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Abstract: Longitudinal studies have indicated the pivotal role of natural killer cells (NKs) in the elimination of cer-
tain infections and malignancies. Currently, perinatal blood (PB) and cord blood (CB) have been considered with 
promising prospective for autogenous and allogeneic NKs transplantation, yet the similarities and differences at 
the biological and molecular levels are largely obscure. We isolated mononuclear cells (MNCs) from PB and CB, and 
compared the biological phenotypes of resident NKs by flow cytometry and cell counting. Then, we turned to our 
well-established “3ILs” strategy and co-culture for NK cell activation and cytotoxicity analyses, respectively. Finally, 
with the aid of transcriptomic analyses, we further dissected the signatures of PB-NKs and CB-NKs. CB-NKs re-
vealed superiority in cellular vitality over PB-NKs, together with variations in subpopulations. CB-NKs showed higher 
cytotoxicity over PB-NKs against K562 cells. Furthermore, we found both NKs revealed multifaceted conservations 
and differences in gene expression profiling and genetic variations, together with gene subsets and signaling path-
way. Collectively, both NKs revealed multifaceted similarities and diverse variations at the cellular and transcrip-
tomic levels. Our findings would benefit the further exploration of the biological and transcriptomic properties of 
CB-NKs and PB-NKs, together with the development of NK cell-based cytotherapy.
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Introduction

Natural killer cells (NKs) are advantaged innate 
lymphoid cells (ILCs) with broad distribution, 
which play a crucial role in both innate and 
adaptive immune responses [1, 2]. Longitudinal 
studies have indicated the pivotal role of NKs 

with activating and inhibitory receptor expres-
sion in eliminating the tumor cells and patho-
genic microorganism dispense with presensiti-
zation [3]. Meanwhile, Zalfa and Paust sum- 
marized the recent updates of NK cell interac-
tion with the heterogeneous myeloid derived 
suppressor cells (MDSCs) with potent immuno-
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suppressive activity in the tumor microenviron-
ment (TME) for cancer immunotherapy, which 
would help improve the NK cell-based antitu-
mor immunotherapy [4, 5].

To date, NKs have been recognized as the main 
effector cells against cancer and multiple adja-
cent cells in innate immunity with considerable 
heterogeneous in the circulatory system and 
the tumor microenvironment, which thus has 
been expected as next generation of immuno-
oncology treatments in cancer immunotherapy 
[6-8]. For instance, NKs have revealed high 
cytotoxicity against diverse subtypes of can-
cers via direct killing effect, antibody-depen-
dent cell mediated cytotoxicity (ADCC), the 
release of granuloenzyme and perforin [9, 10]. 
On the one hand, a certain number of litera-
tures have verified the feasibility of NKs-based 
regimens for the administration and immuno-
surveillance of diverse hematological malig-
nancies, including Chédiak-Higashi syndrome, 
X-linked lymphoproliferative syndrome, chronic 
lymphocytic leukemia (CLL), myelodysplastic 
syndromes (MDS), acute myeloid leukemia 
(AML), chronic myelogenous leukemia (CML), 
multiple myeloma (MM), and aggressive non-
Hodgkin lymphoma [11, 12]. On the other hand, 
NKs have been applied to the management of 
multiple solid tumors in both preclinical and 
clinical investigations, including gastric carci-
noma, pancreatic cancer, non-small cell lung 
cancer (NSCLC), and recurrent or refractory 
neuroblastoma [11, 13, 14].

State-of-the-art renewal has also indicated the 
challenges in limiting NK cell therapeutics for a 
wide-ranging cancer treatment, and in particu-
lar, the source of stability and the concomitant 
variations in cellular vitality [15]. Currently, NKs 
have been amplified and activated from a vari-
ety of origins, including NK cell lines (e.g., YT, 
NK-92), peripheral blood, perinatal blood (e.g., 
cord blood, placental blood), memory-liker NK 
cells, and even differentiated from hematopoi-
etic stem cells (HSCs) and pluripotent stem 
cells (PSCs) [11, 15, 16]. Of them, peripheral 
blood and cord blood have been considered 
with the widest applications and robust appli-
cation ability, respectively [16, 17]. However, 
the systematic and detailed comparison of the 
biological phenotypes and transcriptomic prop-
erties of the indicated NKs from peripheral 
blood (PB-NKs) and cord blood (CB-NKs) are 
largely obscure.

