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Abstract: Breast cancer (BC) is one of the most common malignant tumours in women, and its prognosis is poor. 
The prognosis of BC patients can be improved by immunotherapy. However, due to the heterogeneity of BC, the 
identification of new biomarkers is urgently needed to improve the prognosis of BC patients. Necrotic apoptosis has 
been shown to play an essential role in many cancers. First, this study proposed a novel clustering algorithm called 
biorthogonal constrained depth semisupervised nonnegative matrix factorization (DO-DSNMF). The DO-DSNMF al-
gorithm added multilayer nonlinear transformation to the coefficient matrix obtained after decomposition, which 
was used to mine the nonlinear relationship between samples. In addition, we also added orthogonal constraints 
on the basis matrix and coefficient matrix to reduce the influence of redundant features and samples on the results. 
We applied the DO-DSNMF algorithm and analysed the differences in survival and immunity between the subtypes. 
Then, we used prognosis analysis to construct the prognosis model. Finally, we analysed single cells using single-
cell sequencing (scRNA-seq) data from the GSE75688 dataset in the GEO database. We identified two BC subtypes 
based on the BC transcriptome data in the TCGA database. Immune infiltration analysis showed that the necrotizing 
apoptosis-related genes of BC were related to various immune cells and immune functions. Necrotizing apoptosis 
was found to play a role in BC progression and immunity. The role of prognosis-related NRGs in BC was also verified 
by cell experiments. This study proposed a novel clustering algorithm to analyse BC subtypes and constructed an 
NRG prognostic model for BC. The prognosis and immune landscape of BC patients were evaluated by this model. 
The cell experiment supported its role in BC, which provides a potential therapeutic target for the treatment of BC.
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Introduction

Breast cancer (BC) is a heterogeneous tumour 
with high incidence and rapid progression that 
mostly occurs in women [1]. BC has become 
the fifth leading cause of cancer deaths world-
wide. In recent years, the prognosis of BC 
patients has been improved through surgery, 
chemotherapy, radiotherapy, and immunother-

apy. However, due to the heterogeneity of BC, 
the prognosis of patients is quite different [2]. 
Therefore, it is still necessary to explore more 
markers for different BC subtypes to improve 
the prognosis of BC patients.

Apoptosis is a normal cell self-death process, 
also known as programmed cell death. It plays 
an important role in maintaining tissue struc-
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ture and functional balance. Apoptosis has 
been confirmed to be related to the occurrence 
and development of many diseases. Nathalie 
Droin et al. elaborated that apoptotic mecha-
nisms play a key role in haematopoietic cell 
homeostasis [3]. Tumour necrosis factor is a 
pleiotropic cytokine that triggers proinflamma-
tory effects through NF-κB-related pathways or 
apoptosis through the activation of caspase-8 
[4]. The activation of the mitochondria-depen-
dent apoptotic pathway contributes to the loss 
of substantia nigra dense dopaminergic neu-
rons in experimental mouse models of Par- 
kinson’s disease [5]. Necroptosis is a kind of 
apoptosis [6]. It is an essential mechanism of 
cell death that plays a vital role in the occur-
rence and development of immune system dis-
eases and tumour diseases [7]. Necrosis can 
be regarded as a substitute for apoptosis, 
which is mainly mediated by ROP1, RIP3, and 
MLKL. Cell necrosis activates the human 
immune response [8]. As an alternative pro-
cess of apoptosis, necrotizing apoptosis induc-
es the immune system and kills tumour cells 
when apoptosis is blocked [9]. In addition, 
RIPK3, the critical mediator of the necrotizing 
apoptosis pathway, is downregulated in many 
cancer types, and this downregulation is relat-
ed to an increase in tumour invasion and chem-
ical resistance [10]. Necrotic apoptosis is also 
closely associated with immunity. Immunothe- 
rapy for BC is a therapeutic method to control 
and eliminate tumours by restoring the normal 
antitumour immune response of the body. 
Therefore, it is necessary to explore the impor-
tant role of necrotizing apoptosis-related genes 
in the immune system during the occurrence 
and development of BC.

Different subtypes of BC may have significant 
differences in immune landscapes and treat-
ments, so this study aims to examine the typing 
of BC. The NMF algorithm is a well-known, con-
ventional data dimensionality reduction tech-
nique that is frequently utilized in bioinformat-
ics research and analysis [11, 12]. NMF is par-
ticularly widely used in disease. Liu et al. anal-
ysed the RNA methylome using the NMF algo-
rithm and revealed the comethylation pattern 
induced by potential enzyme regulators of the 
epitranscriptome [13]. Amy L Sherborne et al. 
used NMF to identify mutational signatures in 
tumours that were not separated by genetic 
background or histology [14]. Cassio P de 

