
MRI-score based on MRI features in this study 
achieved quantitative evaluation of tumors to a 
certain extent, but lacked objectivity, so further 
use of other objective means to quantitatively 
evaluate MRI image features is needed.

The MGMT promoter methylation status, which 
regulates MGMT gene expression, is consid-
ered a biological marker for predicting GBM 
prognosis and TMZ chemotherapy sensitivity. 
However, some studies have also found incon-
sistency between MGMT promoter methylation 
and protein expression [32]. It has been report-
ed [33] that low expression of MGMT protein or 
mRNA was positively associated with improved 
patient survival and outcome, but MGMT pro-
moter methylation was not. Several studies 
have shown that MGMT promoter methylation 
was associated with better prognoses for GBM 
patients. In this study, we find that MGMT pro-
moter methylation and recurrence within 1 year 
after total resection in GBM patients are nega-
tively correlated. Therefore, we believe that 
MGMT has some application in the treatment 
decision and prognosis assessment of GBM 
patients.

TERT promoter mutation is a marker for better 
prognoses in IDH mutant gliomas, while sug-
gesting worse prognoses in IDH wild-type glio-
mas [34]. In a study of 473 adult gliomas, 
Killera et al. [35] found that patients carrying 
both TERT promoter mutation and IDH wild-

Figure 4. The rank of predictive variable importance of decision tree model. 
MGMT represents MGMT promoter methylation; TERT represents TERT pro-
moter mutation.

53 patients with recurrence 
within 1 year after surgery  
is also 9 points. No corre- 
lation between MRI-score 
and short-term recurrence is 
found. Romano et al. [30] 
found that the minimum ADC 
value in the enhanced por-
tion of GBM tumors was relat-
ed to the patient’s progres-
sion free survival (PFS) and 
OS, and patients with signifi-
cantly reduced ADC values 
had a poor prognosis. Pérez-
Beteta et al. [31] opined that 
the tumor necrosis area of 
GBM was significantly related 
to the poor prognosis of 
patients. We believe that MRI 
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Figure 5. A decision tree model for GBM patients with recurrence within one year after total resection was established using the C5.0 algorithm. Patient age, Rad-
score, MGMT promoter methylation, pre-operative KPS, and TERT promoter mutation are of great significance in predicting recurrence within one year after total 
resection in GBM patients; Age-1 represents ≥ 50 years old and 0 represents < 50 years old; TERT-1 represents TERT promoter mutation and 0 represents no muta-
tion; MGMT-1 represents MGMT promoter methylation and 0 represents un-methylation; KPS-1 represents > 80 and 0 represents ≤ 80; The optimal cutoff value 
for Rad-score is 0.578.
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type had the shortest OS. Similarly, the study by 
Labuissère et al. [36] suggested that in GBM 

patients, the presence of TERT promoter muta-
tion was an independent factor for poor prog-

Figure 6. A scatter plot (including training and test sets) that evaluates the consistency between predicted and 
actual recurrence. There is good consistency between the predicted recurrence and actual recurrence status of the 
two sets. Most of the scatter points are located on the diagonal line, and the fitting line is near the asymptotic line 
of “y = x”, showing good consistency.

Table 6. Prediction performance indicators of decision tree model
Indicator AUC ACC SEN SPE PPV NPV FPR FNR YI
Training set 0.850 0.898 0.816 0.950 0.912 0.891 0.050 0.184 0.766
Test set 0.719 0.833 0.867 0.810 0.765 0.895 0.191 0.133 0.676
Abbreviations: AUC = Area under curve; ACC = Accuracy; SEN = Sensitivity; SPE = Specificity; PPV = Positive prediction value; 
NPV = Negative prediction value; FPR = False positive rate; FNR = False negative rate; YI = Youden’s index.

Figure 7. ROC curves of decision tree model in training and test sets.
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nosis. In this study, TERT promoter mutation is 
found to be positively associated with patient 
recurrence within 1 year after surgery, which is 
generally consistent with the findings in the 
literature. 

It has been shown [37] that in newly diagnosed 
GBM patients, a modest delay in starting post-
operative radiotherapy and chemotherapy did 
not appear to be associated with poorer PFS or 
OS, whereas a significant delay of more than 6 
weeks may be associated with poorer OS. 
Zhang et al. [38] retrospectively analyzed the 
data of 66 patients with GBM and found that 
the start of postoperative adjuvant radiothera-
py that exceeded 6 weeks led to a decrease in 
survival, and therefore recommended that 
postoperative adjuvant radiotherapy be initiat-
ed within 6 weeks post-operatively. However, it 
has also been suggested [39] that extending 
the time to start postoperative radiotherapy to 
50 days had no effect on OS or PFS. We believe 
that the inherent limitations of retrospective 
studies and the insufficient number of patients 
enrolled may have contributed to the discrep-
ancy in the results of the above studies. This 
study does not find a significant correlation 
between the time of initiation of postoperative 
radiotherapy and recurrence outcome. 

Radiomics features refer to high-throughput 
quantitative features extracted from medical 
images, which cannot be recognized by the 
naked eye and may be related to genetic fea-
tures [8]. From the importance analysis of pre-
dictive variables, it can be clearly seen that the 
predictive importance of Rad-score is inferior 
to age, ranking second among the five impor-
tant factors, indicating that the Radiomics fea-
tures have significant predictive significance for 
the prognosis of GBM patients. Compared to 
other data mining algorithms, the decision tree 
model does not need to make any assumptions 
about the structure and distribution of data, 
with decision-making process closer to human 
thinking. Besides, it is very intuitive and easy to 
interpret. The decision tree model based on 
multiple factors established in this study can 
effectively predict the recurrence of GBM 
patients within one year after total resection, 
which is conducive to further optimizing clinical 
treatment decisions and refining clinical man-
agement of patients.

However, our study still has some inevitable 
limitations. Firstly, this study is a single center 

retrospective study with a small sample size, 
which inevitably leads to bias. We need to con-
duct larger, prospective, and multi-centered 
study in future to further verify the predictive 
performance of the model. Secondly, radiation 
dose, radiation energy, and the mechanism of 
action between radiation therapy and biological 
individuals are extremely complex, with a large 
number of uncontrollable factors and individual 
biological randomness, which may affect the 
prognosis of patients. We have not discussed 
them here and need to pay attention to them in 
future research. 

Conclusions

The decision tree model based on clinicopatho-
logical risk factors and preoperative MRI Rad-
score established in this study can accurately 
predict the risk of recurrence within one year of 
GBM after total resection, which can further 
guide clinical optimization of patient treatment 
decisions, while refining patient clinical man-
agement, and improving patient prognosis to a 
certain extent.
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