Therewith, in this study, we isolated mononu-
clear cells (MNCs) from both peripheral blood 
and cord blood, and verified the diverse varia-
tions in the biological phenotypes including 
total and subsets of resident NKs. Meanwhile, 
we took advantage of our “3ILs”-based strategy 
for the further analyses of activated NKs, and 
found that CB-NKs revealed superiority in cel-
lular vitality and cytotoxicity over PB-NKs. Fur- 
thermore, with the aid of transcriptomic analy-
ses, we observed the conservation and multi-
faceted variations in gene expression profiling 
and genetic variations. Collectively, our data 
indicated the similarities and differences in  
biological and transcriptomic properties, which 
would benefit the further dissection of CB-NKs 
and PB-NKs and help facilitate the CB-NKs-
based cytotherapy in future.

Materials and methods

Isolation of MNCs from CB and PB

MNCs were isolated from both cord blood 
(CB-MNCs) and peripheral blood (PB-MNCs) of 
heathy donors under the supervision of the 
Ethics Committee of Gansu Provincial Hospital 
according to the guideline of Helsinki (2022-
088, 2023-120). In details, the aforementioned 
CB-MNCs and UC-MNCs were respectively iso-
lated using the Ficoll (Sigma-Aldrich, USA) den-
sity gradient centrifugation as we reported 
before [17, 18].

Expansion and activation of NKs from CB-
MNCs and UC-MNCs

The in vitro expansion and activation of NKs 
were accomplished using the “3ILs”-based 
strategy (3ILs refers to rhIL-2, rhIL-15, rhIL-18) 
as we recently reported [17]. Briefly, 2×106/ml 
CB-MNCs or PB-MNCs were cultured in NK 
MACS Medium (Miltenyi Biotech, Germany)  
with 1000 U/mL (100 ng/mL) rhIL-2, 10 ng/mL 
rhIL-15, 50 ng/mL rhIL-18 (PeproTech Inc., USA) 
addition for 14 days (the culture medium was 
changed every two days, and the cell concen-
tration was adjusted to 2×106/ml) in 37°C, 5% 
CO2 [17]. Cell counting was accomplished with 
Trypan Blue staining, and the proportion of the 
total or subpopulations of NKs were accom-
plished with flow cytometry (FCM) assay. The 
detailed information of the cytokines was avail-
able in Table S1.
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Cell cycle and apoptosis detection

The cell cycle and apoptosis of the indicated 
NKs was analyzed as we reported before [16, 
19]. In details, NKs were fixed with 70% (v/v) 
cooled ethanol at 4°C. Then, the cells were 
washed with 1×PBS, and turned to the Pro- 
pidium iodide (PI) staining and the BD LSR II 
(BD Biosci, USA) for cell cycle detection ac- 
cording to the manufacturer’s instructions. As 
to apoptosis analysis, 1×106 cells in the indi-
cated groups (rCB-NK, rPB-NK, eCB-NK, ePB-
NK) were washed with 1×PBS for twice at  
4°C, and incubated with Annexin V Apoptosis 
Detection Kit (Sigma-Aldrich, USA) according to 
the manufacturer’s instructions. After that, the 
cells were washed with 1×PBS for twice at 4°C 
in dark, and turned to apoptosis analysis by uti-
lizing the FACS Canto II (BD Biosci, USA) and the 
FlowJo 10.0 software (Tree Star, USA).

Flow cytometry (FCM) assay

The proportion of MNCs and NKs were mea-
sured with the FCM assay as we recently report-
ed [16, 19]. In details, the aforementioned cells 
in the indicated time points were collected and 
washed with 1×PBS for twice. Then, 1×106 cells 
were incubated with the indicated fluores-
cence-conjugated antibodies at 4°C in dark. 
After that, cells were washed with 1×PBS for 
twice and turned to FACS Canto II (BD Biosci, 
USA) for FCM detection, including total NKs 
(CD3-CD56+), subpopulations of NKs (CD16+, 
NKG2D+, CD25+, NKp44+, NKp46+) and the rel-
ative subsets (Annexin V+, 7-AAD+, CD4+, CD8+, 
CD107a+). The data were analyzed using the 
FlowJo 10.0 software (Tree Star, USA). The 
information of the indicated antibodies was 
available in Table S2.