Campos et al. found accurate subgroups with 
individual molecular and clinical characteris- 
tics in multiple datasets [15]. Renaud Gaujoux 
et al. found that the use of marker genes 
improved the accuracy of gene expression 
deconvolution using NMF [16]. Mara L Hart- 
sperger proposed a novel fuzzy k-partite graph 
partitioning algorithm that can effectively 
explore biological networks [17]. NMF is typi-
cally used to categorize diseases. Wang et al. 
divided patients into two categories using NMF 
and data from RNA, single nucleotide polymor-
phisms (SNPs), and copy number variations 
(CNVs) associated with N6-methyladenosine 
(m6A) in thyroid cancer (PTC) samples in the 
cancer genome atlas (TCGA). The characteris-
tics of m6A are significant in predicting the dis-
ease-free survival (DFS) of PTC patients [18]. 
Some scholars also applied the NMF algorithm 
to the clustering of hepatocellular carcinoma 
(HCC) samples. These scholars found three 
subtypes of HCC, and used weighted gene 
coexpression network analysis and single-cell 
regulatory network reasoning and clustering  
to determine a transcription factor that can 
upregulate immunosuppressive genes in the 
subtype group with poor prognosis [19]. Jiang 
et al. employed the NMF method to distinguish 
between several lung adenocarcinoma (LUAD) 
subtypes using the RNA data of lung adenocar-
cinoma (LUAD) samples in the TCGA dataset 
[20]. However, for transcriptome data with 
more highly correlated properties, the conven-
tional NMF technique might only be partially 
appropriate. Trigeorgis and others proposed a 
deep semisupervised joint nonnegative mat- 
rix factorization (deep semi-NMF) algorithm, 
which is further innovated on the basis of a 
semi-NMF algorithm. Specifically, the features 
of the potential space can be fully captured by 
decomposing the base matrix or coefficient 
matrix in multiple layers, which is beneficial to 
the feature selection of the algorithm [21]. 
However, the deep semi-NMF algorithm does 
not consider the influence of redundant sam-
ples or features on the results. In addition, the 
nonlinear transformation of features is not  
considered in the process of layer-by-layer 
decomposition. Therefore, this study proposes 
a biorthogonal constrained depth semisuper-
vised nonnegative matrix factorization (DO- 
DSNMF) algorithm, which adds orthogonal con-
straints to the base matrix and coefficient 
matrix on the basis of the deep semi-NMF algo-
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rithm and can effectively reduce the influence 
of redundant samples or features on the re- 
sults. Moreover, the DO-DSNMF algorithm uses 
an activation function to nonlinearly transform 
the coefficient matrix. We used 1094 breast 
cancer samples in the TCGA database to carry 
out the experiment. The results show that the 
contour coefficient of the DO-DSNMF algorithm 
is better than that of other competitive 
algorithms.

The function of necrotizing apoptosis-related 
genes (NRGs) in BC patients was thoroughly 
examined in this research from a bioinformat-
ics standpoint. To be more precise, we first 
investigated the variations in the prognosis of 
various subtypes of samples using the DO- 
DSNMF algorithm to categorize the NRGs in  
the transcriptome data of BC samples in  
the TCGA database (https://portal.gdc.cancer.
gov/). By using Cox and Lasso analysis to  
separate the samples into high-risk and low-
risk groups, prognosis-related NRGs were dis-
covered. A variety of immune analyses indicat-
ed that there were great differences between 
the two groups in the infiltration abundance 
and immune function of immune cells. Im- 
munity is closely related to necrotizing apopto-
sis, so we further analysed the important role 
of genes related to necrotizing apoptosis in BC 
single-cell sequencing. To explore the role of 
necrotic apoptosis in breast cancer and its  
correlation with the immune microenviron- 
ment, BC single-cell sequencing (scRNA-seq) 
data in the GSE75688 dataset in the GEO  
database (https://www.ncbi.nlm.nih.gov/geo/) 
were analysed. Specifically, the dataset is clus-
tered and annotated, and all cell groups are 
divided into high-risk cells and low-risk cells by 
NRGs. Enrichment analysis and cell communi-
cation analysis of high-risk cell groups were 
carried out. The important role of significant 
pathways in BC samples in necrotizing apopto-
sis and immunity was analysed in detail. Finally, 
the NRGs related to prognosis were verified by 
experiments.

Method

Differential expression analysis

In this study, 130 NRGs were collected from 
previous studies. Based on the Limma algo-
rithm, the differences between BC in the TCGA 
database and NRGs in transcriptome data of 
the healthy control group were analysed, and 

129 differentially expressed NRGs (DENRGs) 
with P values less than 0.05 were retained.

CNV mutation analysis

We explored the CNV incidence of DENRGs and 
used the “RCircos” package to map their posi-
tions on 23 chromosomes.

Deep semisupervised nonnegative matrix fac-
torization (deep semi-NMF)

The deep semi-NMF algorithm is a multilayer 
feature extraction method that can effectively 
capture the multilayer feature transformation 
of datasets. Its objective function is as follows.
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Where ( )g $  represents the activation function of 
“·”, , ,Z Z1 Nf  are N  potential connection matrices 
introduced in this study, W Rp k!
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coefficient matrix H0  layer by layer can help the 
algorithm perform multiple nonlinear transfor-
mations on the samples. The H0  obtained by 
the final iteration of the algorithm stores the 
low-dimensional representation of all sample 
features. In this study, the spectral clustering 
algorithm (implemented by python’s scikit-learn 
package) was used to set the corresponding 
cluster number to obtain the final result.

Construction of the DENRG-related prognostic 
risk model

In this study, based on the TCGA cohort of BC 
patients, an NRG-related prognostic model was 
constructed. First, univariate Cox regression 
was used to screen prognosis-related DENRGs. 
Next, we used the glmnet package for Lasso-
Cox regression to construct the prognostic 
model of BC. In addition, GSE20685 of the GEO 
cohort was used as the validation set for the 
prognosis model.

