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Abstract: Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of renal tumor. The underlying 
mechanisms governing KIRC initiation and progression are less known. The present study aimed to reveal novel hub 
genes associated with the initiation and progression of KIRC, which may be utilized as novel molecular biomarkers 
and therapeutic targets for the treatment of KIRC. The GSE6344 dataset from the Gene Expression Omnibus (GEO) 
database was integrated to identify differentially expressed genes (DEGs) using the limma package. Then, hub 
genes were identified and UALCAN, GEPIA, OncoDB, DriverDBv3, GENT2, and HPA databases were employed for the 
expression, survival, and methylation analyses. cBioPortal tool was used to investigate the genetic alterations, while 
CancerSEA, TIMER, DAVID, ENCORI, DrugBank, and GSCAlite were utilized to explore a few more hub gene-associat-
ed parameters. Finally, targeted bisulfite sequencing (bisulfite-seq), and RT-qPCR techniques were used to validate 
the expression and methylation level of the hub genes using Human RCC cell line 786-O, A-498, and normal renal 
tubular epithelial cell line HK-2. In total, 7299 DEGs were found between KIRC and normal samples in the GSE6344 
dataset. Using STRING and Cytohubba analysis, four hub genes including VEGFA (vascular endothelial growth fac-
tor), ALB (Albumin), ENO2 (enolase 2), and CAVI1 (Caveolin 1) were selected as the hub genes. Further, it was vali-
dated through extensive analysis of TCGA datasets that these VEGA, ENO2, and CAV1 hub genes were significantly 
up-regulated, while ALB was significantly down-regulated in KIRC samples compared to controls. The dysregulation 
of these genes was found to be associated with the overall survival (OS) of the KIRC patients. Moreover, this study 
also revealed some novel links between VEGA, ALB, ENO2, and CAV1 expression and genetic alterations, promoter 
methylation status, immune cell infiltration, miRNAs, gene enrichment terms, and various chemotherapeutic drugs. 
The present study revealed a panel of four hub genes, which contributed to improving our understanding of the 
underlying molecular mechanisms of KIRC development and can be utilized as promising novel biomarkers for KIRC 
diagnosis, prognosis, and treatment.
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Introduction

Renal cell carcinoma (RCC) is one of the top ten 
malignant tumors in both males and females 
worldwide, accounting for more than 90% of 
pelvic malignancies and primary renal neo-
plasms [1]. Over the last few decades, the mor-
tality rate due to RCC has risen considerably 
around the globe [2-4]. Kidney renal clear cell 
carcinoma (KIRC) is the most prevalent subtype 
of RCC, which accounts for more than 75% of 
cases and represents the most malignant geni-
tourinary cancers [5]. Around one-fourth of 
KIRC patients were diagnosed at the late stage 

with distal metastasis or advanced regional dis-
ease state [6]. 

Up till now, some major breakthroughs have 
been made in understanding the molecular 
mechanisms and identifying novel therapeutic 
targets in KIRC patients, but the overall survival 
(OS) of the KIRC patients is still very low (5-year 
survival <32%), specifically in those patients 
who have distal metastasis [7, 8].

Therefore, the exploration of reliable novel 
molecular biomarkers is urgently required to 
assist clinicians and researchers in understand-
ing KIRC initiation at the molecular level and 
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promote its timely detection and treatment. 
Previously, it was observed that Polybromo-1 is 
the important factor for accelerating cell prolif-
eration and metastasis across KIRC cells by 
dysregulating numerous metabolic pathways, 
such as the phosphatidylinositol 3-kinase 
(PI3K) pathway, the glucose uptake pathway, 
and different hypoxia response genes [9, 10]. 
The two clinically used diagnostic biomarkers 
of KIRC include carbonic anhydrase IX and vas-
cular endothelial-derived growth factor [11]. 
However, the success rate of these biomarkers 
is still low [12, 13].

Over the last decade, advances in microarray 
and RNA-sequencing (RNA-seq) technologies, 
as well as the integration of bioinformatics 
tools with these technologies, have made it fea-
sible for the researcher and clinicians to dis-
cover important diagnostic and prognostic bio-
markers involved in cancer development, pro-
gression, and metastasis [14-17]. 

In the present study, we explored the GSE6344 
[18] microarray dataset from the Gene Ex- 
pression Omnibus (GEO) database to get differ-
entially expressed genes (DEGs) among the 
KIRC patients group and normal individuals 
group, in order to determine hub genes as the 
reliable novel biomarkers associated with KIRC 
diagnosis and poor prognosis. Meanwhile, we 
used KIRC TCGA datasets to evaluate the utility 
and efficacy of the discovered hub genes as 
new biomarkers. Moreover, based on a gene-
drug interaction network, this study also 
revealed a few potential drugs, that can reverse 
the gene expression of identified hub genes in 
KIRC patients, aiming for successful treatment. 
This study has uncovered and validated four 
potential biomarkers, including VEGFA (vascu-
lar endothelial growth factor), ALB (Albumin), 
ENO2 (enolase 2), and CAV1 (Caveolin 1), which 
are of great importance in diagnosis prognosis, 
and treatment of the KIRC patients. In a nut-
shell, the outcomes of the present study may 
contribute significantly to understanding the 
molecular pathways of KIRC development, pro-
gression, and metastasis. 