Cytotoxicity assay of NKs

To compare the cytotoxicity of eCB-NKs and 
ePB-NKs, we took advantage of the co-culture 
model as reported before [16, 17]. In brief, the 
human myeloid leukemia cell line (K562) was 
collected and labelled with CellTrace Violet 
(Invitrogen, USA) as we reported before [17, 
20]. Then, eCB-NKs or ePB-NKs were co-cul-
tured with the aforementioned K562 cells at a 
series of effector-to-target ratios (E:T=3:1, 1:1, 
1:3, 1:5) for 8 hrs. After that, the cells were 
labeled with the indicated antibodies (e.g., 
CD3, CD56, CD107a) and the Precision Count 

Beads (BioLegend, USA). After washing with 
1×PBS for twice, the cells were turned to FACS 
Canto II (BD Biosci, USA) for detection. Cy- 
totoxicity of NKs = (1 - N2/N1) ×100%. N1 and N2 
represent the total living K562 cells in the con-
trol and experimental groups, respectively [17, 
19].

RNA-SEQ analysis and bioinformatics analyses

To verify the potential similarities and varia-
tions in transcriptomic properties, eCB-NKs 
and ePB-NKs at day 14 of in vitro culture were 
lysed with the TRIZol reagent (ThermoFisher, 
USA) for total mRNA preparation according to 
the manufacturer’s instructions [19, 21]. After 
that, the mRNAs were sent for RNA-sequencing 
(RNA-SEQ). Then, a variety of bioinformatics 
analyses were conducted for dissecting the 
transcriptomic features of eCB-NKs and ePB-
NKs, including HeatMap diagrams, Principal 
Component Analysis (PCA), hierarchical cluster 
analysis, Volcano Plot, Gene Set Enrichment 
Analysis (GSEA), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), Gene Ontology biologi-
cal process (GOBP) as we reported before [22, 
23]. The raw data of the gene expression in 
eCB-NKs and ePB-NKs at mRNA level was avail-
able in Table S3.

Statistical analyses

As we reported before, statistical analyses 
were conducted with the Graph Pad Prism 6.0 
(San Diego, USA) software [24, 25]. For the 
analysis of the data between two unpaired 
groups and the data among multiple unpaired 
groups, we conducted the student’s unpaired T 
test and one-way ANOVA test, respectively. All 
data were shown as mean ± SEM (N=3 inde-
pendent experiments). Only the P value less 
than 0.05 (P<0.05) was considered as stati- 
stically significant. *, P<0.05; **, P<0.01; ***, 
P<0.001; ****, P<0.0001; NS, not significant.

Results

Perinatal blood showed higher percentage 
of NKs whereas cord blood with more robust 
amplification

To dissect the multifaceted biological features 
of resident and activated NKs (rNKs, aNKs) in 
PB and CB, we primarily enriched mononuclear 
cells (MNCs) and conducted the “3ILs”-based 
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Figure 1. The comparison of resident NKs in MNCs enriched from PB and CB. (A) Representative phase contrast im-
ages of MNC-derived NKs at the indicated time points (day 0, 7, 10, 14) during the 14-days’ ex vivo induction. Scale 
bar =50 μm. (B-D) Representative flow cytometry (FCM) diagrams (B) and statistical analysis of total CD3-CD56+ (C) 
and CD3-CD56+CD16+ (D) resident NKs (rNK) in PB-derived MNCs (rPB-NK) and CB-derived MNCs (rCB-NK). (E, F) 
Statistical analyses of total number of MNC-derived cells (E) and CD3-CD56+ NKs (F) at the indicated time points 
(day 0, 7, 10, 14) during the 14-days’ ex vivo induction. All data were shown as mean ± SEM (N=3). NS, not signifi-
cant; ****, P<0.0001.

strategy for NK cell activation and amplification 
(Figure 1A). Intuitively, both the resident PB- 
NKs and CB-NKs revealed typical spheroidal 
morphology (Day 0), followed by clumping struc-
ture as in vitro differentiation (Figure 1A).