Verification of the DENRG-related prognostic 
model

To verify that the prognostic model construct- 
ed in this study can effectively distinguish sam-
ples with different prognosis outcomes, this 
was confirmed in the TCGA and GEO queues. 
Specifically, we divided BC patients into a high-
risk group and a low-risk group according to  
the median sample risk value. We analysed the 
KM survival with the “Survival” package and 
“survminer” package and obtained the differ-
ence in overall survival (OS) between the two 
risk groups. Finally, the area under the ROC 
(AUROC) of the 1-year, 3-year, and 5-year sur-
vival was calculated to evaluate the prediction 
performance of the prognosis model.

Construction of nomogram model

To evaluate the survival status of BC patients 
through prognosis-related DENRGs and clinical 
data, a nomogram was constructed by clinical 
factors and prognosis-related DENRGs. In addi-
tion, this study evaluated whether the predict-
ed and actual survival times of patients were 
consistent through the calibration curve.

GSEA and ssGSEA

For the purpose of exploring the KEGG path-
ways of BC patients in the high-risk and low- 
risk groups, the KEGG gene set from the 
MSigDB database (https://www.gsea-msigdb.

org/gsea/msigdb/) was downloaded, and GSEA 
was implemented with the clusterProfiler pack-
age. In addition, to explore the difference 
between high and low immune cell functions, 
the GSVA package was used to realize ssGSEA, 
which can quantify the infiltration level of 16 
immune cell types and 13 immune-related 
functions in each sample.

Immune landscape of BC samples

In this study, the CIBERSORT algorithm was 
used to evaluate the difference in immune cell 
infiltration abundance between BC samples in 
high-risk and low-risk groups.

Data analysis of scRNA-seq

We downloaded the scRNA-seq data of BC from 
the GSE75688 dataset of the GEO database. 
The dataset contains a total of 563 cells with 
single-cell RNA sequencing data for primary 
and metastatic breast cancer. For the single-
cell sequencing data, the data for 549 single 
cells were retained. Of these, 441 cells were 
primary breast cancer cells, and 108 cells  
were metastatic breast cancer cells. First, we 
controlled the quality of the data and kept the 
cells with less than 20% mitochondrial genes 
and the cells with more than 200 genes and  
an expression between 200 and 15000. These 
samples were processed by the Harmony pack-
age to remove the batch effect. In this study, 
the percentage of necrotic genes in each cell 
was obtained by inputting NRGs with the 
“PercentageFeatureSet” function, and the cells 
were divided into two groups according to the 
proportion of median necrotic genes: high and 
low expression of NRGs. Cell clustering was  
carried out by the PCA dimension reduction 
algorithm and Umap dimension reduction algo-
rithm of the seurat package (resolusion was  
set to 0.5). The cell types were annotated by 
the singleR package. Finally, the percentage of 
NRGs in each cell was obtained by import- 
ing NRGs through the “PercentageFeatureSet” 
function. We also examined the communication 
between different cell groups using the cellchat 
algorithm.

Results

Expression and mutation analysis of NRGs in 
BC transcriptome data

Figure 1 shows the overall flow chart of this 
study. The NRGs of the BC group and healthy 
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control group in the TCGA database were first 
extracted, and then the differentially expressed 
NRGs (DENRGs) were obtained by the limma 
algorithm. We drew a differential expression 
heatmap of DENRGs between the BC group 
and the healthy control group (Figure 2A). 
DENRGs related to prognosis were obtained by 
univariate Cox analysis, and their copy number 
variations (CNVs) were analysed (Figure 2B). 
Figure 2C shows the correlation network dia-
gram between the expression of DENRGs and 
the prognosis of breast cancer.

Parameter selection of the DO-DSNMF algo-
rithm

First, the maximum number of iterations of the 
algorithm was set to 20000. Before selecting 
parameters, we chose the number of layers  
for dimensionality reduction. Specifically, the 
more layers of dimensionality reduction there 
are, the better it is at capturing the nonlinear 
feature changes of data. According to a previ-
ous paper [13], the number of layers of dimen-
sionality reduction was set to 4. The hyperpa-
rameters involved in this study include 1m , 2m  
and 3m . These super parameters were select- 
ed in the range of [0.001, 0.01, 0.1, 1]. In addi-
tion, to determine the appropriate activation 
function, we selected three activation func-
tions, namely, the sigmoid activation function, 
hyperbolic tangent activation function (tanh 
activation function), and rectifier linear unit 
activation function (ReLU activation function) 
(Figure 3).

In this study, the smallest first set of parameter 
combinations corresponding to the tanh ac- 
tivation function that minimized loss for subse-
quent analysis was selected. After deciding the 
parameters, we chose the number of layers 
and the dimension reduction of each layer. 
Specifically, the more layers of dimensionality 
reduction there are, the better it is at captur- 
ing the nonlinear feature changes of data. 
According to previous papers [11], the number 
of layers of dimensionality reduction was set to 
4. Next, the best parameters were fixed, and 
the loss of the algorithm under different di- 
mensionality reduction conditions was com-
pared. Because the minimum dimension in this 
study was the number of genes (129), the 
dimension of the first layer was less than 129. 
The dimension of the subsequent layers was 
reduced to 1/2, 1/3 and 1/4 of the original 
(Table 1).

Clustering results of the DO-DSNMF algorithm

In this study, the contour coefficient was used 
to evaluate the results of different combina-
tions of dimensionality reduction and clustering 
layers. The profile factor is defined as follows.