Methodology

Data collection and preprocessing

The GEO database was thoroughly searched 
using the keywords “Kidney renal clear cell car-

cinoma” and “Kidney neoplasm”. The criteria 
utilized for selecting an appropriate KIRC data-
set were as follows: (i) studies employing any 
form of pharmacological manipulation were 
excluded; (ii) studies utilizing interfering mole-
cules such as miRNAs, siRNAs, or gene thera-
pies of any kind were excluded; (iii) datasets 
involving knockdown cultures or artificially 
induced mutations were eliminated; (iv) studies 
with a minimum of fifteen control and fifteen 
experimental samples were selected; (v) stud-
ies exclusively performed in Homo sapiens 
were chosen; (vi) studies using xenograft tech-
niques were removed; (vii) studies providing a 
clear description of the protocol or samples 
employed, with correct labeling, were selected; 
(viii) datasets that made their raw data avail-
able were chosen, excluding those that only 
provided the author’s treated data; (ix) studies 
performed on platforms not belonging to 
Affymetrix, Illumina, or Agilent manufacturers 
were excluded; and (x) samples from metasta-
sized tissues were excluded. Ultimately, all 
studies until the end of 222 were individually 
examined and manually curated. A total of 3 
microarray datasets (including both single and 
dual channel experiments) were appeared. 
Based on enough sample size, the GSE6344 
[18] dataset, containing 20 normal samples 
and 20 KIRC patient samples, was chosen as 
the experimental dataset. Additionally, we 
screened gene probes in the GSE6344 dataset 
before analysis. The expression data for all 
gene probes that lacked matching genes in the 
dataset was eliminated. Moreover, the average 
expression of all the probes for a gene with two 
or more probes was kept.

Identification of DEGs

The R language “Limma” package was used to 
find the DEGs in the KIRC and control sample 
groups. To evaluate the DEGs, the following 
selection criteria were used: |log2FC| more 
than 0.3 and p (T-test, Empirical Bayes tech-
niques) less than 0.05 [19, 20]. The Fold 
Change (FC) in expression highlights the con-
siderable differences among DEGs.

Construction of PPI, module identification, and 
the selection of hub genes 

For further investigation, in total 250 genes 
with the greatest expression differences in 
terms of p-values were chosen. With the use of 
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the STRNG database [21], the PPI of the select-
ed 250 genes was created. In order to identify 
the critical module, the built PPI was submitted 
to MCODE analysis [22] using the Cytoscape 
tool [23]. The critical module was then screen 
through the Cytohubba function [24] in the 
Cytoscape tool to select the hub genes. Based 
on the 4 different scoring algorithms, the maxi-
mum neighborhood component (MNC), the 
density of the maximum neighborhood compo-
nent (DMNC), the maximal clique centrality 
(MCC), and the Degree of the Cytohubba [25], 
the shared top four genes by these 4 algorithms 
were selected as hub genes.

UALCAN database

The Cancer Genome Atlas (TCGA) expression 
data is used to create gene expression plots 
based on various pathological factors in the 
UALCAN database, a new online web-based 
tool that enables users to perform interactive 
and customizable analyses between normal-v-
normal cancer samples [26]. These analyses 
include differential gene expression profiling, 
correlation analysis, survival analysis, and gene 
expression plots based on different pathologi-
cal stages. In our investigation, we used this 
database to confirm hub gene expression at 
the mRNA and protein levels in KIRC and nor-
mal samples. The p-value cutoff was selected 
as 0.05.

GEPIA, DriverDBv2, OncoDB and GENT2 data-
bases

Then, to further validate hub genes’ expression 
across KIRC tissues and cell lines, we employed 
the GEPIA [27], OncoDb [28], DriverDBV3 [29], 
and GENT2 [30] databases. All these online 
databases are cancer microarray-based ex- 
pression analysis platforms, which provide 
expression analysis results in the form of box 
plots. Moreover, we also used GEPIA for the 
survival analysis of the hub genes. For expres-
sion and survival analyses between normal and 
KIRC samples, the p-value cutoff was selected 
as 0.05. 

The human protein atlas (HPA)

The HPA (https://www.proteinatlas.org/) online 
database [31] was used in the present study to 
find the subcellular localization of proteins 
encoded by the hub genes in KIRC cells. This 
database in-house more than ten million high-

resolution images of the stained tissues with 
immunohistochemical (IHC) staining. Moreover, 
this database has also helped to perform hub 
genes expression and survival analysis at pro-
tein level. The p-value cutoff was selected as 
0.05.

OncoDB

OncoDB [28] is used to visualize relationships 
among patient clinical information and promot-
er methylation levels across TCGA datasets. In 
our study, OncoDB employed to check the DNA 
promoter methylation level of identified hub 
genes in KIRC patients. The p-value cutoff was 
selected as 0.05.

cBioPortal

Multidimensional cancer genomic analysis on 
TCGA cancer datasets is carried out using the 
cBioPortal, an online open-access platform 
[32]. This database can query the gene(s) of 
interest and explore relevant changes across 
more than 5,000 cancer samples in 20 cancer 
studies. In this study, a TCGA KIRC dataset, 
namely, “TCGA PanCancer Atlas (512 cases)”, 
was used for analyzing genetic mutations, 
mutational hotspots, co-expressed genes, and 
the effect of mutations on the survival of KIRC 
patients with default setting. 

Functional enrichment analysis

Using the GSEA program, the functional enrich-
ment including GO and KEGG analysis of the 
hub genes was carried out in this study. Based 
on the biological phenomena of the examined 
protein or gene list, this tool identified KEGG 
and GO terms [33]. The p-value cutoff was 
selected as 0.05.

TIMER database

The web-based TIMER database is utilized to 
assess the tumor infiltration of immune cells 
[34]. A variety of algorithms are used in this 
database to estimate the abundance of 
immune cells across different cancers. In this 
research, levels of immune cell infiltration in 
KIRC were plotted against hub gene expres-
sion. The p-value cutoff was selected as 0.05.