With the aid of FCM assay, we found the propor-
tion of resident CB-NKs (Day 0) was higher than 
the concomitant resident PB-NKs (Figure 1B). 
Interestingly, after a 14-day’s amplification and 
activation, the percentages of total NKs (CD3-
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CD56+) and total activated NKs (CD3-

CD56+CD16+) in the CB-NK group were higher 
than those in the PB-NK group, respectively 
(Figure 1B-D). By conducting living cell count-
ing, we found the numbers of MNCs and total 
NKs in the CB-NK group were higher compared 
with the CB-NK group, respectively (Figure 1E, 
1F). Taken together, CB-NKs revealed more 
robust in vitro expansion and activation activi-
ties over PB-NKs.

Expanded CB-NKs revealed moderate supe-
riority in activation and cellular vitality over 
PB-NKs

Having preliminarily verified the phenotype of 
the indicated NKs, we next aim to dissect the 
similarities and variations in the subpopula-
tions. As shown by the FCM diagrams and sta-
tistical analyses, resident CB-NKs showed 
higher percentage of NKG2A+ NK cell subset 
but with lower NKp46+ subset compared to 
resident PB-NKs (Figure 2A, 2B). Instead, com-
pared to the activated PB-NKs, higher propor-
tions of NKG2D+, NKp46+ and NKp44+ subsets 
were observed in activated CB-NKs (Day 14) 
(Figure 2A, 2B).

With the aid of FCM assay, we found the pro- 
portion of 7-AAD+Annexin V+ apoptotic NKs in 
PB-NK group was higher than that in the CB- 
NK group, whereas the proportions of 7-AAD-

Annexin V+ and Annexin V+ subsets showed the 
reverse tendency (Figure 2C, 2D). As to the indi-
cated subpopulations of NKs in the G0/G1, S 
and G2/M stages, there were minimal differ-
ences between the indicated two groups 
(Figure 2E, 2F). Taken together, both the acti-
vated PB-NKs and CB-NKs revealed diverse dif-
ferences in the subpopulations and apoptotic 
cells of NKs.

Expanded CB-NKs exhibited higher cytotoxicity 
over PB-NKs

To dissect the cytotoxicity of the indicated NKs, 
we co-cultured PB-NKs or CB-NKs with the 
myeloid leukemia cell line K562. As shown in 
Figure 3A, 3B, the percentage of NKs with 
CD107a expression in the CB-NK group was 
lower than that in the PB-NK group at diverse 
effector-to-target ratios (E:T=3:1, 1:1, 1:3, 1:5) 
for 8 hrs (Figure 3A, 3B). Furthermore, we 
noticed that CB-NKs revealed higher cytotoxic-
ity against K562 tumor cells over that of PB- 

NKs at a various E:T ratios (Figure 3C, 3D). 
Collectively, our data indicated that CB-NKs 
showed moderate superiority over PB-NKs  
in cytotoxicity upon K562 tumor cells over 
PB-NKs.

Expanded CB-NKs and PB-NKs revealed 
multifaceted similarities and diversity in gene 
expression profiling

Having compared the biological properties, we 
next turn to verify the similarities and variations 
of CB-NKs and PB-NKs at the transcriptomic 
level. Based on the boxplots and accumulation 
map of gene expression, we found both CB- 
NKs and PB-NKs revealed similarities in gene 
expression profiling (Figure 4A, 4B). As shown 
by the principal component analysis (PCA), 
there’s no tendency in the distribution of CB- 
NKs and PB-NKs (Figure 4C). 

According to the Venn map diagram and volca-
no plot, 622 and 834 genes were upregulated 
and downregulated in CB-NKs when compar- 
ed to PB-NKs, respectively (Figure 4D, 4E). 
Interestingly, we observed the PB-NKs (PB-1, 
PB-2, PB-3) and CB-NKs (CB-1, CB-2, CB-3) 
revealed stronger clustering relationships with-
in groups (Figure 4F). Simultaneously, we didn’t 
find obvious differences in the distribution of 
genes with genetic variations or variable shear 
event (VSE) between PB-NKs and CB-NKs 
according to the Circos diagrams and VSE 
charts (Figure 4G, 4H). Collectively, our data 
indicated the conservations and diverse differ-
ences in gene expression profiling and genetic 
variation.