( )
( ), ( )

( ) ( )
s i

max x i y i
y i x i

=
-

" ,
                                      (3)

Where ( )x i  is the average distance from sample 
i  to other samples in the same cluster. The 
smaller ( )x i  is, the more sample i  should be 
clustered into this cluster. ( )x i  is called the 

Figure 1. The overall flow chart of this 
paper.
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Figure 2. NRGs-related transcriptome data analysis. A. Differential expression heat map of NRGs. B. CNV mutation analysis. C. Correlation network diagram between 
the expression of DENRGs and breast cancer prognosis.
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intracluster dissimilarity of sample i . ( )y i  is the 
average distance from sample i  to all samples 
in some other cluster. The value of the contour 
coefficient is between -1 and 1. The closer the 
value is to 1, the better the clustering effect will 
be.

In this study, the contour coefficients of nine 
cases of dimension reduction were calculated. 
Specifically, we compared the contour coeffi-
cients with the number of clusters between 2 
and 5 in nine cases.

Table 2 shows that the highest and second 
highest profile coefficients were obtained in 
cases 2 and 7, respectively. However, case 2 
determined that most sample points belong  
to the same category, which could lead to a 
higher contour coefficient. Therefore, we ruled 
out this situation and selected the second- 
highest result of case 7 for subsequent analy-
sis. The change in the objective function in loss 
and Equation (2) in this case was determined 
(Figure 4). It was obvious that the algorithm 
could reach the convergence state at a faster 

Figure 3. Parameter selection results. A. The line chart of parameter selection using the sigmoid activation function. 
B. The line chart of parameter selection using the tanh activation function. C. The line chart of parameter selection 
using the ReLU activation function.

Table 1. Loss corresponding to different dimensionality reduction

Index Dimension reduction 
of the first layer

Dimension reduction 
of the second layer

Dimension reduction of 
the third layer

Dimension reduction of 
the fourth layer Loss

1 120 60 20 5 113120
2 110 55 18 5 98489
3 100 50 17 4 107253
4 90 45 15 4 103316
5 80 40 13 3 102336
6 70 35 12 3 95819
7 60 30 10 3 91270
8 50 25 8 2 88430
9 40 20 7 2 81583

Table 2. Number of clusters and corresponding contour coefficients under different conditions
Index Cluster number was 2 Cluster number was 3 Cluster number was 4 Cluster number was 5
1 0.1407 0.1337 0.1574 0.1102
2 0.8281 0.0238 -0.0479 0.1608
3 0.0819 -0.1187 -0.1129 -0.0880
4 0.1333 -0.1313 -0.0724 -0.1970
5 0.2187 -0.0792 -0.1216 -0.1572
6 0.0888 -0.1839 -0.2023 -0.2262
7 0.2704 -0.0788 -0.1230 -0.1255
8 0.1446 -0.1607 -0.0931 -0.1248
9 -0.1813 -0.3342 -0.2854 -0.1903
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speed. To confirm the superiority of the algo-
rithm, the algorithm performance was com-
pared with deep semi-NMF and NMF algori- 
thms on real datasets and simulated datasets 
(Supplementary Materials).

Immune landscape among BC subtypes

To explore the immune landscape of different 
subtypes of BC samples, this study analysed 
the differences in immune cell infiltration  
abundance (Figure 5A), immune function 
(Figure 5B), immune-related gene expression 
(Figure 5D) and immune inspection sites 
(Figure 5E) between the two subtypes. In  
addition, heatmaps showed immune cells and 
immune functions that differed significantly 
between the two subtypes (Figure 5C). The 
ssGSEA results showed significant differences 
in immune cells and immune function between 
subtype B and subtype A, and the immune 
function and immune cell scores of subtype B 
were generally higher than those of subtype  
A. This indicated that necrotic apoptosis-relat-
ed genes are related to the immune microenvi-
ronment in breast cancer. In addition, we also 
conducted GSVA on the two subtypes to ex- 
plore the differences in their enrichment path-
ways (Figure 5F). As shown in Figure 5F, the dif-
ferentially expressed genes between subtype A 
and subtype B were mainly involved in the che-
mokine signalling pathway, natural killer cell-
mediated cytotoxicity, glycosylphosphatidylino-
sitol (GPI) anchor biosynthesis, vasopressin-
regulated water reabsorption and other path- 
ways.

BC prognostic model construction

To explore the prognostic significance of NRGs 
in breast cancer, we used Lasso-Cox regres-

shows the AUC curves of 1-year, 3-year, and 
5-year survival in the TCGA queue, in which the 
AUCs of 1-year, 3-year, and 5-year survival were 
0.637, 0.701, and 0.695, respectively. Figure 
6F shows the AUC curves for 1-year, 3-year, and 
5-year survival in the GEO queue, in which the 
AUCs of 1-year, 3-year, and 5-year survival were 
0.693, 0.664, and 0.681, respectively. For the 
TCGA cohort, Figure 7A-C show the distribution 
of risk score, the scatter plot between survival 
status and risk score and the expression heat-
map of prognosis-related NRGs between the 
two groups. For the GEO cohort, Figure 7D-F 
show the distribution of risk score, the scatter 
plot between survival status and risk score and 
the expression heatmap of prognosis-related 
NRGs between the two groups. In addition, 
Figure 7G shows the expression heatmap for 
different clinical factors. Figure 7H shows the 
correlations among the risk score, two sub-
types, and survival status.