CancerSEA analysis

CancerSEA was created to decode Pearson 
correlations between 14 different single-cell 



KIRC biomarkers

4291 Am J Cancer Res 2023;13(9):4288-4304

functional states and relevant gene(s) in human 
malignancies [35]. This database contains 
gene sequencing profiles of 4043 tumor cells. 
In this study, we used CancerSEA to investigate 
the relationships between hub genes and the 
aforementioned KIRC functional states. The 
p-value cutoff was selected as 0.05.

miRNA network of the hub genes’

The ENCORI database is utilized for exploring 
miRNA-ncRNA and mRNA-miRNA interactions 
from CLIP-seq and degradome-seq interac-
tome data [36]. In this investigation, the 
ENCORI database was used to create the 
miRNA network of the identified hub genes.

Hub genes’ drug prediction analysis

We performed the DrugBank research to find 
the drugs related to the hub genes because we 
believe that the identified hub genes can be 
interesting therapeutic targets. This database 
offers information on drugs that target hub 
genes from numerous trustworthy sources 
[37].

GSCALite is a web-based tool for performing 
gene set cancer analysis [38]. In this study, we 
used GSCALite to examine the hub genes’ drug 
sensitivity. This analysis may help us choose 
better drugs to target the hub genes.

In vitro validation of the hub gene expression 
and methylation status

Cell culture, RNA, and DNA extraction: Human 
RCC cell lines (786-O and A-498), and normal 
renal tubular epithelial cell line (HK-2), provided 
by the ATCC (American Type Culture Collection) 
were cultured in DMEM (HyClone), supplement-
ed with 10% fetal bovine serum (FBS; TBD), 1% 
glutamine, and 1% penicillin-streptomycin in 
5% CO2 at 37°C. RNA extraction from all the 
cells lines was carried out using TRIzol® reagent 
method [39], while DNA extraction was done 
following organic method [40]. 

RT-qPCR validation analysis: The specific proto-
cols are as follows: First, the PrimeScript™ RT 
reagent kit (Takara, Japan) was used for reverse 
transcription of the extracted RNA from HK-2, 
786-O, and A-498 cell lines into complementa-
ry DNA. Then, the RT-qPCR was carried out on 
an ABI ViiA 7 Real Time PCR System (Thermo 

Fisher, USA) with a SuperReal SYBR Green 
Premix Plus (Tiangen Biotech, China) as a fluo-
rescent dye. GAPDH was chosen as the internal 
reference in the present study. All the experi-
ments were in triplicate independently. All the 
primers of each hub gene are shown as follow-
ing. The 2-ΔΔCt method was employed to evalu-
ate the relative expression of each hub gene 
[41]. 

GAPDHF 5’-ACCCACTCCTCCACCTTTGAC-3, GA- 
PDHR 5’-CTGTTGCTGTAGCCAAATTCG-3 [42]. 
VEGAF 5’-GGGTGGGCCTAGTTAGTGCT, VEGFAR 
5’-CCTGTGCTAGGGGATGGAAAT-3’ [43]. ALBF 
5’-TGAAACATACGTTCCCAAAGAGTTT-3’, ALBR 5’- 
CTCTCCTTCTCAGAAAGTGTGCAT-3’ [44]. ENOF  
5’-GGCCCTGAGGGCCTCCAAAATCGTAAAAAT- 
CATCGG-3’, ENOR 5’-GGTCAAAGACAGCTGCAT- 
CA-3’ [45]. CAV1F 5’-CAGCATGTCTGGGGGCAA- 
AT-3’, CAV1R 5’-TCAGCTCGTCTGCCATGGCC-3’ 
[46].

Targeted bisulfite-seq analysis: DNA samples 
were sent to Beijing Genomics Institute (BGI) 
company for RNA-sq bisulfite-seq analysis. 
Following targeted bisulfite-seq analysis, meth-
ylation values were normalized as beta values. 
The obtained beta values against hub genes in 
RCC and normal control cell line were com-
pared to identify differences in the methylation 
levels.

Statistics analysis

DEGs identified and measurement of methyla-
tion and expression levels differences among 
hub genes across RCC and control cell lines 
were using a t-test [47]. While for GO and KEGG 
enrichment analysis, we used Fisher’s Exact 
test for computing statistical difference [48]. 
Correlational analyses were carried out using 
Pearson method. For comparisons, a student 
t-test was adopted in the current study. All the 
analyses were carried out in R version 3.6.3 
software.

Results

Screening of DEGs

Following the standard cutoff criterion (men-
tioned in the method section), DEGs between 
KIRC (n = 20) and control samples (n = 20) 
included in the GSE6344 dataset were found 
with the use of the “limma” package (Figure 
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1A, 1B). After the identification process was 
complete, a total of 7299 DEGs were found 
(Figure 1C). The top 250 DEGs in terms of p 
value were then selected from these 7299 
DEGs for further analysis in the current study.

PPI network construction, module identifica-
tion, and hub genes exploration

After determining a minimum needed interac-
tion score of >0.4 as a threshold, the 250 DEGs 
were subjected to STRING analysis for PPI con-
struction (Figure 2A). There were 763 edges 
and 250 nodes in the constructed PPI network 
(Figure 2A). Then, within the generated PPI, we 
determined the most important module in 
order to screen the top genes linked to KIRC 
development. As shown in Figure 2B, 2C, the 
identified module was the most significant 
module in terms of total gene count (n = 17). 
Therefore, we further process this module for 
hub genes exploration. In order to do this, we 
integrated the MNC, DMNC, MCC, and Degree 
of the Cytohubba scoring algorithms [25]. The 
top four shared DEGs by these 4 algorithms 
were regarded as hub genes. In total, 4 genes, 
out of which 3 significantly up-regulated genes, 
including VEGFA (vascular endothelial growth 
factor), ALB (Albumin), ENO2 (enolase 2), and 
one significantly down-regulated gene, CAV1 
(Caveolin 1) were regarded as the hub genes 
(Figure 2D).

