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Abstract: Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often 
leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, 
and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes 
the molecular biological mechanism of radiation-induced brain injury and provides research directions for future 
studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced 
chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physio-
pathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
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Introduction

Hundreds of thousands of patients worldwide 
receive radiotherapy each year for primary 
brain tumors and brain metastases originating 
from an extracranial tumor [1]. However, when 
the dose of radiotherapy exceeds the tolerance 
threshold of the central nervous system (CNS), 
it will damage the surrounding normal brain tis-
sue and lead to radiation-induced brain injury 
(RIBI), which is mainly characterized by brain 
tissue edema and necrosis, demyelination, co- 
gnitive and memory impairment, and other  
dysfunctions. RIBI is divided into acute, early 
delayed (subacute), and late responses based 
on symptom onset time. Although acute and 
early delayed injuries can lead to serious clini-
cal conditions, they are generally considered 
mostly reversible. However, late, delayed dam-
age occurring 6 months to several years after 
brain radiotherapy is considered irreversible 
and progressive and is characterized by demy-
elination, vascular abnormalities, and eventual 
white matter necrosis. Fifty to ninety percent  
of these cancer survivors exhibit cognitive im- 
pairment after radiotherapy, which is often pro-
gressive and disabling [2]. Continued improve-

ments in treatment have improved survival in 
patients with head and neck tumors and have 
increased the population of patients with 
delayed injury. The cognitive areas affected 
include learning, memory, processing speed, 
attention, and executive function [3]. Many 
studies have confirmed the existence of radia-
tion-induced cognitive impairment (RICI) [4, 5]. 
Chang et al. found that the clinical symptoms of 
RICI ranged from mild cognitive impairment to 
severe dementia [6, 7]. The study of RICI is 
important because it can prevent and reduce 
the degree and incidence of cognitive impair-
ment in patients with brain radiation. Several 
studies have shown that cognitive impairment 
reduces the quality of life of long-term survivors 
[8, 9]. In turn, cognitive impairment can lead to 
physical frailty through psychological distress 
[10], so improving patients’ cognitive impair-
ment is also important for promoting physical 
rehabilitation.

In previous studies, the main set of subjects 
presented with impairment and cognitive de- 
cline that occurred from 6 months to 1 year or 
more after irradiation [11]. These long-term 
sequelae are usually progressive and irrevers-
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ible and include a wide range of clinical symp-
toms, such as neuropathy, encephalopathy, 
seizures, syncope, memory impairment, and 
ataxia, which seriously damage patients’ quali-
ty of life [12, 13]. Up to 2-5% of radiotherapy 
patients can progress from cognitive impair-
ment to dementia [14]. With the shift of the 
medical model to the biopsychosocial model, 
clinical treatment has begun to focus on how  
to meet patients’ physical and psychological 
needs and improve their quality of life [15].  
The exact mechanism of RICI is still unclear, 
and this paper summarizes the latest literature 
on RICI to provide ideas for related studies.

BBB disruption

Radiation-induced damage to the BBB is a 
dynamically changing process, and this disrup-
tion further exacerbates neuroinflammation in 
the brain. Damage to the BBB may be associ-

ated with radiation-induced release of various 
substances, such as high-mobility group box 
protein 1 (HMGB1) and TNF-α, as well as activa-
tion of the MAPK signaling pathway.

The BBB consists of endothelial cells (ECs), 
basement membranes, and the endfeet of 
astrocytes (shown in Figure 1). Due to its highly 
selective permeability, the BBB selects and 
controls the entry of most molecules from cir-
culating blood into the CNS [16]. After radiation 
damage to the BBB, various inflammatory re- 
sponses occur, such as infiltration into brain 
tissue by peripheral immune cells, reactive oxy-
gen species (ROS) accumulation, and subse-
quent microglial activation [17]. Ionizing ra- 
diation (IR) damages ECs [18], alters EC perme-
ability and is secondary to endothelial barrier 
damage [19], further exacerbating the inflam-
matory response.

Figure 1. Composition of the BBB and the effect of IR on the BBB. The BBB consists of the basement membrane of 
ECs and the endfeet of astrocytes. Under IR, ECs activate microglia via the NF-κB pathway, which attracts microglia 
to migrate toward adjacent vessels. Microglial activation secretes TNF-α to downregulate claudin-5 expression, lead-
ing to early destruction of the BBB.
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lial activation and inflammatory responses in a 
mouse model of RIBI and reduced neuronal 
apoptosis and loss in mice [36]. This study sug-
gests that pregabalin attenuates NF-κB-me- 
diated microglial inflammatory responses by 
inhibiting the intracellular to extracellular trans-
location of neuronal HMGB1. Mouse experi-
ments also demonstrated that using the 
HMGB1 inhibitor glycyrrhizin reversed X-ray-
induced depression-like behavior and neuronal 
damage [28]. Significant improvements in cog-
nitive function were observed after the admin-
istration of AM251, a cannabinoid receptor in- 
verse agonist, to mice with cognitive dysfunc-
tion (emotional and memory deficits) after brain 
radiotherapy and improved cell proliferation 
and survival in the hippocampus of irradiated 
mice [37]. This study found that AM251 inhibit-
ed HMGB1 expression in the hippocampus of 
irradiated mice and that inhibiting HMGB1 
expression correlated with improved cognitive 
function in mice.

Inflammatory response

Multiple neuronal cell types and lineages exist 
in the brain, including astrocytes and neurons 
from neural stem progenitor cells (NSPCs)  
and intermediate and mature oligodendrocyt- 
es from proliferating oligodendrocyte precursor 
cells (OPCs). NSPCs and OPCs are highly pro- 
liferative, whereas neurons, astrocytes, and 
mature oligodendrocytes exist in a postmi- 
totic state. Most cell proliferation occurs in  
the IR-sensitive ventricular-subventricular zone 
[38]. IR can trigger an immune response within 
the CNS, leading to chronic neuroinflammation 
[39], but changes in cognitive function may not 
occur until long after the injury. Neuroinflam- 
mation in the brain is mainly caused by the 
combined action of astrocytes, microglia, and 
peripheral immune cells after crossing the 
BBB. The role of microglia and astrocytes in 
neuroinflammation is shown in Figure 2.

Microglia

Microglia, the immune cells of the CNS, also 
play an important role in radiation-induced 
RIBI. Activated microglia can be transformed 
into both M1 and M2 forms and produce differ-
ent inflammatory mediators, thereby mediating 
different physiological effects.

The change in BBB permeability due to radia-
tion is a dynamic process. Acute increases in 
BBB permeability were detected by BBB per- 
meability tracers when the cranium received a 
single 20-60 dose of whole brain radiation ther-
apy (WBRT) but recovered within a few weeks 
[20, 21]. A similar study found that BBB perme-
ability peaked at 1-1.5 months [22], after which 
it recovered with time.

As shown in Figure 1, irradiated ECs can se- 
crete cellular signals via the nuclear factor κB 
(NF-κB) pathway that activates microglia and 
induces microglia to migrate to adjacent ves-
sels [23]. Microglia are activated by secreted 
tumor necrosis factor-α (TNF-α), which down-
regulates claudin-5 expression and leads to 
radiation-induced early BBB destruction [20]. 
In contrast, treatment with anti-TNF-α improves 
BBB permeability in X-ray-irradiated mice [24].