Finally, univariate and multivariate Cox regres-
sion analyses were constructed on the basis of 
clinical factors and risk scores. Figure 8A and 
8B show the forest maps of single-factor Cox 
and multifactor Cox regression, respectively. 
Figure 8C and 8F show the nomogram models 
and DCA curves constructed by multivariate 
Cox regression. The calibration curve of Figure 
8D shows the difference between the predict-
ed and actual values. The results showed that 
the accuracy of the nomogram in predicting the 
prognosis of breast cancer was similar to that 
of the actual model. Figure 8E shows the pre-
diction results of the risk model for 1-year, 
3-year, and 5-year survival, with AUCs of 0.813, 
0.765, and 0.760, respectively. We performed 
univariate Cox regression analysis of NRGs and 
identified multiple NRGs that were significantly 
associated with prognosis. Figure S1 shows the 

Figure 4. The line chart of the changing trend of loss and objective function 
under the optimal parameter combination. A. The change of Loss as the 
number of iterations increases. B. The change of the value of the objective 
function with the increase of iteration times.

sion to analyse the prognostic 
genes obtained by univariate 
Cox regression. Specifically, 
we present the results of  
the Lasso-Cox regression in 
Figure 6A, 6B. The results  
of the KM survival analysis 
between the two subtypes of 
the TCGA and GEO queues  
are provided in Figure 6C and 
6E, respectively. ROC analy- 
sis was used to evaluate the 
prediction accuracy of the 
prognostic models. Figure 6D 
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Figure 5. Immune landscape of different subtype samples. A. Box diagram of infiltration abundance of immune cells in different subtypes of samples. B. Box dia-
gram of different subtypes of samples with different immune functions. C. Abundance thermogram of immune cells and immune functions between two subtypes. 
D. Box-diagram of the difference in immune gene expression in different subtypes of samples. E. Difference box diagram of HLA-related genes between subtypes. 
F. Thermogram of GSVA analysis between subtypes.
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Figure 6. Construction of prognostic models. A. LASSO regression of prognosis-related DENRGs. B. Cross-validation results of LASSO regression of prognosis-related 
DENRGs. C. KM survival curves obtained from KM survival analysis of two subtypes of TCGA cohort. D. ROC curves drawn by 1-year, 3-year, and 5-year OS risk models 
in TCGA queues. E. KM survival curves obtained from KM survival analysis of two subtypes of GEO cohort. F. ROC curves drawn by 1-year, 3-year, and 5-year OS risk 
models in GEO queues.
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Figure 7. The clinical significance of prognosis related NRGs. (A and D) were the risk score distributions of two risk groups in TCGA and GEO queues, respectively. 
(B and E) were scatter plots of survival status and risk scores in TCGA and GEO queues, respectively. (C and F) were the expression heat maps of prognosis-related 
NRGs in TCGA and GEO cohorts, respectively. (G) Expression heat map of prognosis-related NRGs under different clinical factors (T, M, N, stage, age, risk score). (H) 
Sangji diagram which showed the correlation between risk score, two subtypes, and survival status.
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Figure 8. Independent prognostic analysis and construction of nomogram. A. Forest map obtained by single factor Cox regression analysis. B. Forest map obtained 
by multivariate Cox regression analysis. C. Nomogram model constructed by multivariate Cox regression. D. Calibration curve of multivariate Cox regression. E. ROC 
curves drawn by 1-, 3-, and 5-year risk models. F. DCA curve of multivariate Cox regression.
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Figure 9. TMB analysis, GSEA analysis, and immune landscape of prognosis model. (A and B) were waterfall maps obtained from TMB analysis of the high-risk group 
and low-risk group, respectively. (C) Scatter plot between tumor mutation coincidence and risk score. (D) Tide scores of high-risk and low-risk groups. (E and F) Gave 
the first five paths of high-risk and low-risk groups, respectively. (G-I) Offered the difference box charts of immune cell infiltration, immune function, and immune 
examination sites in high-risk and low-risk groups, respectively.
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KM survival curves of these NRGs in the high 
and low expression groups.

Enrichment analysis and immune landscape 
of the prognostic model

The TMB analysis results of the high-risk and 
low-risk groups are shown in Figure 9A, 9B. The 
TMB of genes in the low-risk group was more 
frequent than that in the high-risk group. Figure 
9C shows the scatter plot of the correlation 
between the risk score and TMB. As shown in 
Figure 9D, there were significant differences in 
Tide scores between the high-risk and low-risk 
groups. Figure 9E, 9F show the GSEA results  
of the high-risk and low-risk groups, respective-
ly. In addition, we also explored the immune 
landscape of the prognosis model. There were 

also significant differences in immune cell infil-
tration, immune function, and immune exami-
nation sites between the two risk groups 
(Figure 9G-I). As shown in Figure 9G and 9H, 
the immune function and immune cell scores  
of patients in the low-risk group were generally 
higher than those in the high-risk group, which 
indicates that the downregulation of immune 
function or immune cells in breast cancer 
patients might lead to a poor prognosis.

Correlation analysis of scRNA-seq data

We performed a detailed analysis of the BC 
scRNA-seq dataset GSE75688. Then, the KNN 
clustering algorithm was applied to cluster the 
dataset, and the singleR algorithm was used to 
annotate it. Figure 10A shows the results of  

Figure 10. Clustering results of single cell data. A. Umap map of cell clusters. The horizontal and vertical coordinates 
represent the two classifications obtained by umap algorithm dimensionality reduction, respectively. B. Bubble 
plot of marker gene expression in cell populations. C. Bar graph of the proportion of cell types in each sample. The 
horizontal and vertical coordinates represent the sample and the proportion of the number of cells of different cell 
types, respectively.
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the dimensionality reduction visualization of 
Umap in different cell populations. Different 
cell types were annotated based on different 
colours. Figure 10B shows the bubble chart  
of marker gene expression in different cell 
groups. Six genes were specifically expressed 
in different types of cell populations. The violin 
diagram of the expression levels of these genes 
in different cell groups is shown in Figure S2A-F. 
Figure 10C shows the histogram of the propor-
tion of different cell groups in different sam-
ples. The proportion of different cell types in 
different samples varies greatly. Furthermore, 
based on the expression levels of NRGs, all  
cell groups were divided into two groups: the 
high expression group and the low expression 
group.