Hub genes expression profiling at mRNA and 
protein level in UALCAN

Since four genes (VEGFA, ALB, ENO2, and 
CAV1) were regarded as hub genes, we then 
performed the expression analysis of these 
genes at mRNA and protein level across KIRC 
samples and normal controls using the UALCAN 
database. Results highlighted that VEGFA, 
ENO2, and CAV1 hub genes’ expression was 
up-regulated while the expression ALB hub 
gene was down-regulated in KIRC samples rela-
tive to controls at both mRNA and protein level 
(Figure 3A-C). These results further highlighted 
that VEGFA, ENO2, and CAV1 expression was 
also notably higher, while ALB expression was 
notably lower among KIRC patients of different 
clinical variables (cancer stage, race, gender, 
and age group) relative to control samples 
(Supplementary Figure 1). These expression 
analyses results from the UALCAN database 
are in line with the expression results of the 
analyzed dataset (GSE6344). 

Verification of the hub genes expression 
and survival analysis via GEPIA, OncoDB, 
DriverDBv3, and GENT2 databases

Using the GEPIA, OncoDB, DriverDBv3, and 
GENT2 databases, we also carried out the 
expression validation analysis of the hub genes 
in TCGA datasets and cell lines. As shown in 

Figure 1. A comparison between expression pro-
files of samples, volcano graph of DEGs, and a 
total count of DEGs in GSE6344 microarray data-
set. (A, B) A comparison between expression pro-
files of samples in GSE6344 microarray dataset, 
and (C) A volcano graph of the DEGs observed in 
GSE6344 microarray dataset.
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Supplementary Figure 2A-C, the mRNA expres-
sion of VEGFA, ENO2, and CAV1 was significant-
ly higher, while the mRNA expression of ALB 
was lower in KIRC samples relative to normal 
individuals. Moreover, mRNA expressions of 
the VEGFA, ENO2, and CAV1 genes were also 
found to be significantly up-regulated in KIRC 
cell lines as compared to normal individual cell 
line via the GENT2 database (Supplementary 
Figure 2D). This situation makes it clear that in 
KIRC patients and cell lines, the hub genes 
VEGFA, ENO2, and CAV1 are considerably over-
expressed while ALB is markedly under 
expressed. Next, we explored the prognostic 
values of the hub genes (VEGFA, ALB, ENO2, 
and CAV1) in KIRC patients using via the sur-
vival analysis module of the GEPIA database.

Results of the analysis highlighted that the 
higher expression of VEGFA, ENO2, and CAV1 

and the lower expression of ALB were linked 
with the worst OS of the KIRC patients 
(Supplementary Figure 2E). Therefore, it is 
speculated that hub genes may be used as an 
accurate prognostic model to predict the sur-
vival rate of KIRC patients.

Subcellular localization, protein expression 
validation, and survival analysis of the VEGFA, 
ALB, ENO2, and CAV1

Through the HPA database, the subcellular 
location of VEGFA, ALB, ENO2, and CAV1 in 
KIRC cells was noted. For VEGFA, this protein 
was mainly enriched in vesicles (Figure 4A), the 
ALB localization was found Golgi apparatus and 
endoplasmic reticulum (Figure 4A), ENO2 local-
ization was enriched in the plasma membrane 
and cytosol (Figure 4A), and CAV1 localization 
was seen in the Golgi apparatus (Figure 4A). An 

Figure 2. A PPI network of the top 250 DEGs, a significant module in the constructed PPI network, and a PPI network 
of the identified hub genes in GSE6344 microarray dataset. (A) A PPI network of the top 250 DEGs in GSE6344 
microarray dataset, (B, C) A PPI network of the most significant module, and (D) A PPI network of identified four hub 
genes.
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immunohistochemistry (IHC)-based protein ex- 
pression of the VEGFA, ALB, ENO2, and the 
CAV1 was analyzed in KIRC samples relative to 
controls via HPA. As a result, it was noted that 
the expression of VEGFA, ENO2, and CAV1 was 
higher (staining = high) in KIRC samples (Figure 
4B) relative to control samples (staining = 
medium) (Figure 4B), while the expression of 
ALB was lower (staining = medium) in KIRC 
samples relative to control (staining = high) 
(Figure 4B). In addition, HPA also helped to ana-
lyze the survival outcomes of the hub gene 
expression at the protein level in KIRC via sur-
vival analysis. Results of the survival analysis 
verified that higher protein expressions of 
VEGFA, ENO2, and CAV1 are associated with 

the poor OS of the KIRC patients. However, ALB 
survival outcome at protein level were not in 
line with survival outcome from the GEPIA 
(Figure 4C). The different survival outcomes of 
ALB in the HPA database may be due to the 
small sample size of the KIRC datasets as com-
pared to the GEPIA database. Therefore, fur-
ther studies based on the large KIRC sample 
size are needed to conduct to verify the surviv-
al-related outcomes of the ALB. 