HMGB1 is a member of the highly conserved 
nonhistone DNA binding protein family and a 
master switch for neuroinflammation [25]. HM- 
GB1 can disrupt junctions and increase endo-
thelial permeability [26]. HMGB1 can enter the 
extracellular environment through two path-
ways: active secretion by activated macro-
phages and monocytes and passive release by 
necrotic or damaged cells [27]. Toll-like recep-
tor 4 (TLR4) located on the microglial mem-
brane binds to HMGB1 to promote microglial 
activation [28, 29]. EC membrane-expressed 
advanced glycation end product receptor 
(RAGE) binds to HMGB1 via the ROS pathway 
and ultimately activates NF-κB [30]. Activation 
of RAGE activates nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase, leading 
to increased endothelial permeability [31], 
which is the pathological basis for disrupting 
the integrity of EC barrier function [32]. More- 
over, radiation was shown to promote the 
release of HMGB1 and activation of the MAPK 
signaling pathway through RAGE [33]. Activa- 
tion of the MAPK signaling pathway increases 
the expression of NF-κB, matrix metalloprotein-
ase-2 (MMP-2) and matrix metalloproteinase-9 
(MMP-9) and inhibits the expression of the pro-
teins ZO-1 and Claudin 5, which ultimately 
leads to damage to the endothelial barrier. 
Inhibition of HMGB1-RAGE signaling is a prom-
ising method for regulating inflammation and 
tumorigenesis [34, 35]. Animal experiments 
also confirmed that pregabalin inhibited microg-
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Figure 2. Role of microglia and astrocytes in neuroinflammation. 1. Microglia are activated by TLR-4, INF-γ, and 
GM-CSF and take on an M1 state with proinflammatory effects, producing corresponding inflammatory factors and 
ROS that damage neurons. 2. Microglia are activated by IL-4, IL-10, and FCγ and take on an M2 state with anti-
inflammatory effects, producing corresponding inflammatory factors that protect neurons. 3. Microglia in the M1 
and M2 states are interconvertible. 4. IL-1α, TNF-α and C1q secreted by microglia induce astrocyte activation in the 
proinflammatory A1 state, while IL-4 and IL-10 induce astrocyte activation in the anti-inflammatory A2 state.

Microglia are the intrinsic immune cells of the 
CNS and have an important role in immune sur-
veillance and maintenance of brain homeosta-
sis under physiological conditions. These cells 
are highly active in their presumed resting state 
and monitor the surrounding microenvironment 
through constant movement in all directions 
[40]. When microglia are activated, they shift 
from patrolling to protecting the injured site. 
Although activated microglia are critical for 
maintaining homeostasis of the brain microen-
vironment, continued activation in the late 
stages of RIBI can lead to chronic neuroin- 
flammation and cognitive impairment [41, 42]. 
When the brain is exposed to IR, soluble factors 
that are initially present on the surface of neu-
rons and inhibit microglial activation are dis-
rupted [43]. As microglia activate, they move 

toward the site of injury and engulf apoptotic 
neurons and cellular debris, producing high lev-
els of proinflammatory mediators [44]. In vivo 
evidence suggests that activated microglia 
localize near newly formed cells during brain 
inflammation and that neurogenic damage de- 
pends on the degree of microglial activation 
independent of the presence or absence of sur-
rounding tissue damage. That is, there is a sig-
nificant negative correlation between the num-
ber of microglia in the neurogenic area and the 
number of surviving new hippocampal neurons 
[45]. Other studies have demonstrated that 
selective inhibition of microglia-mediated neu-
roinflammation improves RICI [46]. 

The effect of microglial activation showed dif-
ferences depending on age, and animal experi-
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ments demonstrated that adult mouse brains 
exhibited sustained microglial activation after 
irradiation, while juvenile mice (3 weeks old)  
initially showed microglial activation after irra-
diation but recovered significantly after a week 
[47, 48]. A higher risk of radiation-induced 
chronic neurotoxicity has likewise been ob- 
served clinically in elderly patients [49]. The 
duration of irradiation is also another factor 
that affects microglial activation. After a single 
whole brain irradiation of 10 Gy for one week, 
only some microglia were activated. However, 
microglia responded consistently over two mon- 
ths of irradiation, exhibiting an activated state 
of cellular hypertrophy and the ability to engulf 
dead cells and damaged neurons [49].

Activated microglia can be divided into an M1 
state [50], which promotes inflammation, and 
an M2 state, which inhibits inflammation; they 
produce different inflammatory mediators that 
determine whether they are neuroprotective or 
neurotoxic [51-53]. The production and conver-
sion of microglia to the M1 phenotype and the 
production and secretion of the corresponding 
proinflammatory mediators require signaling 
through TLR-4 [54], the interferon-γ (IFN-γ) 
receptor complex [55], and the granulocyte-
macrophage colony-stimulating factor (GM- 
CSF) receptor [56]. Microglia after high-dose 
radiation exposure exhibit an M1 state; they 
have an amoebic morphology with enhanced 
phagocytosis and release various proinflam- 
matory mediators, such as interleukin 1β (IL-
1β), IL-6, ROS, and TNF-α [41, 57]. Their release 
of the inflammatory factors TNF-α [58], IL-1β 
[59], and IL-6 [53] inhibits neural precursor pro-
duction, neuronal differentiation, and survival 
specificity. Studies in rodents have shown that 
after a single high dose of irradiation, high lev-
els of activated microglia and TNF-α are ob- 
served for at least 6 months [60]. This continu-
ous activation of microglia releases proinflam-
matory factors that maintain the inflammatory 
state of the brain microenvironment, which in 
turn causes neuronal and progenitor cell death, 
resulting in a vicious cycle characterized by 
microglial activation, inflammatory factor re- 
lease, and neuronal death [46]. In vitro assays 
have also confirmed that blocking neurotoxicity 
via IL-6 and TNF-α release restores neuro- 
blastogenesis in vitro [53]. Previous studies 
have demonstrated that minocycline inhibits 
M1 microglial activation, ameliorating neuroin-

flammation and preventing further neuronal 
cell loss [61, 62]. However, minocycline has not 
been used successfully in patients. A recent 
randomized controlled trial found that 24 
months of treatment with minocycline in a sy- 
mptomatic Alzheimer’s disease group did not 
delay the progression of cognitive impairment 
[63]. The transition of microglia from a resting 
state to a protective M2 phenotype is mediat- 
ed by signaling through IL-4 receptors, FCγ 
receptors, or IL-10 receptors [64]. M2 microglia 
phagocytose dead cells and produce neuro-
trophic factors and inflammatory factors that 
promote hippocampal neurogenesis, such as 
IL-4, IL-10, and transforming growth factor-β 
(TGF-β) [65]. A recent study found that the 
supernatant of M2 microglia (containing 15- 
deoxy-Δ12,14-prostaglandin J2) promotes neu-
rogenesis [66].