The landscapes of gene subsets and gene 
ontology of expanded CB-NKs and PB-NKs

To further dissect the transcriptomic features, 
we took advantage of Gene Set Enrichment 
Analysis (GSEA), and found that CB-NKs and 
PB-NKs showed significant differences in di- 
verse biological processes, including co-trans-
lational protein targeting to membrane, humor-
al immune response, antibiotic metabolic pro-
cess, translational initiation, defense response 
to bacterium, and antibiotic metabolic process, 
which were mainly involved in cytotoxicity- and 
metabolism-associated processes (Figure 5A). 
Simultaneously, we also noticed the variations 
of specific gene subsets between CB-NKs and 
PB-NKs in signaling pathway, including TNF-α 
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Figure 2. The comparison of the expanded NKs in content and cellular vitality. (A, B) Representative FCM diagrams (A) and statistical analysis (B) of the percentages 
of NK cell subsets (NKG2D+, NKG2A+, NKp46+, NKp44+) from the resident NKs (rNK) at day 0 to the corresponding expanded NKs (eNK) at day 14. (C, D) Represen-
tative FCM diagrams (C) and statistical analysis (D) of apoptotic NKs in ePB-NK and eCB-NK at day 14. (E, F) The representative distribution (E) and statistical analy-
sis (F) of ePB-NK and eCB-NK in the indicated sub-stages of cell cycle. All data were shown as mean ± SEM (N=3). NS, not significant; **, P<0.01; ****, P<0.0001.
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Figure 3. Comparison of ex vivo tumor killing cytothoxicity of the expanded PB-NKs and UC-NKs. (A, B) Representa-
tive FCM diagram (A) and statistical analysis (B) of CD107a+ ePB-NK and eCB-NK in coculturing with K562 cell line 
at the effector-to-target ratios (E:T=3:1, 1:1, 1: 3, 1:5); (C, D) The comparison of the cytotoxicity of the expanded PB-
NK and UC-NK against the aforementioned K562 cell line at the effector-to-target ratios based on the calculations 
of BV-421+ cells (C) and proportion of tumor cells (D). All data were shown as mean ± SEM (N=3). NS, not significant; 
*, P<0.05; ***, P<0.001.

signaling via NF-κB, KRAS signaling, and rela-
tive biological processes (e.g., coagulation, 
EMT, complement, myogenesis) (Figure 5B).

Furthermore, we turned to gene ontology bio-
logical process (GOBP) analysis, and found th- 
at the differentially expressed genes (DEGs) 
between CB-NKs and PB-NKs were mainly 
involved in NK cell-associated bio-functions, 

such as immune response, inflammatory re- 
sponse, positive regulation of tumor necrosis 
factor (TNF) and immune system process 
(Figure 5C). Notably, as shown by the Kyoto 
Encylopaedia of Genes and Genomes (KEGG) 
analysis, the DEGs were enriched in cytotoxici-
ty- and cellular vitality-associated signals, in- 
cluding TNF signaling pathway, cytokine-cyto-
kine receptor interaction, NF-κB signaling path-
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Figure 4. Comparison of the gene expression profiling of the expanded PB-NKs and UC-NKs. (A, B) The bar chart (A) and accumulation map (B) of gene numbers with 
the indicated expression levels based on TPM values in the expanded PB-NK (PB-1, PB-2, PB-3) and eCB-NK (CB-1, CB-2, CB-3). (C) The PCA diagram of the indicated 
the expanded PB-NK and CB-NK based on FPKM values. (D) The Venn Map Diagram revealed the number of genes in the expanded PB-NK and CB-NK. (E, F) Volcano 
Plot (E) and HeatMap diagram (F) of the differentially expressed genes (DEGs) in the expanded PB-NK and CB-NK. (G) Circos diagrams revealed the distribution of 
fusion genes with genetic variations between the expanded PB-NK and CB-NK. (H) The histogram showed the percentage of genes with variable shear event (VSE) 
between the expanded PB-NK and CB-NK.
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Figure 5. Signaling pathway analysis and variation spectrums between the expanded PB-NKs and UC-NKs. (A, B) 
GSEA diagrams of significantly different biofunction-associated gene sets (A) and signaling pathway-associated 
gene sets (B) between the expanded PB-NK and UC-NK. (C, D) GOBP analysis (C) and KEGG analysis (D) of the DEGs 
in the expanded PB-NKs and CB-NKs.
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way, AMPK signaling pathway, and Toll-like 
receptor signaling pathway (Figure 5D). Overall, 
these data further indicated the variations in 
the landscape of gene subsets and signaling 
pathways between CB-NKs and PB-NKs.

