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Abstract: Papillary thyroid cancer (PTC) is the most common type of endocrine cancer worldwide. Generally, PTC has 
an excellent prognosis; however, lymph node metastases and recurrences occur frequently. Over the last decade, 
circular RNAs (circRNAs), a large class of noncoding RNAs (ncRNAs), have emerged as key regulators of various 
tumor progression pathways. Here, we aimed to identify novel circRNAs as PTC biomarkers. Differentially expressed 
circRNAs and mRNAs were analyzed using public datasets from the Gene Expression Omnibus and Cancer Genome 
Atlas. In addition, we screened for target miRNAs using online prediction databases. Based on these results, we 
established a circRNA-miRNA-mRNA regulatory network associated with PTC, in which protein-protein interaction 
networks led to the identification of hub genes. Functional enrichment and survival analyses were performed to 
gain insights into the biological mechanisms of circRNA involvement. As a result, we found that two circRNAs (hsa_
circ_0041829 and has_circ_0092299), four miRNAs (miR-369, miR-486, miR-574, and miR-665), and nine hub 
genes (BBC3, E2F1, FYN, MAG, SDC1, SDC3, SNAP25, TK1, and TYMS) play significant roles in PTC progression. This 
study provides a novel framework for understanding the roles of circRNA-miRNA-mediated gene regulation in PTC. It 
also introduces potential therapeutic targets and prognostic biomarkers, which may serve as a basis for developing 
targeted therapeutic interventions for PTC.
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Introduction

Thyroid cancer (THCA) is a common endocrine 
malignancy, particularly in females, and its inci-
dence is increasing worldwide [1]. Follicular 
cell-derived thyroid malignancies account for 
majority of the thyroid tumors and are classi-
fied as follicular THCA, papillary thyroid cancer 
(PTC), poorly differentiated THCA, Hürthle cell 
cancer, and anaplastic THCA [2]. PTC is the 
most frequent pathological subtype, represent-
ing 80%-85% of all thyroid malignancies [3, 4]. 
Although PTC has a favorable prognosis, with a 
10-year survival rate of over 90% [5], long-term 
follow-up reveals recurrence in 25% of the 
patients, and approximately 50% of the patients 
develop cervical lymph node metastasis [6-8]. 
Several risk factors, such as radiation expo-

sure, endocrine disruptors, and diet (iodine), 
contribute to the progression of PTC. However, 
limited genomic and proteomic marker discov-
ery analyses have been performed to date [9], 
making an in-depth study of the molecular 
mechanisms underlying PTC progression impor-
tant for identifying potential therapeutic targets 
and prognostic biomarkers.

Over the past decade, increasing evidence has 
indicated that noncoding RNAs (ncRNAs), such 
as microRNAs (miRNAs), long noncoding RNA 
(lncRNAs), and circular RNAs (circRNAs), play 
important roles in the progression and patho-
genesis of various types of cancer [10-13]. 
MiRNAs, composed of 21-25 nucleotides, are 
small noncoding RNAs that regulate gene 
expression [14]. Dysregulated miRNAs influ-
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ence cell death, proliferation signaling, inva-
sion, angiogenesis, and metastasis [15]. 
LncRNAs are noncoding transcripts with a 
length of over 200 nucleotides that function as 
either oncogenes or tumor suppressors in vari-
ous diseases [16, 17]. Although miRNAs and 
lncRNAs are potential biomarkers for the 
molecular diagnosis of human diseases, they 
do not provide sufficient information related to 
specific diseases [18]. CircRNAs have gained 
considerable attention as a novel research 
direction and approach to overcome these limi-
tations and are being explored as potential 
diagnostic and prognostic biomarkers, as evi-
denced by their detectability in liquid biopsy 
samples, such as blood, plasma, serum, and 
urine [19]. CircRNAs are a subclass of ncRNAs 
that are widely expressed in different cellular 
contexts and play various roles in growth and 
development [20]. CircRNAs are produced by 
back-splicing of linear precursor RNA, resulting 
in a covalently closed-loop structure, and lack a 
5’ cap and 3’ end poly (A) tail [21, 22]. Based on 
their origin in different regions of the genome, 
they are classified into three types: (1) exonic 
circRNAs, which are generated from direct 
back-splicing or exon skipping; (2) circular 
intronic circRNAs, which are produced from the 
intronic region of pre-mRNAs; and (3) exon-
intron circRNAs, which consist of exons and 
introns [23, 24]. 

The circRNA/miRNA/mRNA axis plays a crucial 
role in cancer progression. Several studies 
have demonstrated that circRNAs are dysregu-
lated in various diseases, including cancer [25]. 
CircRNAs can act as competitive endogenous 
RNAs by serving as miRNA sponges, competing 
with miRNAs to bind to miRNA response ele-
ments (MREs) and regulate target gene expres-
sion. This process ultimately affects the onset 
and progression of several diseases [26]. 
Several circRNAs are upregulated or downregu-
lated in PTC tissues compared with adjacent 
normal tissues [27, 28]. For example, circTIAM1 
acts as a sponge for miR-646 and functions in 
PTC by targeting miR-646 and the heteroge-
neous ribonucleoprotein A1 [29]. CircRUNX1 
promotes PTC progression and metastasis by 
sponging miR-296-3p and regulating DDHD2 
expression [30]. CircNEURL4 inhibits the prolif-
eration and migration of PTC cells by competi-
tively binding to miR-1278, thereby indirectly 
increasing LATS1 expression [31].