Microglia are highly dynamic cells capable of 
switching between M1 and M2 states. The tran-
sition of microglia from the M1 to the M2 state 
is thought to improve the brain’s performance 
in restoring homeostasis after exposure to pa- 
thological stress [64]. One factor that may be 
critical for the microglial cell transition between 
activation states is suppressor of cytokine  
signaling 3 (SOCS3). Studies on LysMCre-
SOCS3fl/fl mice have shown that when SOCS3 
expression is lacking in myeloid cells, the polar-
ization of microglia toward a proinflammatory 
state is enhanced, as shown by increased pro-
duction and secretion of TNF-α, IL-1β, IL-6, CC- 
chemokine ligand 3 (CCL3), CCL4, and C-X-C 
motif chemokine ligand 11 (CXCL11) [67].

As previously described, microglia are activat-
ed and transformed into the M1 form by a  
combination of CSF mechanisms and colony-
stimulating factor 1 receptor (CSF-1R) inhibi-
tors, which can achieve temporary depletion of 
microglia [68]. In normal brains, CSF-1R inhibi-
tor (CSF-1Ri) treatment depleted up to 99% of 
microglia and did not result in detectable 
changes in cognitive function [68, 69]. Com- 
plete repopulation was shown to occur within 
14 days after inhibitor withdrawal, and the 
repopulated microglia were morphologically 
and functionally identical to microglia in the 
young brain [69]. Animal experiments have also 
confirmed that microglial depletion in the brain 
during or shortly after irradiation can prevent 
the loss of dendritic spines in hippocampal 
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neurons and the development of cognitive 
impairment at later time points [70-72]. Re- 
garding the mechanism, subsequent studies 
found that WBRT-induced transcriptomic ch- 
anges in microglia could be eliminated after 
microglial depletion and repopulation [73].

Intercellular cell adhesion molecule-1 (ICAM-1) 
is an important adhesion molecule that medi-
ates the adhesion of leukocytes to ECs and 
then crosses the BBB into brain tissue. 
Irradiated microglia can produce ICAM-1 or 
release TNF-α and IL-6 to activate astrocytes  
to produce ICAM-1 [74]. The TAM (Tyro3, Axl, 
and Mer) tyrosinase receptors present on the 
surface of microglia, which receive kinases 
secreted by dendritic cells and macrophages, 
have a negative regulatory role in inhibiting the 
immune response of these cells. Loss of TAM 
receptors by microglia results in increased pro-
duction of IL-6 and IL-1β, which, as paracrine 
factors, stimulate astrocytes to produce more 
IL-6 [75]. All of these processes can exacerbate 
intracranial nerve inflammation.

Astrocytes

Astrocytes also have an immune function and 
maintain brain homeostasis. Radiation-induc- 
ed polarization of astrocytes can be induced by 
different cytokines into a neurotoxic A1 state  
or a neuroprotective A2 state. Dysregulation of 
the complement system, connexin (Cx), and 
alterations in Ca2+ signaling are all involved in 
astrocyte-mediated inflammation.

Astrocytes are one of the most common cells  
in the brain and were previously thought to be 
nonfunctional. Nevertheless, these cells have 
gradually been shown to have functions in 
immunity [76] and maintenance of brain ho- 
meostasis [77]. In a review, Michelle et al. 
noted that astrocytes achieve their protective 
effects on neurons through at least seven dif-
ferent mechanisms: 1) preventing glutamate 
toxicity, 2) preventing redox stress, 3) mediat-
ing mitochondrial repair mechanisms, 4) pre-
venting glucose-induced metabolic stress, 5) 
preventing iron toxicity, 6) modulating immune 
responses in the brain, and 7) maintaining tis-
sue homeostasis in the presence of DNA dam-
age [78].

Radiation exposure to the cranium can lead to 
the reactive proliferation of astrocytes with sig-

nificant morphological changes [79], including 
hypertrophy of cell protrusions, upregulation of 
intermediate filaments, and increased expres-
sion of glial fibrillary acidic protein (GFAP). As 
mentioned previously, the proinflammatory fac-
tors secreted by activated microglia stimulate 
astrocytes to secrete inflammatory factors. 
Therefore, in vitro experiments in which microg-
lia and astrocytes were mixed and irradiated 
with 15 Gy revealed that proinflammatory fac-
tors such as PGE2, IL-6, and IL-1β secreted by 
microglia mediated phenotypic changes in 
astrocytes, e.g., the proliferation of reactive 
astrocytes [80]. Proliferating astrocytes release 
high levels of vascular endothelial growth fac-
tor (VEGF), and the expression of hypoxia-
inducible factor-1а (HIF-1а), which stimulates 
astrocyte production of VEGF, increases BBB 
permeability after radiation-induced hypoxia at 
the site of injury. In addition, the accumulation 
of DNA damage due to IR may induce senes-
cence-associated secretory phenotype (SASP) 
expression and senescence in astrocytes [81].

Similar to microglia, astrocyte polarization is 
followed by classification into A1 (neurotoxic) 
and A2 (neuroprotective) astrocytes. A1 astro-
cytes are mainly induced by IL-1α, TNF-α, and 
C1q secreted by microglia in models of neuroin-
flammation [82]. A2 astrocytes are induced 
mainly in ischemic and acute trauma models 
[83], and in vitro assays have found that IL-4 
and IL-10 induce the production of A2-like 
astrocytes [84]. Low-dose radiation studies 
simulating space radiation also found that 
astrocytes exacerbate BBB permeability in the 
acute phase after irradiation but switch to a 
more protective phenotype in the subacute 
phase by reducing oxidative stress and the 
secretion of proinflammatory cytokines and 
chemokines [85]. Complement C3 is a typical 
marker of the type A1 astrocyte subtype. Ani- 
mal studies have found that C3-deficient mice 
treated with cranial radiotherapy are superior 
to wild-type mice in learning and reversal of 
knowledge [86]. Dysregulation of the comple-
ment system leads to astrocyte expression that 
promotes inflammatory features and may con-
tribute to the pathogenesis of autoimmune and 
neurodegenerative diseases. Recent studies 
have found elevated levels of the brain com- 
plement component proteins C1q (the proximal 
component of the complement cascade) and 
C3 (the downstream part of the complement 
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cascade, activated by C1q) after irradiation 
[87]. C1q is synthesized by microglia after irra-
diation, while astrocytes also express C1q in 
pathological conditions such as multiple scle- 
rosis and temporal lobe epilepsy [82, 87]. The 
authors conducted further studies to demon-
strate that the complement system is associ-
ated with the activation of microglia and as- 
trocytes after radiotherapy and is a crucial me- 
diator of radiation-induced cognitive decline. 
The results showed that the proximal comple-
ment factor C1q increases in abundance within 
2 h after radiotherapy and colocalizes with acti-
vated microglia and astrocytes. Levels of the 
downstream complement component C3 in- 
creased significantly within 2 h after radiation, 
but it colocalized mainly with reactive astro-
cytes. This finding suggests that radiation acti-
vates microglia, causing them to produce C1q, 
which then activates astrocytes. A genetically 
engineered mouse model with C1q deletion 
specifically in microglia was then used to test 
this hypothesis. The results showed that mice 
lacking microglial C1q had lower levels of 
numerous inflammatory cytokines in response 
to radiation. The deletion of microglial C1q also 
prevented TLR4 upregulation in microglia, thus 
suggesting that C1q may act on microglia in 
addition to astrocytes. Whether C1q-directed 
therapy can be used clinically to avoid a radia-
tion-induced cognitive decline will depend on 
whether these drugs successfully cross the 
BBB and do not reduce the efficacy of radiation 
therapy.