Promoter methylation level and expression of 
VEGFA, ALB, ENO2, and CAV1

We figure out the influence of promoter methyl-
ation in the dysregulation of VEGFA, ALB, ENO2, 

Figure 3. mRNA and protein expression profiling of VEGFA, ALB, ENO2, and CAV1 via UALCAN. (A) A heatmap of 
VEGFA, ALB, ENO2, and CAV1 hub genes in KIRC sample group and normal control group, (B) Box plot presentation 
of VEGFA, ALB, ENO2, and CAV1 hub genes mRNA expression in KIRC sample group and normal control group, and 
(C) Box plot presentation of VEGFA, ALB, ENO2, and CAV1 hub genes protein expression in KIRC sample group and 
normal control group.
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and CAV1 hub genes’ expression in KIRC. Using 
OncoDB, we explored if the VEGFA, ALB, ENO2, 
and CAV1 expressions at the mRNA level were 
regulated by the promoter methylation in KIRC 
or not. Interestingly, owing to the promoter 
methylation level, we found a significant hyper-
methylation of these hub genes’ promoters  
in KIRC specimens compared to controls 
(Supplementary Figure 3). Therefore, it is con-
cluded that out of 4 analyzed hub genes, the 
lower expression of ALB was related to the pro-
moter methylation level, while the higher 
expression of VEGFA, ALB, and ENO was not 
associated with promoter methylation levels. 

Genetic mutations, mutational hotspots, co-
expressed genes, and the effect of mutations 
on the survival and mRNA expression levels of 
the hub genes 

Genetic mutations, mutational hotspots identi-
fication, co-expressed genes, and the effect of 
mutations on the survival and mRNA expres-
sion of VEGFA, ALB, ENO2, and CAV1 hub genes 
were explored in KIRC patients using cBioPortal 
database. ALB gene was the most genetically 
altered gene and was altered in 1.1% samples 
of 512 analyzed total samples (Supplementary 
Figure 4A). The alteration rates of VEGFA, CAV1, 
and ENO2 were 0.6%, 0.6%, and 0%, respec-
tively, in the analyzed KIRC samples and the 
deep deletion accounted for most of the chang-
es in VEGFA and CAV1 genes while missense 
mutations accounted for most of the changes 
in ALB gene (Supplementary Figure 4A). 
Concerning mutational hotspots in proteins 
encoded by the ALB gene, most of mutation 
was found to hit the functionally important 
domains (Serum albumin) of the ALB protein 
(Supplementary Figure 4A), out of which A241G 
was the frequently observed mutation in KIRC. 
Using the “Survival analysis” feature of the 
cBioPortal database, we drew the OS and DFS 
curves of the hub genes between the two sam-
ple groups i.e., one group is consisting of those 
KIRC samples which were genetically altered 
with hub genes alterations and the second 
group of those samples which did not have 
alterations in those hub genes (Supplementary 
Figure 4B). Results of the survival analysis 

revealed that the genetically altered group of 
KIRC samples had the worst OS and DFS sur-
vival rates relative to the unaltered group of 
KIRC patients (Supplementary Figure 4B). 
Moreover, by performing co-expressed gene 
analysis, we calculated correlation coefficients 
and identified that along with VEGFA, ZNF160 
was a significant co-expressed gene in KIRC 
samples (Supplementary Figure 4C), while 
APOA2, EFNA3, and CAV2 were the highly co-
expressed genes in KIRC samples with ALB, 
ENO2, and CAV1, respectively (Supplementary 
Figure 4C).

Functional enrichment analysis

GO and KEGG enrichment analyses of hub 
genes (VEGFA, ALB, ENO2, and CAV1) were 
done with the help of DAVID tool. Cellular com-
ponents (CC), biological process (BP), and 
molecular functions (MF) are 3 major functions 
of the GO enrichment analysis. In this study, 
Phosphopyruvate hydratase complex, spherical 
high-density lipprotein article, chylomicron, 
dtstrophin-associated glycoprotein complex, 
and glycoprotein complex, etc., were the major 
CC of the hub genes (Supplementary Figure 
5A). Vascular endothelial growth factor recep-
tor, 1 binding, high-density lipoprotein particle 
receptor binding, phosphopyruvate hydratase 
activity, potassium channel inhibitor activity, 
etc., BP were mainly associated with hub genes 
(Supplementary Figure 5B), while caveola 
assembly, Neg. reg. of nitric-oxide synthase 
activity, Reg of cardic muscle cell action poten-
tial involved in reg. of contraction etc., were the 
primary MFs of the hub genes (Supplementary 
Figure 5C). Moreover, KEGG pathways for the 
identified hub genes are highlighted in 
Supplementary Figure 5D, and bacterial inva-
sion of epithelial cells, bladder cancer, fluid 
shear stress and atherosclerosis, HIF-1 signal-
ing pathways were found to be involved in the 
pathogenesis of KIRC.

Single-cell functional analysis

Hub genes’ further involvement in KIRC at sin-
gle cell level was explored via CancerSEA data-
base. All hub genes including VEGFA, ALB, 
ENO2, and CAV1 were revealed to be linked 
(positively or negatively) with fourteen different 

Figure 4. Subcellular localization, protein expression, and survival outcomes’ validation of VEGFA, ALB, ENO2, and 
CAV1 via HPA database. (A) Subcellular localization prediction of VEGFA, ALB, ENO2, and CAV1, (B) Protein expres-
sion validation of VEGFA, ALB, ENO2, and CAV1, and (C) Survival outcomes validation of VEGFA, ALB, ENO2, and 
CAV1.
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states at the single cell level in kidney cancer 
(Supplementary Figure 6A). However, real  
hub gene expression was notably positively cor-
related with stemness and angiogenesis 
(Supplementary Figure 6B).