Figure 11A shows the cell Umap visualization 
of the high-risk and low-risk groups. The differ-
ential gene expression heatmap of the high- 
and low-expression samples of NRGs is shown 
in Figure 11B. Figure 11C displays a histo- 
gram of the ratio between samples with differ-
ent NRG expression levels. The population of 
highly expressing cells was larger in a few sam-
ples. Furthermore, to explore the signalling 
pathway information of samples with different 
NRG expression levels, GSVA (Figure S6) and 
GSEA (Figure 12A) were performed on two 
groups of samples with high and low expres-
sion of NRGs. We will discuss in detail the dif-
ferences between high and low expression 
samples in terms of the involved pathways in 
the discussion section. In addition, we provide 

Figure 11. Cell populations were divided into high and low expression groups based on the expression levels of 
NRGs. A. Umap visualization of cells in the high and low risk groups. B. Expression heatmap of differentially ex-
pressed genes between single-cell samples with different NRGs expression levels. C. Bar graph of the ratio between 
samples with different NRGs expression levels. The horizontal and vertical coordinates represent the proportion of 
the number of cells in the sample and high and low expression groups, respectively.
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the KEGG and GO analysis results of different 
genes between single-cell samples with differ-
ent NRG expression levels in Figure S3. Detail- 
ed information on the KEGG pathways obtain- 
ed by GSEA of differentially expressed genes 
between single-cell samples with different NRG 
expression levels is given in Figure S4.

According to the results of the previous an 
notation of the singleR algorithm, we drew a 

communication network diagram for the differ-
ent types of cell groups (Figure 12B, 12C). 
Specifically, in the cell communication diagram 
presented in Figure 12C, the size of the nodes 
represents the number of cells, and the thick 
lines between nodes represent the number of 
receptor-ligand pairs. In the cell communica-
tion diagram shown in Figure 12B, the thick-
ness of the connecting lines and the size of  
the nodes represent the strength of interac-

Figure 12. Analysis of intercellular communication. A. GSEA analysis of cells in the high and low expression groups. 
B. Diagram of the communication network between different cell populations, where the thickness of connecting 
lines and the size of nodes represent the number of receptor-ligand pairs and the number of cells, respectively. C. 
Diagram of the communication network between different cell populations, where the thickness of connecting lines 
and the size of nodes represent the strength of the interaction.
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Figure 13. A. Bubble diagram of signal pathway obtained using Epithelial cells and B cells as receptors and other cell groups as ligands. B. Bubble diagram of signal 
pathway obtained by taking other cell groups as receptors, Epithelial cells, and B cells as ligands.
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tion. Figure 12C shows that there were more 
quantitative and stronger relationships be- 
tween epithelial cells and B cells and other cell 
groups. Therefore, in Figure 13A, we displayed 
the bubble diagram of the signalling pathway 
obtained by using epithelial cells and B cells as 
receptors and other cell groups as ligands. In 
Figure 13B, the bubble diagram of the signal 
pathway obtained using other cell groups as 
receptors and epithelial cells and B cells as 
ligands is presented.

Discussion

In this study, the DO-DSNMF algorithm was pro-
posed to distinguish BC subtypes from the per-
spective of biological information. First, based 
on the NRGs of BC samples in the TCGA queue, 
differential expression analysis was perform- 
ed, and DENRGs were obtained. Then, BC was 
divided into different subtypes by using the 
DO-DSNMF algorithm, and we verified the per-
formance of the algorithm. In the following dis-
cussion, the results of the performance com-
parison between this algorithm and other algo-
rithms are analysed in detail. In particular, to 
specify the effectiveness of the algorithm, this 
study compared the proposed algorithm with 
NMF and deep semi-NMF under the same 
experimental parameters (Table 3). The PCA 
and the t-sne algorithms were used to reduce 
the data dimension to two dimensions for visu-
alization (Figure S5).

We analysed the differences in immune-related 
genes, immune cells, immune function, and 
immune inspection sites among different sub-
types. First, we examined the critical role of dif-
ferent subtypes of sample immune cells (B 
cells, CD8+ T cells, and NK cells) in breast can-
cer (Figure 5A). B cells play an important role in 
the immune response, and experiments have 
confirmed that tumour infiltration of B cells in 
BC can effectively promote tumour immunity 
[22]. Nalio Ramos R et al. found that FOLR2 
macrophages were related to the infiltration of 