Cx is a transmembrane protein responsible for 
intercellular communication [88]. Several stud-
ies have found that altered levels of CX expres-
sion in astrocytes are associated with a variety 
of cognitive impairment diseases. For example, 
in mice model of AD, Cx43 and Cx30 expres-
sion is increased in astrocytes surrounding 
amyloid plaques in APP/PS1 mice [89], and a 
decrease in Cx43 and Cx30 expression in 
depression patients [90, 91]. Cx43 levels in- 
crease with disease progression in epilepsy 
patients [92, 93]; and at the genetic level, CX30 
miRNA was upregulated in glioblast astrocytes 
and expressed in rat brain apoptotic neuronal 
cells [94]. However, most of the current studies 
on altered CXs expression in RIBI have focused 
on the alteration of CX43, and few studies on 
other CXs, so our review focuses on CX 43 
expression alterations. Cx43, a member of the 

Cx family, plays a vital role in neuroinflamma-
tion, including promoting the assembly of gap 
junctions and increasing intercellular signal 
exchange [95-97], and is an important com- 
ponent of astrocyte gap junction channels. 
Regulation of Cx43 hemichannel opening pre-
vents tissue damage due to excessive activa-
tion of the inflammatory response [98], and 
upregulation of Cx43 is essential for radiation-
induced neuroinflammation [99]. Upregulation 
of Cx43 can lead to an increase in inflammato-
ry factors such as TNFα, INF-γ, IL-6, and IL-1β, 
leading to the development of radiation-
induced neuroinflammation. Previously, Cx43 
was found to be a direct target gene of miR-
206, and subsequent studies also confirmed 
that miR-206 [100] could alleviate irradiation-
induced neurological damage by regulating 
Cx43 [101]. In contrast, overexpression of miR-
374a also abrogated γ-ray-induced upregula-
tion of Cx43 in astrocytes and reduced inflam-
matory factors released from astrocytes [99]. 
Therefore, the regulation of Cx43 is expected  
to be a new research direction and a potential 
therapeutic target for treating inflammation-
related neuronal injury after radiotherapy.

Another vital assessment of astrocyte function 
is the generation and propagation of stimulus-
induced intercellular Ca2+ transients and wav- 
es [102]. Preclinical studies have shown that 
neurodegeneration is associated with behav-
iorally relevant changes in astrocyte Ca2+ sig-
naling [103]. Studies in transgenic animal mod-
els have confirmed the causal relationship 
between impaired astrocyte Ca2+ signaling and 
cognitive and behavioral impairment [104-
106]. One study found persistent cognitive defi-
cits in mice 12-15 months after whole-brain 
radiotherapy [107]. Further analysis revealed a 
constant attenuation of astrocyte Ca2+ signal-
ing but did not reveal altered astrocyte-astro-
glia gap junction coupling. This finding suggests 
that altered Ca2+ signaling may contribute to 
the persistent impairment of cognitive function 
after whole-brain radiotherapy in mice.

Peripheral immune infiltration

After the brain is irradiated, monocytes and 
macrophages from the peripheral blood can 
enter the brain in different ways and participate 
in the inflammatory process in the brain. G-CSF 
may improve cognitive dysfunction after brain 
irradiation.
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Despite the presence of innate immune cells in 
the brain, peripheral immune cells can migrate 
to the brain when the BBB is destroyed [108].

Monocytes are important mediators of innate 
immune function because of their ability to dif-
ferentiate into tissue macrophages. Based on 
the expression of specific cell surface antigens, 
monocytes can be divided into two distinct  
subpopulations, namely, “inflammatory” (Ly- 
6ChiCCR2CX3CR1+-) and “circulating” (Ly-6Cl° 
CCR2-CX3CR1) monocytes. The chemokine  
C-C motif chemokine receptor 2 (CCR2) is ex- 
pressed in neurons and glial cells [109, 110]. 
Nevertheless, recent studies have suggested 
that CCR2 is mainly expressed in blood-derived 
monocytes and macrophages but not in resi-
dent cells in the CNS [111-113]. Mouse experi-
ments identified CCR2 as a critical mediator of 
hippocampal neuronal dysfunction and hippo-
campal cognitive impairment after cranial irra-
diation (10 Gy), and CCR2 deficiency prevented 
hippocampal body-dependent spatial learning 
and memory impairment induced by cranial 
irradiation [114]. In a similar study, when CCR2-
deficient mice were irradiated using low doses 
(2 Gy), CCR deficiency rescued hippocampal 
neural progenitor cell survival and stabilized 
neurogenesis after exposure to low doses of 
irradiation [115]. These results suggested that 
circulating Ly-6C(hi)CCR2(+) monocytes [circu-
lating Ly-6C(hi)CCR2(+) monocytes] are prefer-
entially recruited to the diseased brain and dif-
ferentiate into microglia after cranial radiothe- 
rapy. Nevertheless, interestingly, this study 
found that microglial transplantation in CNS 
pathology was not associated with significant 
BBB disruption [116]. Similar studies have also 
found that cranial radiation alters the homeo-
static balance of the brain, allowing the entry  
of CCR2+ macrophages from the peripheral cir-
culation and increasing the sensitivity of the 
hippocampal formation to IR [117]. This study 
did not detect abnormal expression of multiple 
markers associated with BBB integrity. Thus, 
infiltration of peripheral CCR2+ macrophages 
may be mediated by inflammation-induced  
chemotactic signaling. Recent studies have 
confirmed that irradiated microglia can secrete 
CCL2 but can barely express CCR2 [48, 118]. 
In addition, CCL2 has been found to damage 
the integrity of the BBB in mice [110]. Thus, 
CCL secreted by microglia after cranial irradia-
tion can cause peripheral immune involvement 

in the brain by damaging the BBB and inducing 
peripheral immune cells to enter the brain in 
multiple ways.

Macrophages are an essential component of 
inflammatory infiltration during RIBI. Previous 
studies have found that the number of macro-
phages in the brain following radiation usually 
increases in a radiation dose-dependent man-
ner and promotes the secretion of inflammato-
ry factors such as IL-1 and TNF-α by macro-
phages. Animal experiments have also shown a 
significant increase in macrophages after cra-
nial irradiation [117, 119]. However, the source 
of the increased macrophages in the brain 
under the pathological setting of RIBI is still 
controversial. Because microglia and peripher-
al immune cells share multiple immune mark-
ers, such as CD11c, CD68, and MHC II [120], 
these cells are difficult to distinguish by con-
ventional techniques. In contrast, using trans-
genic and bone marrow chimeric animals and 
experimental methods such as flow cytometry 
and two-photon imaging have allowed the iden-
tification and functional study of infiltrating 
immune cells. Using bone marrow chimeric mi- 
ce, researchers demonstrated that bone mar-
row-derived cells (BMDCs) were explicitly re- 
cruited to the site of radiotherapy and differen-
tiated into inflammatory cells and microglia. 
Moreover, more than 50% of microglia in the 
irradiated areas of the brain are not resident 
microglia but are recruited from the bone mar-
row after radiotherapy [121]. The aggregation 
effect is time- and dose-dependent and per-
sists for up to 6 months after cranial irradiation 
of >15 Gy [122]. However, some studies have 
suggested that a significant increase in neutro-
phil infiltration was observed only 12 h after 
radiation exposure. No significant increase was 
observed for the remaining time [123].