Immune cells analysis of the hub genes

Next, we further evaluated relationships among 
different immune cell infiltration (CD8+ T, CD4+ 
T, and Macrophages) and hub genes (VEGFA, 
ALB, ENO2, and CAV1) expression via the 
“TIMER” tool. The VEGFA, ALB, and CAV1 
expression was found positively correlated 
(P<0.05) with the infiltration of CD8+ T, CD4+ T, 
and Macrophages cells, while ENO2 was 
explored having a negative correlation (P<0.05) 
with the immune infiltration of CD8+ T, CD4+ T 
and Macrophages cells (Supplementary Figure 
7). 

lncRNA-miRNA-mRNA interaction network

Via ENCORI and Cytoscape, we constructed the 
lncRNA-miRNA-mRNA co-regulatory networks 
of VEGFA, ALB, ENO2, and CAV1. In the con-
structed networks, the total count of lncRNAs, 
miRNAs, and mRNAs were 31, 252, and 4, 
respectively (Supplementary Figure 8). Based 
on the constructed networks, we have identi-
fied one miRNA (hsa-mir-107), that targets all 
hub genes simultaneously. Therefore, we spec-
ulate that the identified lncRNAs, hsa-mir-107, 
and hub genes (VEGFA, ALB, ENO2, and CAV1) 
(Supplementary Figure 8) as an axis, might also 
be the potential inducers of the KIRC.

Drug prediction analysis of hub genes

For patients suffering from KIRC, medical treat-
ment is the first option for treatment. Therefore, 
a selection of appropriate candidate drugs is 
required. In the current study, via DrugBank 
database, we explored some potential drugs, 
that can reverse the gene expression of identi-
fied hub genes for the treatment of KIRC. As 
well, we also analyzed the drug sensitivity of 
various available drugs against the expression 
of VEGFA, ALB, ENO2, and CAV1. As a result, it 
was noted that Estradiol and Cyclosporine 
drugs along with many other drugs are the neg-
ative expression regulators of VEGFA, ENO2, 
and CAV1, while positive expression regulators 
of ALB mRNA expression (Table 1). 

Experimental in vitro validation of the hub 
gene methylation status

In the current study, by performing targeted 
bisulfite-seq analyses of 3 RCC cell lines, 
including 786-O and A-498, and the normal 
renal tubular epithelial cell line HK-2, methyla-
tion levels of the hub gene were validated. In 
this analysis, the methylation level was validat-
ed using beta values. As shown in Figure 5A, it 
was noticed that the beta values of the hub 
genes were lower in normal (HK-2) cell line 
while higher in the RCC cell line (786-O and 
A-498) (Figure 5A).

RT-qPCR validation analysis of VEGFA, ALB, 
ENO2, and CAV1

To confirm our bioinformatics analysis, we con-
ducted an RT-qPCR experiment to measure the 

Table 1. DrugBank-based hub genes-associated drugs
Sr. No Hub gene Drug name Effect Reference Group
1 VEGFA Acetaminophen Decrease expression of VEGFA mRNA A20420 Approved

Acetylcysteine A20451
Alvocidib A20631

Cyclosporine A20661
Estradiol A21103

2 ALB Acetaminophen Increase expression of ALB mRNA A20426 Approved
Amiodarone A20643
Cyclosporine A20661
Diclofenac A22275

3 ENO2 Estradiol Decrease expression of ENO2 mRNA A21098 Approved
Genistein A21119

Cyclosporine A20661
4 CAV1 Cyclosporine Decrease expression of CAV1 mRNA A20661 Approved

Estradiol A21424
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mRNA expression levels the hub genes (VEGFA, 
ALB, ENO2, and CAV1) in RCC cell lines (786-O 
and A-498) compared to a normal control cell 
line (HK-2). Our results, depicted in Figure 5B, 
showed significant differences in the expres-
sion levels of all four hub genes between the 
RCC cell lines and HK-2 control cell line. Notably, 
VEGFA, ENO2, and CAV1 were up-regulated, 
while ALB was down-regulated in the RCC cell 
lines compared to HK-2 (Figure 5B), which is 
consistent with our prediction based on GEO 
and TCGA datasets analysis.

Discussion

KIRC is one of the most fatal urological malig-
nancies, and its prevalence around the world 
has been on the rise over the past decades 
[49]. Due to the heterogeneous nature of the 

normal groups. The top 250 DEGs in terms  
of p-value were then selected from these  
7299 DEGs for further analysis in the current 
study. After constructing the PPI, and module 
analysis of the identified top 250 DEGs,  
the identified hub genes VGFA, ENO2, and  
CAV1 were significantly up-regulated, while  
ALB was significantly down-regulated in KIRC 
samples relative to normal tissues. Moreover, 
we also utilized different TCGA expression-
based databases and HPA to further validate 
the results of GEO expression analysis. Similar 
to GEO expression analysis results, the findings 
of additional databases further confirmed the 
significant up-regulation of VGFA, ENO2, and 
CAV1 and the down-regulation of ALB among 
the KIRC samples group and the normal sam-
ples group. 

Figure 5. Validating hub gene methylation and expression status using 
HK-2, 786-O, and A-498 cell lines via targeted bisulfite-seq and RT-qPCR 
analyses. (A) Beta values based methylation plots of the hub genes, and (B) 
Relative expression based plots of the hub genes. *P<0.05.

KIRC, the mechanisms govern-
ing its development, progres-
sion, and metastasis are very 
complex and poorly understood 
[50]. Therefore, revealing key 
genes associated with the 
pathogenesis, prognosis, and 
metastasis of KIRC is very 
important. In the present stu- 
dy, we analyzed the GSE- 
6344 [18] microarray dataset 
from the GEO database to 
unveil DEGs among the KIRC 
patients group and normal  
individuals group, in order to 
identify hub genes as reliable 
novel biomarkers in KIRC 
patients. In addition to this,  
a few important parameters  
(promoter methylation level, 
genetic alterations, and sub- 
cellular localization, etc.) asso-
ciated with the hub genes  
were also analyzed in the  
present study. Moreover, we 
also identified different chemo-
therapeutic drugs that could 
alter the expression of hub 
genes to treat KIRC, aiming to 
open new avenues for the 
development of novel treat-
ment strategies for KIRC in the 
future.