Discussion

Longitudinal studies have indicated the pro- 
mising prospect of NKs for the administration 
of infectious diseases and cancers including 
hematologic malignancies and metastatic solid 
tumors via orchestrating the diverse mode of 
action [7, 13, 26]. Recently, we and Zhang et  
al respectively demonstrated the multifaceted 
variations in the efficacy of cell transplantation 
on graft-versus-host disease (GvHD) mice and 
acute liver failure (ALF) mice, which suggested 
the prerequisites of cellular vitality for cytother-
apy [27, 28]. Herein, we found CB-NKs and 
PB-NKs with multidimensional similarities and 
differences in biological and transcriptomic 
properties, and confirmed the superiority of 
CB-NKs in cellular vitality (e.g., more robust ex 
vivo proliferation, less apoptotic cells, higher 
cytotoxicity) and cytotoxicity-associated char-
acteristics (e.g., inflammatory response, NF-κB 
signaling pathway), which would benefit the fur-
ther dissection of the biofunction of CB-NKs 
and the concomitant cancer immunotherapy in 
future.

To date, cancers have become a leading ca- 
use of deaths and a major public health bur- 
den worldwide [29, 30]. For example, over 
4,568,000 patients were newly diagnosed with 
diverse cancers in China, and 3,002,000 cases 
were died from cancers and the related fatigue 
in 2020 [31, 32]. Currently, a variety of imple-
mentation strategies are developed for tumor 
survivorship and treatment, including chemo-
therapy [33], radiotherapy [34], peptide-based 
neoantigen vaccine [35, 36], gene therapy [37-
39], oncolytic virotherapy [40], RNA vaccine 
[41, 42], photothermal therapy (PTT) [43-45], 
and the nanomaterial-mediated nanotheranos-
tics [11, 46]. However, the diverse inherent 
shortcomings of the therapeutic strategies 
have partially hindered the further improve-
ment in cancer management, including off-tar-
get effects, severe toxicity, drug delivery barri-
ers, graft-versus-host disease [11, 46]. Dis- 
tinguish from the abovementioned treatment, 
cellular immunotherapy of diverse kinds has 

been considered as promising remedy for can-
cer administration, such as tumor infiltrating 
lymphocytes (TILs), NKs, macrophages (Mφ), 
cytokines-induced killer cells (CIKs), chimeric 
antigen receptor-transduced T cells (CAR-Ts) or 
CAR-transduced NKs (CAR-NKs) [13, 47-51]. Of 
them, allogeneic NK cell-based immunotherapy 
has been considered with advantaged charac-
teristics in immune defense and cancer admin-
istration over the relative counterparts via 
simultaneously modulating the innate and ad- 
aptive immune response [1, 11]. 