G-CSF is an endogenous hematopoietic grow- 
th factor commonly used clinically to increase 
granulocytes in patients with granulocytopenia. 
Interestingly, one study found that G-CSF, as a 
neuronal ligand, stimulates neurogenesis [124] 
and positively affects performance in the radial 
maze of normal rats [125]. In contrast, similar 
results were obtained in a later mouse test, in 
which mice given G-CSF 7 days after whole-
body irradiation showed improved progenitor 
cell proliferation throughout the brain, suggest-
ing that bone marrow-derived G-CSFR-positive 
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cells are essential for brain repair after radia-
tion injury. Behavioral tests also confirmed that 
G-CSF improved neurocognitive function after 
brain irradiation. Bone marrow-derived cells 
with monocyte/macrophage and microglia phe-
notypes were also found to be in the irradiat- 
ed brain in the perivascular and parenchymal 
regions. These findings suggested that G-CSF 
restores radiation-induced white matter des- 
truction [126].

Oxidative stress & DNA damage

Mitochondrial dysfunction and abnormal levels 
of mitochondrial translocator protein (18 kDa, 
TSPO) both lead to excess ROS and oxidative 
damage in the brain. Direct radiation damage 
to DNA and damage to mitochondrial DNA are 
mechanisms of neuroinflammation.

Basal levels of ROS in the brain are due to nor-
mal cellular function and metabolic activity. 
Although ROS production is a natural conse-
quence of mitochondrial respiration, excess 
ROS produced by cranial brain injury beyond 
the capacity of biological cellular antioxidant 
mechanisms will lead to pathophysiological 
changes in the brain. Neuronal and glial cells 
are particularly susceptible to oxidative dam-
age because the CNS is rich in polyunsaturat- 
ed fatty acids, has a high oxygen consumption, 
and lacks antioxidant defenses [127]. Increas- 
ed ROS activate the regulation of the NF-κB 
pathway, leading to neuroinflammation through 
NF-κB phosphorylation, activator protein-1 (AP-
1), specificity protein-1 (SP-1), cAMP-respon- 
sive element-binding protein (CREB), and sig- 
nal transducers and activators of transcription 
(STAT). CREB and STAT contribute to neuroin-
flammation [128]. Studies have demonstrated 
that a dose of 0.5 Gy increases ROS in microg-
lial cell lines [129]. A dose of 2 Gy induces 
microglial activation in the hippocampus and 
modulates electron transport chain (ETC) en- 
zyme activity in mitochondria [130]. Higher 
doses can lead to oxidative damage accompa-
nied by mitochondrial fission and expression of 
fusion proteins in parallel with microglial activa-
tion [131].

IR can induce mitochondrial dysfunction, char-
acterized mainly by reduced oxidative capacity 
and decreased ATP production, which is one of 
the main hallmarks of radiation-induced DNA 
damage and aging of neural tissue [132]. In 

vitro assays showed that after exposure of  
cells to 5 Gy irradiation, ROS levels increased 
significantly within the first few minutes and 
appeared to decrease at 30 min, and mito-
chondrial dysfunction was detected 12 h after 
irradiation. This change was manifested by a 
decrease in the activity of nicotinamide ade-
nine dinucleotide (NADH) dehydrogenase, the 
primary regulator of ROS release from the  
ETC [133]. During brain development, mito-
chondrial dysfunction and excessive ROS pro-
duction contribute to brain cell aging, cognitive 
impairment, and abnormal behavior [134]. In 
addition to the effect on the ETC, excess ROS 
interfere with Ca2+ homeostasis and induce 
Ca2+ overload, which can cause changes in 
mitochondrial potential and induce further ROS 
production [135]. During this process, mito-
chondria may experience potential membrane 
collapse, increased mitochondrial permeability, 
and rupture of the outer mitochondrial mem-
brane [136]. The increase in mitochondrial 
membrane permeability eventually leads to the 
release of cytochrome c, which initiates apop-
tosis [137].

TSPO is an outer mitochondrial membrane pro-
tein with low basal expression in the central 
nervous system, mainly by ECs [138]. However, 
this protein is expressed in activated microglia 
during neurological injuries or other cranially 
active pathological processes and is therefore 
used as an indicator of microglial activation 
[139, 140]. Recent studies have found that 
neuronal activity also increases TSPO levels in 
the brain, suggesting that it may not be a reli-
able marker of microglial activation [141]. 
Similarly, the reduction in TSPO may not repre-
sent an improvement in neuroinflammation but 
may reflect “malnutrition, senescence, and 
death, or mitochondrial dysfunction in microg-
lia” [142]. TSPO expression levels were posi-
tively correlated with the concentrations of  
several proinflammatory factors, including IL-6 
[44, 140]. The ligands of TSPO can regulate 
TSPO expression and alter the activation status 
of microglia between M1 and M2 proinflamma-
tory or anti-inflammatory states [143, 144]. 
TSPO may be involved in immunomodulatory 
functions by regulating mitochondrial energy 
and ROS production [139].

IR can cause DNA double-strand breaks (DSBs), 
leading to secondary genetic instability and oxi-
dative stress, ultimately leading to brain EC 
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senescence and cell death [145]. High-energy 
LET rays damage DNA directly, while low-energy 
LETs damage DNA by promoting the breakdown 
of water molecules in biological tissues and 
generating free radicals. The latter pathway 
can include base damage and release, depoly-
merization, crosslinking, and strand breakage 
in various ways [146]. DNA damage can rapidly 
trigger the activation of transcription factors 
such as NF-κB, CREB, and AP-1. These tran-
scription factors control intracellular ROS pro-
duction and inflammatory factors, including 
IL-1β, TNF-α, cyclooxygenase 2 (COX-2), and 
monocyte chemoattractant protein-1 (MCP-1) 
[42, 147]. Unrepaired and misrepaired double-
strand breaks (DSBs) may lead to genomic 
instability, cell death, or cellular senescence 
(an irreversible state of cell cycle arrest) [148, 
149].