After the identification process, 
a total of 7299 DEGs were 
found between the KIRC and 
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The VEGFA gene encodes for angiogenic fac-
tors, which can affect the microenvironment 
inside endothelial cells for initiating the angio-
genesis process [51]. Across various tumors, 
the higher expression of VEGFA was not only 
found to initiate tumor development, progres-
sion, and metastasis but also causing the stim-
ulation of hemopoietic and endothelial cells 
[52-54]. A previous study reported that hypoxia 
is the stimulator of VEGFA higher expression 
across cancerous cells [55]. Wong et al. 
revealed that in glioblastoma (GBM) cells, the 
higher expression of VEGFA was associated 
with the enrichment of blood vessels [56]. 
Gong et al. highlighted that VEGFA overexpres-
sion is also associated with the expression 
regulation of matrix metalloproteinase 2 
(MMP2), which is a major factor in cancer inva-
siveness [57]. This study also suggested that 
MMP2 down-regulation with appropriate che-
motherapeutic drugs could be helpful in the 
inhibition of the angiogenesis process across 
cancer cells [57]. 

In routine clinical practice, the ALB detection 
index is the liver function test and is associated 
with the nutritional status of the patient [58], 
especially that of cancer patients [59]. Previous 
studies reported the involvement of ALB in a 
variety of cancer initiation mechanisms and 
treatment. For example, the concentration of 
ALB in serum is useful to reflect the status  
of chronic inflammation. Recent studies report-
ed that ALB synthesis is significantly lower dur-
ing cancer-associated systemic inflammation 
caused by different cytokines and growth fac-
tors [60, 61]. Furthermore, lower ALB expres-
sion was also found to be involved in antioxi-
dant and anticancer effects [61, 62].

ENO2 is mainly expressed in different kind of 
cells, including nerve cells, red blood cells, 
breast tissue cells, prostate cells, platelets, 
and uterus cells [63, 64]. ENO2 has been 
reported to be overexpressed in gastric, pros-
tate, and different other types of human can-
cers [65, 66]. According to a study conducted 
by Yan et al., ENO2 expression was notably 
higher in hypoxic and glioma cells [66]. This 
research further proposed that the silencing of 
ENO2 expression with appropriate drugs can 
inhibit cell growth in the gliomas. Moreover, 
currently published studies are mainly focused 
on the biomarker potential of ENO2 expression 

in cancer patients [63]. In this regard, it was 
observed that higher ENO2 expression may be 
a useful diagnostic and prognostic biomarker 
as well as a reliable therapeutic target for  
treating cancer patients. Liu et al. reported 
that, by enhancing the Akt activity, the ENO2 
overexpression is associated with the initiation 
of cell proliferation, and glucocorticoid toler-
ance among acute lymphocytic leukemia (ALL) 
patients [67].

Depending on the cancer stage, CAV1 plays a 
dual role, i.e., a tumor suppressor and a metas-
tasis initiator role in cancer cells [68]. In addi-
tion to this, CAV1 overexpression was found to 
promote the migration of cancer-derived cells 
by unknown mechanisms [69]. As well, the 
higher expression of CAV1 favors cancer devel-
opment, progression, invasion, and metastasis 
[70, 71]. Contrary to this, CAV1 down-regulation 
was also found to be associated with the devel-
opment of different cancers, such as lung can-
cer [72], colon cancer [73], and ovarian cancer 
[74]. In a nutshell, these findings showed that 
CAV1 displays tumor suppressor as well as 
oncogenic properties in a variety of cancer 
models.

More importantly, the identified hub genes 
were also found to be significant for predicting 
the OS of KIRC patients. The higher expression 
of VEGFA, ENO2, and CAV1 while lower expres-
sion of ALB was linked with the worst OS of 
KIRC patients. Therefore, these hub genes can 
be used as an accurate prognostic model to 
predict the OS of KIRC patients. The protein 
expression (immunohistochemical staining) 
results via the HPA database further showed 
that hub gene proteins’ expression was consis-
tent (high) with their mRNA expression level. 
This validation of mRNA and protein expression 
at both levels further enhanced the accuracy of 
the identified hub genes as molecular biomark-
ers. To our knowledge, no studies have report-
ed the role of these four hub genes in the initia-
tion and progression of KIRC. In terms of the 
mutational and methylation statuses of the 
VEGFA, ALB, ENO2, and CAV1 genes, it was dis-
covered that these genes are not prone to 
genetic mutations in KIRC, while the lower 
expression of ALB was connected to the pro-
moter methylation of this gene. However, the 
increased levels of VEGFA, ALB, and ENO2 
expression in KIRC were not associated with 
promoter methylation.
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To further enhance the understanding of these 
hub genes’ pathogenic role in the development 
of KIRC, we next revealed that VEGFA, ALB, 
ENO2, and CAV1 hub genes were involved in a 
variety of GO terms and participate in various 
cancer-associated signaling pathways, such as 
bacterial invasion of epithelial cells, bladder 
cancer, fluid shear stress, and atherosclerosis, 
as well as HIF-1 signaling pathways in KIRC 
patients. The oncogenic roles of these path-
ways have earlier been well-acknowledged in 
cancer development [75, 76]. We further 
noticed that VEGFA, ALB, ENO2, and CAV1 hub 
genes’ expression was regulated simultane-
ously by hsa-mir-107 miRNA in KIRC patients, 
and the expressions of these genes was signifi-
cantly related to the immune cell infiltration of 
CD8+ T, CD4+ T, and macrophages. Previously, 
the dysregulation of miR-107 in multiple human 
cancers has been reported in published stud-
ies, for example in breast cancer, bladder can-
cer, glioblastoma, and esophageal cancer [77-
80]. However, any tumor suppressor or tumor-
causing role of miR-107 in KIRC is not reported 
anywhere. Therefore, to the best of our knowl-
edge, this study is the first to report the proba-
ble cancer-driving role of the hsa-mir-107 
miRNA with respect to VEGFA, ALB, ENO2, and 
CAV1 hub genes in KIRC.