human BC CD8+ T cells [23]. A recent study 
showed that hepatic stellate cells can inhibit 
BC dormancy maintained by NK cells [24]. 
There are significant differences in immune 
function among different subtypes (Figure 5B), 
and the increase in apoptosis is related to the 
cytolytic activity of BC [25]. Reimann H et al. 
used the BC cell line to verify that HLA-binding 
new epitopes of breast cancer can be used for 
personalized treatment of BC [26]. The role of 
inflammation and its related microRNAs in 
breast cancer were systematically reviewed 
[27]. Wuerfel FM et al. evaluated the prognosis 
and predictive value of HLA-G and HLA-F pro-
tein subtype expression patterns in BC patients 
at immune examination sites with significant 
differences among different subtypes (Figure 
5E) [28]. The correlation between HLA-DRB1 
gene polymorphisms and BC has been con-
firmed [29]. In addition, necrotizing apoptosis 
plays a major role in the progression and 
metastasis of BC [30]. We discussed the rela-
tionship between immune cells and necrotizing 
apoptosis. For example, tumour necrosis apop-
tosis can promote breast cancer metastasis, 
and the level of metastasis is related to the 
consumption of CD8+ T cells [31]. Necrotizing 
apoptotic B cells will exhibit mitochondrial dys-
function and hypoxia [32]. The necrotizing 
apoptosis signal transduction molecules affect 
the expression level of genes in NK and T lym-
phocytes of BC patients and are also related to 
macrophages [33]. An important feature of 
solid tumours is the death of necrotic cells and 
the subsequent release of DAMPs. Bone mar-
row cells (monocytes, dendritic cells (DCs), and 
granulocytes) die at an early stage, this initiates 
and regulates the subsequent inflammatory 
response [34].

In addition, we also analysed the signalling 
pathways involved in subtypes by GSVA (Figure 
5F). Zhao P et al. verified the possible role of 
glycosyl phosphatidylinositol (GPI) ankyrin in 
BC progression [35]. MAL2 in breast tumour 
cells can reduce antigen presentation on 
tumour cells and promote immune escape in 
BC [36]. Drugs for allograft rejection have tre-
mendous therapeutic potential in the treat-
ment of BC [37]. The relationship between 
these pathways and necrotizing apoptosis has 
also been confirmed in the literature. The inhi-
bition of the synthesis of the GPI anchor can 
lead to autophagy and possibly necrotizing 

Table 3. Comparison of contour coefficient 
with other algorithms
Algorithms Contour coefficients
NMF 0.1153
Deep semi-NMF 0.1363
DO-DSNMF 0.2704
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apoptosis of Aspergillus fumigatus [38]. Extra- 
cellular vesicles (EVs) released by necrotizing 
apoptotic cells contain new tumour antigens 
and are rich in components of antigen process-
ing and presentation [39]. Zhuo DX et al. indi-
cated that the mitochondrial pathway in 
allograft necrosis, apoptosis, and inflammatory 
signal transduction is a new direction for heart 
transplantation in the future [40].

In this study, prognosis-related DENRGs were 
screened by Lasso-Cox regression analysis, 
and KM survival analysis was carried out to 
verify the effect of these genes on the BC sub-
type. Examples include BCL2, BIRC3, BNIP3, 
BRD4, PLK1, and FLT3. BCL2 plays an impor-
tant role in the prognosis of BC [41]. BIRC3 has 
been shown to be involved in the chemical 
resistance to adriamycin in BC cells [42]. By 
investigating the role of BNIP3 in normal and 
neoplastic breasts, Tan EY et al. confirmed that 
BNIP3 could be used as a progressive marker 
of primary human breast cancer [43]. Some tar-
gets or pathways, such as BRD4 and PLK1, 
have also been confirmed to be related to BC 
[44]. FLT3 has also been shown to be associ-
ated with the immune infiltration of breast can-
cer [45].

Furthermore, we divided all BC samples into 
high-risk and low-risk groups according to the 
sample risk score obtained from the prognosis 
model. We also conducted TMB analysis and 
GSEA on the two groups and discussed their 
immune landscape. In the enrichment path- 
way of the high-risk group (Figure 9E), amino- 
acyl-tRNA biosynthesis was highly correlated 
with the BC subtype [46]. Cell cycle-related long 
noncoding RNA is a key regulator of breast can-
cer progression and metastasis [47]. Mutations 
in many genes encoding homologous recombi-
nant (HR) proteins may increase BC risk [48]. In 
the enrichment pathway of the low-risk group 
(Figure 9F), regulating the haematopoietic lin-
eage potential of bone marrow can effectively 
prevent bone metastasis of BC [49]. When ana-
lysing the antitumour mechanism of cinobufo-
talin in BC, researchers found that the “neuro-
active ligand-receptor interaction” pathway is 
crucial for cinobufotalin in BC [50]. We con-
firmed the significant role of immune cells, such 
as DCs, macrophages, and neutrophils. There 
were substantial differences in these cells 
between the high-risk and low-risk groups, as 

shown in Figure 9G and in the literature. Met  
O et al. [51] used human dendritic cells (DCs) 
modified by survivin mRNA to analyse survivin-
specific T cells in breast cancer patients. Ma- 
crophages play an important role in the BC 
immune microenvironment [52]. Neutrophils 
are associated with lung metastasis of breast 
cancer [53]. As shown in Figure 9H, immuno-
therapy targeting T-cell inhibition may become 
one of the therapeutic directions of human BC 
[54]. Furthermore, the results showed that the 
immune level of high-risk group patients was 
lower than that of low-risk group patients. 
Therefore, improving the immune level of breast 
cancer patients may improve the prognosis  
of breast cancer patients. In a study of iron 
death-related gene markers in breast cancer 
patients, Wang D et al. found that the type I  
IFN response and type II IFN response were low 
in the high-risk population [55]. As shown in 
Figure 9I, we found that the immune examina-
tion sites TMIGD2 and CD27 in the high-risk 
and low-risk groups are consistent with a previ-
ous report [56], but the expression patterns of 
these two genes in BC are different.