Activation of the poly ADP-ribose polymerase 
(PARP) family of proteins is one of the hallmarks 
of neuritis and the DNA damage response 
(DDR). The role of PARP proteins is to initiate 
base excision repair (BER) in response to sin-
gle-strand breaks (SSBs) and DSBs. In mam-
malian cells, the PARPase family includes at 
least 17 members; however, only PARP1, PA- 
RP2, and PARP3 are involved in DNA damage 
repair activities. Most studies in the field of 
neuroinflammation have focused on PARP1, 
but most current PARP inhibitors (PARPis) are 
active against both PARP1 and PARP2. The 
best-known pathway by which PARP-1 promotes 
neuroinflammation is by regulating proinflam-
matory transcription factors such as NF-κB, 
AP-1, and nuclear factors that activate T cells 
[150]. NF-κB regulates the expression of sever-
al genes involved in immunity and inflamma-
tion. Under basal conditions, NF-κB is localized 
in the cytoplasm and, when activated, under-
goes nuclear translocation, binds to DNA, and 
increases the transcription of inflammatory 
cytokines, chemokines, adhesion molecules, 
and inflammatory mediators, including inducib- 
le nitric oxide synthase (iNOS), ROS and TNF-α 
[151]. Following radiation-induced DNA dam-
age, PARP binds to SSBs and recruits BER pro-
teins to induce polyadenosine diphosphate 
ribosylation modification (PARylation) and initi-
ate DNA repair. PARP-1 plays an important role 
in the upstream regulation of radiation-induc- 
ed NF-κB activation, and the PARP-1 inhibitor 
AG1436 enhances radiation toxicity by inhibit-

ing NF-κB activation [150]. DNA damage leads 
to activation of PARP-1, usually secondary to 
oxygen and nitrogen species (ROS/RNS), and 
elevated intracellular calcium, resulting in acti-
vation of ERK1/2-mediated phosphorylation 
[152, 153]. In addition, PARP-1 is involved in 
the microglial and astrocytic response to 
inflammation [153, 154], so PARP inhibition 
can reduce neuroinflammation, astrogliosis, 
and microglial activation. Based on the report 
that PARPis can be used as a radiosensitizer in 
preclinical studies in the glioma population 
[155, 156], if PARPis are used in the treatment 
of glioblastoma multiforme, tumor cell death 
can be enhanced by inhibiting DNA repair path-
ways. In addition, normal brain tissue can be 
protected from radiation-induced neuroinflam-
mation by inhibiting glial activation and inflam-
matory mediators [157]. However, the feasibili-
ty and clinical effectiveness of this method 
need to be further explored.

IR can also directly alter mitochondrial DNA 
(mtDNA), most notably by common deletion 
mutations. Growing evidence has shown th- 
at radiation-induced mitochondrial damage is 
more common than nuclear damage [158] and 
may be related to mtDNA’s lack of histone pro-
tection and efficient DNA repair system [159]. 
mtDNA is released into the cytoplasm after the 
mitochondrial membrane is damaged and rup-
tured [160]; mtDNA may induce the release of 
type I interferon and the expression of other 
interferon-driven genes [161, 162]. IR also indi-
rectly causes mitochondrial dysfunction by pro-
ducing ROS, triggering disruption of the ETC, 
and increasing antioxidant enzyme production 
through nuclear factor E2-related factor 2 
(Nrf2) [163].

Neuronal injury

Direct damage to neurons by IR is another 
cause of RIBI. Age, Sonic hedgehog (Shh) sig-
naling, Mg2+ in the hippocampus and differenc-
es in epigenetics are all factors that influence 
the outcome of radiation.

The hippocampus is in the medial temporal 
lobe of the brain. It consists of the dentate 
gyrus (DG) and the cornu ammonis (CA), which 
are the areas of the brain primarily responsible 
for memory formation. The hippocampus is 
critical for declarative memory (learning) ac- 
quisition, integration and retrieval and spatial 
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memory formation; complete or partial hippo-
campal damage may lead to spatial learning 
and memory impairment. In the adult mamma-
lian brain, neural stem cells (NSCs) are mainly 
found in the subventricular zone (SVZ) of the 
lateral ventricles and the subgranular zone 
(SGZ) of the hippocampal DG, and they repre-
sent a group of self-renewing cells that can dif-
ferentiate into neurons in response to different 
stimuli [164]. The SGZ contains the neuroge- 
nic “niche”, a specific microenvironment that 
allows neuronal development, including precur-
sor cells, their direct descendants and imma-
ture neurons, immune cells (e.g., microglia and 
macrophages), ECs, and the extracellular ma- 
trix. The presence of neurogenesis in the adult 
hippocampus remains controversial. Never- 
theless, it has been suggested that adult neu-
rogenesis persists throughout a person’s life 
but decreases slightly with age; however, the 
volume of the DG remains constant [165]. 
Animal experiments have confirmed that hippo-
campal irradiation results in a dose-dependent 
loss of NSCs and that surviving NSCs show 
reduced proliferation and neuronal differentia-
tion [166]. Radiotherapy also increases N- 
methyl-D-aspartic acid receptor expression in 
the hippocampus, resulting in excitotoxicity and 
cognitive dysfunction [167].

Animal studies showed that rats receiving a 
single 30 Gy dose of WBRT for three months 
had learning and memory deficits, as well as a 
decrease in the number of neurons in the CA1 
region of the hippocampus, an upregulation of 
caspase-3 expression in the hippocampal DG, 
and an increase in neuronal apoptosis [168]. A 
synaptic plasticity-based study found altered 
cognitive function and reduced expression of 
the synaptic plasticity marker vesicular gluta-
mate transporters 1 (VGLUT1) in mice three 
months after cranial irradiation, suggesting 
that radiation impairs intrinsic excitability and 
synaptic plasticity in hippocampal CA1 pyrami-
dal neurons [169]. Age is an essential factor 
affecting radiation outcomes. Although hippo-
campal neurogenesis was reduced in neonatal 
(10-day-old) and adult mice after IR, hippocam-
pal apoptosis sensitivity was significantly high-
er in neonatal mice than in adult mice [130]. 
Dendritic spine density in the DG was reduced 
considerably in young rats at 1 and 3 months 
after cranial radiotherapy with 10 Gy, and 
depletion of the synapse-associated proteins 

PSD-95 and Drebrin coincided with alterations 
in dendritic spines [170]. This study hypothe-
sized that the decrease in PSD-95 and Drabrin 
levels caused by IR affects the morphological 
structure of dendritic spines through effects 
that block functional connectivity pathways in 
the brain and lead to cognitive impairment. In 
addition, similar studies have found a more 
robust inflammatory response to low-dose IR 
(LDIR) in the hippocampus of young mice [171]. 
One study even irradiated embryonic mice pre-
natally. The mice exhibited several higher-order 
dysfunctions (e.g., reduced nocturnal activity, 
working memory deficits, delayed fading of 
threat-evoked response inhibition, and signs of 
aberrant behavior), and electrophysiological 
examination showed impaired hippocampal 
synaptic plasticity [172]. Therefore, hippocam-
pal protection is a concern for all age groups 
and is especially important for individuals who 
are still growing.

Shh signaling is critical for forming neurogenic 
ecotopes in the SVZ and hippocampal DG sub-
granular zone and in the specification of cell 
types in the nervous system [173, 174]. Studies 
based on the constitutive Shh pathway have 
found that activation of the Shh pathway has  
an overall protective effect against hippocam-
pal radiation damage [175]. This pathway regu-
lates the neurogenic network, reduces hippo-
campal defects in stem cells and neuronal 
compartments, and attenuates radiation-in- 
duced astrogliosis [176]. In addition, radiation 
can damage hippocampal-prefrontal cortical 
pathways, which may also cause RICI [177].