One of the primary factors that significantly 
contributes to the importance of this study is 
the rigorous validation process we employed. 
We went beyond relying solely on GSE6344 
outcomes by validating the expression of hub 
genes using multiple datasets from The Cancer 
Genome Atlas (TCGA) and renal cell carcinoma 
(RCC) cell lines. This comprehensive validation 
enhances the reliability and robustness of our 
findings. As a result, the hub genes identified in 
our study can be considered more reliable com-
pared to similar works. The validation across 
diverse datasets and cell lines strengthens  
the confidence in the identified hub genes. 
However, there were still some limitations:  
First, besides RNA-seq analysis, more valida-
tion analysis, such as real-time quantitative 
(RT-qPCR) and target-based bisulfite sequenc-
ing should be performed using clinical samples 
from the KIRC patients. Secondly, due to in sili-
co prediction, we are unable to explain that 
exactly how VEGFA, ALB, ENO2, and CAV1 hub 
gene-miRNAs networks and therapeutic drugs 
play a role in the diagnosis and treatment of 

KIRC. Thirdly, a detailed conclusive study con-
taining the underlying mechanism, and the bio-
logical effect should be carried out in the near 
future.

Conclusion

Through this detailed study, we proposed a 
model of four novel hub genes related to the 
occurrence of KIRC. Hub genes in the proposed 
model may be exploited as reliable potential 
biomarkers for the diagnosis, prognosis, and 
treatment of KIRC patients. However, further 
comprehensive studies should be conducted to 
explore the vital pathogenic roles of these 
genes in KIRC.
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Supplementary Figure 1. Expression profiling of VEGFA, ALB, ENO2, and CAV1 in KIRC samples of different clinical variables relative to controls via UALCAN. (A) 
Expression profiling of VEGFA in KIRC samples of different clinical variables, (B) Expression profiling of ALB in KIRC samples of different clinical variables, (C) Expres-
sion profiling of ENO2 in KIRC samples of different clinical variables, and (D) Expression profiling of CAV1 in KIRC samples of different clinical variables.
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Supplementary Figure 3. Methylation status exploration of VEGFA, ALB, ENO2, and CAV1 via OncoDB in KIRC and 
normal samples.

Supplementary Figure 2. Expression validation and survival analysis of VEGFA, ALB, ENO2, and CAV1. (A) Expres-
sion validation of VEGFA, ALB, ENO2, and CAV1 via GEPIA database, (B) Expression validation of VEGFA, ALB, ENO2, 
and CAV1 via OncoDB database, (C) Expression validation of VEGFA, ALB, ENO2, and CAV1 via DriverDBv3 database, 
(D) Expression validation of VEGFA, ALB, ENO2, and CAV1 via GENT2 database, and (E) Survival analysis of VEGFA, 
ALB, ENO2, and CAV1 via GEPIA database. *P < 0.05.
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Supplementary Figure 4. Exploration of genetic alteration frequencies, mutational hotspots, OS, DFS analyses, and co-expressed genes of VEGFA, ALB, ENO2, and 
CAV1 in KIRC via cBioPortal. (A) Types, frequencies, and location of the genetic alterations in VEGFA, ALB, ENO2, and CAV1, (B) OS and DFS analysis of VEGFA, ALB, 
ENO2, and CAV1 in genetically altered and unaltered KIRC group, and (C) Identification of co-expressed genes with VEGFA, ALB, ENO2, and CAV1 in KIRC samples.
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Supplementary Figure 5. Gene enrichment analysis of VEGFA, ALB, ENO2, and CAV1. (A) VEGFA, ALB, ENO2, and 
CAV1 associated CC terms, (B) VEGFA, ALB, ENO2, and CAV1 associated BP terms, (C) VEGFA, ALB, ENO2, and CAV1 
associated MF terms, and (D) VEGFA, ALB, ENO2, and CAV1 associated KEGG terms.
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Supplementary Figure 6. Association of VEGFA, ALB, ENO2, and CAV1 hub genes expression with fourteen different 
states in KIRC. (A) Overall associations (significant/insignificant) of VEGFA, ALB, ENO2, and CAV1 with angiogenesis, 
apoptosis, cell cycle and many others, and (B) Significant associations of VEGFA, ALB, ENO2, and CAV1 with stem-
ness and angiogenesis.

Supplementary Figure 7. Correlation analysis of VEGFA, ALB, ENO2, and CAV1 hub genes expression with different 
immune cells (CD8+ T, CD4+ T, and Macrophages) infiltration level. (A) VEGFA, (B) ALB, (C) ENO2, and (D) CAV1.
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Supplementary Figure 8. lncRNA-miRNA-mRNA co-regulatory 
network of VEGFA, ALB, ENO2, and CAV1 hub genes. (A) A PPI 
of miRNAs targeting hub genes, (B) A PPI highlighting most im-
portant miRNA (hsa-mir-107) targeting all hub genes, and (C) 
A PPI of lncRNAs targeting has-mir-107. Grey color nodes: miR-
NAs and lncRNA, Red color nodes: mRNAs, Green color nodes: 
Most important miRNA in the network.