In this research, the scRNA-seq data of BC 
were analysed according to NRGs. Specifically, 
we clustered and annotated the scRNA-seq 
samples of different BCs. Then, based on the 
expression level of NRGs, the cell groups were 
divided into high-expression and low-expres-
sion groups, and the proportion of high-expres-
sion and low-expression cells in different cell 
groups was analysed. GSEA and GSVA were 
carried out on single-cell samples with different 
NRG expression levels. In addition, KEGG and 
GO pathway analyses involving the differentially 
expressed genes of high-expression and low-
expression cells are presented in Figure S3A-D. 
The GO enrichment analysis of upregulated 
genes is shown in Figure S2A, and Eoghan P 
McGrath et al. reviewed the unfolded protein 
reaction in BC [57]. Stacey Aggarwal et al. 
found that the depletion of the dAKAP1 protein 
kinase A signal island from the mitochondrial 
outer membrane changed the metabolism and 
motility of BC cells [58]. Maitham A Khajah and 
others found that Na+/K+ ATPase activity pro-
moted the invasion of endocrine-resistant BC 
cells [59]. As shown in the GO enrichment  
analysis of downregulated genes in Figure S2B, 
the relationship between some pathways and 
BC was also confirmed. Caveolin-1 is a 22-kD 
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transmembrane protein that is highly express- 
ed in plasma membrane invaginations called 
caveolae, and it is regulated by single mole-
cules of several key signalling pathways [60]. 
Nicolini et al. showed that progressive defects 
in cell-mediated immunity appear in the first 
few months after BC operation, and it takes a 
long time to recover after apparent metastatic 
disease [61]. In accordance with the KEGG 
enrichment analysis of upregulated genes 
shown in Figure S2C, Lorenza Sisinni and oth-
ers systematically reviewed BC endoplasmic 
reticulum stress and the unfolded protein 
response [62]. Valproic acid has been shown  
to upregulate oestrogen receptors (ERs) in 
breast cancer and prostate cancer. Samir 
Rabadiya and others evaluated the therapeu- 
tic effect of magnesium valproate (MgV) on  
cardiac complications related to type 1 diabe-
tes in rats and found that magnesium valproate 
improved type 1 diabetes and cardiomyopathy 
in diabetic rats through oestrogen receptors 
[63]. We also analysed the relationship be- 
tween several pathways in Figure S3 and ne- 
crotizing apoptosis. FKBP12 is a protein that 
regulates protein folding, and it may mediate 
necrotic apoptosis [64]. P53 can regulate  
the death of necrotic/necrotic apoptotic cells 
through the mitochondrial membrane [65]. 
Ubiquitin plays an important role in diseases 
related to necrotizing apoptosis [66].

Finally, we discussed two kinds of cells with 
more interactions with other cell groups as 
receptor- and ligand-mediated signalling path-
ways. In Figure 12E, we analysed the im- 
portant roles of the GDF15-TGFBR2, CD74-
(MIF+CD74), and CCl4-CCR5 genes in BC. 
GDF15 is a potential therapeutic target of BC 
radiotherapy [67]. TGFBR2 is a potential recep-
tor of GDF15, and it is inactivated in the carci-
nogenesis of many types of cancer [68]. The 
interactions between CD74 and MIF and 
between CD74 and CD44 may be potential 
tumour markers of BC cells [69]. The CCL4-
CCR5 axis plays an important role in bone fibro-
blasts in BC bone metastasis [70]. As shown in 
Figure 12F, we confirmed the close correlation 
between the FGF2-FGFR1 and GAS6-AXL gene 
pairs and BC. There is an interaction between 
cancer-related fibroblasts and BC cells in func-
tional FGF2/FGFR1 [71]. The GAS6/AXL axis 
has also been shown to be related to chemical 
resistance and metastasis of BC [72].

Conclusion

This study proposed a novel clustering algo-
rithm for analysing BC subtypes and construct-
ed an NRG prognostic model for BC. The prog-
nosis and immune landscape of BC patients 
were evaluated by this model. The cell experi-
ment supported its role in BC, which provides a 
potential therapeutic target for the treatment 
of BC.
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Figure S1. KM survival curve of prognosis-related NRGs.

Figure S2. Cell group marker gene expression of violin. (A 
and B) were violin diagrams of B cell marker genes. (C) was 
the violin diagram of Chondrocytes cell marker gene. (D) 
was the violin diagram of Epithelial cell marker gene. (E) 
was the violin diagram of Monocyte cell marker gene. (F) 
was the violin diagram of T cell marker gene.
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Figure S3. KEGG and GO analysis of differential genes among single cell samples with different NRGs expression levels. (A and B) were the GO enrichment analysis 
results of up-regulated genes and down-regulated genes, respectively. (C and D) were the results of KEGG enrichment analysis of up-regulated genes and down-
regulated genes, respectively.
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Figure S4. KEGG pathway information obtained from GSEA analysis of differential genes among single cell samples with different NRGs expression levels.
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Figure S5. Visualization results of different algorithms clustering under the same experimental conditions (the number of clusters was 2). (A, C and E) were the 
clustering results of NMF, Deep semi-NMF, and DO-DSNMF obtained by using the t-sne algorithm, respectively. (B, D and F) were the clustering results of NMF, Deep 
semi-NMF, and DO-DSNMF obtained by the PCA algorithm, respectively.
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Figure S6. Results of GSEA analysis of cells in the high and low expression groups.