Decreased Mg2+ content is one of the critical 
factors leading to secondary CNS injury, and 
early Mg2+ supplementation can alleviate CNS 
injury. Therefore, some studies found that RIBI 
could be alleviated by Mg2+ supplementation in 
a rat model of radioactive brain injury and sug-
gested that the protective mechanism of Mg2+ 
on the hippocampus might be related to the 
c-Fos and NF-κB genes [178]. 5’-Adenosine 
monophosphate (AMP)-activated protein kina- 
se (AMPK) is a crucial sensor of cellular energy 
homeostasis [179]. Mammalian hippocampal 
neurons express AMPK [180], and cellular 
metabolism can influence or regulate neuro-
genesis [181]. Animal experiments have found 
that a dose-dependent activation of AMPK can 
occur in the mouse brain for several hours after 
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irradiation [182]. Interestingly, however, adult 
Cre-lox mice lacking AMPK in the brain showed 
further loss of early neural progenitor cells and 
neuroblasts in the hippocampal region after 
undergoing radiotherapy but no loss of new-
born neurons [182].

The effects of radiation on the hippocampus 
can also be realized epigenetically. Previous 
studies have found that two and 30 Gy whole 
brain irradiation significantly decreased his-
tone H3 acetylation and elevated histone 
deacetylase 1 (HDAC1) levels in the rat hippo-
campus 7 and 30 days after radiation exposure 
[183]. This finding suggests that epigenetics is 
associated with irradiation-induced memory 
deficits and that alterations in chromatin struc-
ture may be a new possible molecular correlate 
of irradiation-induced cognitive deficits. Kang 
et al. found that the mRNA levels of HDAC1 
were decreased in the hippocampus of mice 
one day after receiving 10 Gy cranial irradia-
tion, and the mRNA levels of DNA (cytosine- 
5-)-methyltransferase 1 (DNMT1), HDAC1, and 
HDAC2 decreased 30 days after irradiation 
[184]. The results suggest that reduced epigen-
etic gene expression is associated with hippo-
campal dysfunction in mice exposed to cranial 
irradiation, with effects depending on the time 
after irradiation. In addition, elevated levels  
of microRNAs (miRNAs) related to epigenetic 
regulation (e.g., miR-34c, miR-488 [185], miR-
132/miR-212, and miR-134 [186]) in the hip-
pocampus have also been reported after expo-
sure to low and moderate cranial doses of 
radiation. Interestingly, one study found that 
elevated miR-34a-5p induced in peripheral 
blood after total abdominal irradiation could 
target the 3’ untranslated region (UTR) of brain-
derived neurotrophic factor (BDNF) mRNA in 
the hippocampus to mediate cognitive dysfunc-
tion [187]. Young male rats underwent a single 
dose of WBRT at 10 Gy for three months, after 
which hippocampal memory was significantly 
reduced, and severe neurogenic damage was 
observed. Further assays revealed that tyro-
sine kinase receptor A (TrkA) protein expres-
sion increased after one week of irradiation  
but decreased considerably during a 3-month  
period. The upregulation of TrkA expression 
improved irradiation-induced hippocampal pre-
cursor cell proliferation and promoted neuro-
genesis [188]. This study, therefore, suggests 
that TrkA-dependent signaling pathways may 

play a key role in radiotherapy-induced cogni-
tive deficits and neurogenic damage.

In irradiation damage repair, one study found 
that DNA repair in the hippocampus was also 
delayed in the mouse brain after shallow irra-
diation doses [189]. Another study found re- 
duced expression of genes involved in ATP syn-
thesis (ND2, CytB, ATP5O) in brain regions of 
irradiated rats and much slower repair of nucle-
ar DNA in the hippocampus than in the cerebel-
lum and cortex [190].

Exosomes and miRNAs

Radiation-induced exosomes mediate the de- 
velopment of RIBI, and a variety of miRNAs are 
involved.

Exosomes (30-100 nm) are membrane-bound 
extracellular vesicles (EVs) containing DNA, 
miRNA, mRNA, proteins, and lipids, which are 
gradually attracting attention as crucial patho-
logical markers [191]. Exosomes differ from 
other EVs in that they pass through endosomal 
compartment biogenesis and carry tumor sus-
ceptibility gene 101 (TSG101) as a typical 
marker [192]. EVs play a vital role in intercellu-
lar communication, immune function, stem cell 
differentiation, neuronal function, tissue regen-
eration, and viral replication [193]. Host cell 
exosomes contain miRNAs, mRNAs, and pro-
teins and can alter the physiology of the recipi-
ent cell through the transfer of genomic, pro-
teomic, and lipid cargoes [193]. After deliver- 
ing messages, exosomes are mostly depleted. 
Cells constantly produce large amounts of exo-
somes to maintain the communication system 
and continue impacting the organism. Because 
they can carry cancer-specific proteomic and 
transcriptomic biomarkers during tumor trans-
formation, exosomes have become new drug 
delivery vehicles and key biomarkers for dis-
ease diagnosis [194].

IR stimulates the release of exosomes [195], 
and exosome-based mechanisms increase 
cancer cells’ ability to survive radiation expo-
sure [196]. In addition to the effects of radia-
tion on the irradiated area, there are also non-
targeted radiation effects, radiation-induced 
bystander effects (RIBEs), and remote isolation 
effects (RIAEs) [197]. As our understanding of 
exosomes has increased, new ideas for eluci-
dating RIBEs and RIAEs have been reported. 
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Exosomes are essential in mediating RIBEs, 
where molecular signals from irradiated cells 
affect unirradiated cells [197] and propagate 
radiation effects. Recently, exosomes were 
even shown to convey genomic instability from 
irradiated cells to bystander cells [198].

MiRNAs (miRs) are a class of endogenous, non-
coding, single-stranded RNAs approximately  
21 nucleotides in length that are involved in 
regulating post-transcriptional gene expression 
[199, 200]. Previous studies have demonstrat-
ed that miRNAs can affect axonogenesis, syn-
aptogenesis, and dendritic spine development 
[201] and participate in stress-induced im- 
mune responses in the brain [202], including 
cytokine production and inflammation [203]. 
MiRNA-mRNA gene regulatory networks have 

been shown to mediate reactions to IR [204, 
205] and neuroinflammation [206]. As shown 
in Figure 3, the expression of multiple miRNAs 
appeared to be up- and downregulated by IR 
and had an impairing effect. MiR-21 is a well-
described DDR miRNA that participates in 
RIBEs in a mediated manner [197]. Exposure of 
humans to low doses of radiation (7.72±4.73 
mSv) also caused an increase in miR-21 and 
miR-625 expression levels, and miR-21 and 
miR-625 can contribute to the response to 
acute low-dose IR by targeting SP1 [207]. 
Downregulation of the hippocampal, frontal, 
and cerebellar miR-29 families was detected in 
mice 6 to 96 h after receiving 1 Gy irradiation, 
resulting in altered DNA methyltransferase 3 
alpha gene expression and causing overall 
methylation of DNA [185]. Because miR-29 pro-