For decades, NKs have been generated from 
various sources such as peripheral blood, cord 
blood, placental blood, bone marrow, hemato-
poietic stem cells (HSCs), embryonic stem cells 
(ESCs), induced pluripotent stem cells (iPSCs), 
and even NK cell lines (e.g., NK-92, YT) [11, 13, 
52]. Differ from bone marrow with limitations 
for ex vivo NK cell amplification, stem cells (e.g., 
HSCs, ESCs, iPSCs) and NK cell lines are ade-
quate for large-scale homogeneous NK cell 
generation but with diverse defects (e.g., high-
cost, deficiency in cytotoxicity, potential safety 
hazards due to the differentiation efficiency) 
[13, 53]. Instead, cord blood and peripheral 
blood have been considered with diverse supe-
riorities and preferable application prospects 
for allogenic NK cell preparation [11]. Gene- 
rally, NKs occupy less than 5% of MNCs in cord 
blood cells, whereas with a proportion of 5% to 
20% of MNCs in peripheral blood [11, 54]. 
Longitudinal studies has indicated the unique 
capacity of PB-NKs in killing a broad spectrum 
of tumor cells, which have also been consid-
ered as the dominant ingredient for NK cell 
generation in clinical practice but with limita-
tions in stability and yield [55]. State-of-the-art 
literatures have turned to cord blood for large-
scale NK cell production because the generat-
ed CB-NKs have been indicated with vigorous 
cytolytic activity [11]. In this study, we took 
advantage of our well-established “3ILs”-based 
strategy for ex vivo NK cell generation, and fur-
ther verified the similarities and variations of 
resident NKs (rNKs) and activated NKs (aNKs) 
from the aspects of biological and transcrip-
tomic properties, and in particular, CB-NKs 
showed preferable ex vivo amplification and 
cellular vitality, enhanced cytotoxicity over PB- 
NKs. In particular, by conducting RNA-SEQ anal-
yses, we verified that ePB-NKs and eCB-NKs 
showed multifaceted similarities and variations 
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at the transcriptomic level including specific 
gene expression pattern and signaling cas-
cades (e.g., TNF-α signaling, NF-κB signaling, 
AMPK signaling, KRAS signaling, complement) 
and genetic variations (e.g., VSE). Interestingly, 
we noticed the further activation of aNKs com-
pared to rNKs, which further indicated the piv-
otal role of “NK cell education” for functional 
maturation of NKs.

Collectively, we verified the multidimensional 
properties of CB-NKs and PB-NKs from the 
aspects of biological phenotypes and transcrip-
tomic features, and indicated the moderate 
superiority of CB-NKs in cellular vitality and 
cytotoxicity. Our data suggested cord blood as 
excellent candidates for the “off-the-shelf” anti-
tumor immunotherapy and the concomitant 
next-generation of allogeneic CAR-NK cell prep-
aration with both NK cell receptor-dependent 
and CAR-dependent mode of action. The indi-
cated CB-NKs would also effectively avoid the 
diverse adverse effects of CAR-T regimens  
such as cytokine release syndrome (CRS), 
immune cell-associated neurotoxicity syndro- 
me (ICANS), GVHD and neurotoxicity, which 
thus represented the novel therapeutic para-
digm for facilitating the body immunity to rein-
force anti-tumor responses and eventually ob- 
literate malignancies [13, 53].
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Table S1. The list of the cytokines
Reagent Cat. No. Conc. Source
Recombinant Human IL-2 (rhIL-2) 200-02 100 ng/uL PeproTech Inc., USA
Recombinant Human IL-15 (rhIL-15) 200-15 10 ng/uL PeproTech Inc., USA
Recombinant Human IL-18 (rhIL-18) 119-BP-100 50 ng/uL R&D Systems, USA

Table S2. The list of the antibodies
Antibody Cat. No. Source
Anti-CD3-PE 981004 BioLegend
Anti-CD3-APC-Cy7 300316 BioLegend
Anti-CD4-PE 357403 BioLegend
Anti-CD8-PE-Cy7 344711 BioLegend
Anti-CD16-FITC 302005 BioLegend
Anti-NKG2D-Percp-cy5.5 320817 BioLegend
Anti-CD56-APC 362503 BioLegend
Anti-CD56-Percp-cy5.5 362505 BioLegend
Anti-CD107a-PE-Cy7 328617 BioLegend
7-AAD-Percp-cy5.5 559925 BD Pharmigen
PE anti-human IgG 409304 BioLegend
Percision Count Beads 424902 BioLegend
DAPI MBD0015 Sigma-Aldrich
Cell Cycle and Apoptosis Detection Kit C1052 Beyotime Biotehnology
CellTrace Voilet C34557 Invitrogen™
Annexin V-FITC AO2001-02G Tianjin Sungene Biotech
Annexin V binding buffer (10X) AB2000-G Tianjin Sungene Biotech