Figure 3. IR-induced changes in intracranial miR and EV levels and their effects (left is elevated, right is decreased). 
1. miR-21 elevation leads to the DNA damage response (DDR), while miR-21 and miR-625 target SP1 to promote the 
response to acute low-dose IR. 2. miR-34a-5p elevation leads to hippocampal pathological changes, subgranular 
cone blade hypoplasia, and abnormal cell division. 3. miR-741-3p is significantly elevated in the RBI mouse model, 
and its inhibition improves neuronal apoptosis. 4. 3p levels rise significantly, and its inhibition ameliorates neuronal 
apoptosis. 4. Downregulation of miR-29 leads to a neuronal damaging effect. Downregulation of miR-132 leads to 
alterations in dendritic spines and synaptic morphology. IR induces an increase in GFAP, which has been shown to 
increase in various CNS diseases and neurodegenerative disorders. IR induces levels of hsa-let-7c-5p, hsa-let-7b-
5p, and hsa-miR-762, which are associated with epileptic encephalopathy, frontotemporal dementia and/or amyo-
trophic lateral sclerosis, and mitochondrial complex IV.
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motes neuronal differentiation, dendritic grow- 
th, and axonal generation [208] and miR-29 
downregulation has been observed to have a 
proapoptotic effect in C (AD) patients, it can 
lead to loss of newly generated neurons in the 
subventricular and subgranular regions [209]. 
Thus, IR-induced downregulation of miR-29  
has a damaging effect on neurons. EC-secret- 
ed exosomes, including miR-132, have a role in 
maintaining cerebrovascular integrity [210]. 
Kempf et al. found that irradiation-induced 
decreases in miR-132 (24 h post-irradiation) 
may lead to rapid changes in the dendritic  
spine and synaptic morphology through abnor-
mal cytoskeletal signaling and processing, 
resulting in neurocognitive side effects ob- 
served in patients treated with IR [186]. 
Interestingly, however, subsequent studies 
found that miR-132/miR-212 and miR-134 
increased six months after irradiation [211]. 
This finding suggests that miR-132 is dynami-
cally altered after irradiation, and whether this 
change is related to the dynamics of cognitive 
function in the later stages of radiotherapy is 
unclear. MiR-34a has been shown to negatively 
regulate the complexity of dendritic branches 
and nascent neurons [212]. Animal experi-
ments found that 5 Gy γ-irradiation of newly 
born 3-day-old mice resulted in depression, 
hippocampal pathology, subgranular layer cone 
blade hypoplasia, abnormal and impaired cell 
division and DG neurogenesis in adult mice; 
upregulation of miR-34a-5p was observed in 
both animal and NSC models [213]. Inhibition 
of miR-741-3p levels in the hippocampus of 
mice with RIBI improved cognitive dysfunction 
and neuronal apoptosis six weeks after irradia-
tion. The prominence and branching status of 
microglia was enhanced at the cellular level, 
and the number of GFAP-positive astrocytes 
was reduced. At the molecular level, the pro-
duction of the proinflammatory cytokines IL-6 
and TNF-α in the hippocampus and S100B in 
the serum was decreased [214].

Some studies have also demonstrated that 
miRNAs can regulate neuronal apoptosis after 
radiotherapy. MiR-124, together with miR-9, 
appears to inhibit the Brg- and Brahma (Brm)-
related factor complex 53a (BAF53a), enabling 
neural progenitor cells to differentiate correctly 
into neurons [215]. Injection of human NSC-
derived EVs into mice treated with 9 Gy cra- 
nial radiotherapy improved IR-induced cogni-
tive dysfunction. Further analysis suggested 

that miR-124 alleviated the main component of 
radiation-induced cognitive dysfunction [216]. 
MiR-711 negatively regulates multiple prosur-
vival and DNA repair mechanisms following 
radiation, ultimately activating neuronal intrin-
sic apoptosis and senescence [217].

In addition, a fraction of IR-induced changes in 
miRNAs or EVs are altered in other neurodegen-
erative diseases, indicating that alterations in 
this fraction of miRNAs or EVs are also associ-
ated with altered cognitive function after radio-
therapy. The expression levels of 13 exosomal 
miRNAs were decreased after exposure to 
high-energy radiation [218]. MirNet database 
analysis identified three subsets of miRNAs  
targeting the most of genes (hsa-let-7c-5p,  
hsa-let-7b-5p, and hsa-miR-762) that target  
the same subset of genes associated with epi-
leptic encephalopathy (Amd1, CCNF, COX6B, 
PLXND1); mapping to the Gene Card-Human 
Disease Database identified associations with 
epileptic encephalopathy, frontotemporal de- 
mentia and/or amyotrophic lateral sclerosis, 
and mitochondrial complex IV deficiency [219]. 
In another study, microglia were cocultured 
with glioblastoma cells and subjected to radio-
therapy, and the expression of circ_0012381 
was found to increase after irradiation of glio-
blastoma cells. Circ_0012381 induced polar-
ization of M2 microglia through miR-340-5p to 
increase ARG1 expression after entering mi- 
croglia via exosomes [220]. GFAP is a marker of 
reactive astrocytes that can be activated in 
response to brain injury and can be contained 
by EVs. This molecule is increased in various 
CNS disorders and neurodegenerative diseas-
es, such as AD [221]. A mouse study found that 
radiation-induced brain damage could be de- 
tected in EVs within 48 h after receiving 10 Gy 
of brain radiotherapy, as shown evidenced by 
increased HNE endocannabinoid and GFAP lev-
els [222].

A recent study found that adipose-derived mes-
enchymal stem cells (MSCs) alleviated radia-
tion-induced oxidative stress and inflammation 
in the hippocampus by suppressing radiation-
induced microglial infiltration and promoting 
SIRT1 expression in the hippocampus [223]. In 
addition, MSCs have neuroprotective effects  
by decreasing M1 microglial and A1 astrocyte 
activation [224, 225]. MSCs cannot cross free-
ly due to the presence of the BBB, but MSC-
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derived exosomes can cross the BBB and exert 
potent and long-lasting neuroprotection and 
neurogenesis [226, 227]. A recent review by 
Hadi Yari discusses in detail the therapeutic 
benefits of MSC-derived exosome therapy for 
improving the pathological symptoms of acute 
and chronic neurodegenerative diseases [228]. 
Rats receiving EV or human NSC transplants 
after cranial radiotherapy showed improved 
dendritic complexity and spine density of neu-
rons in the ipsilateral and contralateral hippo-
campus after irradiation [229]. Cellular experi-
ments have also demonstrated that mouse 
adipose tissue-derived MSC- and NSC-secret- 
ed exosomes improve irradiated NSC survival 
and clonal activity [230]. In conclusion, MSCs 
and their derived exosomes offer new hope for 
ameliorating radiation-induced brain damage.

Conclusion

Radiotherapy is still one of the most important 
treatments for head and neck tumors, but to- 
xic effects can occur. The molecular biological 
mechanisms that trigger radiation encephalop-
athy are complex and involve multiple patho-
physiological responses. Chronic inflammation 
is present throughout RIBI, and future direc-
tions in the clinical treatment and prevention of 
RBI include inhibiting the activation of microglia 
and astrocytes, reducing oxidative stress and 
preventing the migration of peripheral immune 
cells into the brain, thereby reducing cognitive 
dysfunction. The study of exosome secretion 
due to radiotherapy has helped elucidate radia-
tion encephalopathy, and the role of miRNAs, in 
particular, is increasingly appreciated. Identi- 
fying susceptible groups for RIBI and early iden-
tification and intervention are essential for 
improving cognitive function after radiotherapy 
in the corresponding groups. Therefore, future 
studies could modulate critical points in the 
inflammatory response from different pathways 
to differentially improve the pathological pro-
cess of RIBI and delay disease progression.
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