Although a few independent studies have con-
ducted circRNA microarray and sequencing in 
PTC, a potential limitation remains owing to the 
small sample size of these datasets [32-34]. 
Therefore, the unbiased screening of circRNAs 
in a larger cohort would be highly beneficial for 
identifying potential PTC biomarkers. In this 
study, we aimed to identify potential PTC bio-
markers with greater confidence and accuracy 
by collecting circRNA microarray datasets from 
the Gene Expression Omnibus (GEO) database 
and analyzing differentially expressed circRNAs 
(DECs) across datasets by selecting overlap-
ping DECs. This study provides a novel frame-
work for understanding the roles of circRNA-
miRNA-mediated gene regulation in PTC. Thus, 
it may serve as a basis for developing targeted 
therapeutic interventions and prognostic bio-
markers for PTC.

Materials and methods

Datasets and identification of DECs and differ-
entially expressed genes (DEGs)

We selected the GSE93522 and GSE173299 
datasets from the GEO database, which pro-
vide circRNA microarray data for PTC. Each pair 
of samples from GSE93522 represents six PTC 
tumors and six matching contralateral normal 
samples. GSE173299 represents three pairs of 
PTC tumors and three matching adjacent nor-
mal tissues. Next, we performed a differential 
analysis (P < 0.05, fold change > 1.5) by com-
paring tumor tissues to normal tissues in R 
software using the limma package [35]. The 
normalized microarray data were analyzed, and 
the outcomes were compared for further inves-
tigation. Overlapping DECs were identified by 
intersecting DECs from the two datasets. To 
analyze the DEGs between cancerous and can-
cer-adjacent tissues of patients with THCA, we 
downloaded the gene expression data of tumor 
(n=510) and normal (n=58) tissues of patients 
with THCA from The Cancer Genome Atlas 
(TCGA) GDC website (https://portal.gdc.cancer.
gov/). We then performed a differential analy-
sis (|log2FC| > 2 and adjusted P < 0.05) by 
comparing tumor tissues to normal tissues in R 
software using the Deseq2 package [36]. The 
results are displayed using volcanic plots.

RNA extraction and qRT-PCR

The total RNA was isolated from tissues using 
TRIzol reagent (Invitrogen, CA, USA), according 
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to the manufacturer’s protocol. cDNA was  
synthesized with random primers using a 
SuperScript™ IV Reverse Transcriptase kit 
(Invitrogen). qRT-PCR was performed on the 
Roche Real-Time PCR System (LightCycler 
480). Primers for circRNAs were synthesized by 
Bionics. The relative circRNA expression levels 
were analyzed using the 2-ΔΔCt method. GAPDH 
were used as the internal control genes. For the 
RNase R treatment, 1 μg total RNA was digest-
ed at 37°C for 30 min and 70°C for 10 min  
with 2 U/μg RNase R (BiosearchTechnology, 
RNR07250). The primers used for qRT-PCR 
analysis were as follows: hsa_circ_0000253 (F 
5’-AAGAGCTTAGGTGGTGTGGG-3’, R 5’-TCCATC- 
TTCCCTCACAGCAG-3’), hsa_circ_0011385 (F 
5’-TGACAACAATGAGCCCTACATG-3’, R 5’-TGCTT- 
GTCCGTGGAGAACAT-3’), hsa_circ_0005777 (F 
5’-AGCAGTCCTTCATGTCACCA-3’, R 5’-GGTAGTG- 
GCAGTGATTCCCT-3’), hsa_circ_0021549 (F 5’- 
CTACCGTTTCCCCTCTGTGT-3’, R 5’-TGTCATATG- 
GGATGGGGTCG-3’), hsa_circ_0021553 (F 5’- 
ATGACACTCCAAAACCAGCG-3’, R 5’-AGCAAAAG- 
ATGGAAGCAGGC-3’), hsa_circ_0041829 (F 5’- 
CATGGACAACAGCCTGGC-3’, R 5’-TGGACACTTG- 
GACACACTGG-3’), hsa_circ_0044556 (F 5’-GG- 
TCCTGATGGCAAAACTGG-3’, R 5’-CAACACCATC- 
TGCGCCAG-3’), hsa_circ_0048937 (F 5’-GTG- 
GATCACTGGGAAGACGA-3’, R 5’-GATGAAGAGC- 
TGGGCAAAGG-3’), hsa_circ_0076092 (F 5’- 
GTATTGCCTGTGAATGCCGT-3’, R 5’-GATGTGGC- 
AGTTGTCAGTCC-3’), hsa_circ_0079891 (F 5’- 
CAAGTCCATGTACACGCGAG-3’, R 5’-CCACCCAT- 
CACAGACTTCCT-3’), hsa_circ_0092278 (F 5’- 
AGCCAGACCTTTTGACTCCA-3’, R 5’-GGCTATGC- 
TTTGTGAGGCTG-3’), hsa_circ_0092299 (F 5’- 
TCTGTGACTTTGTGCTTGGC-3’, R 5’-GAAGCAAG- 
ACACACACTGCA-3’) and GAPDH (F 5’-AATC- 
CCATCACCATCTTCCA-3’, R 5’-TGGACTCCACGA- 
CGTACTCA-3’).

Prediction of MREs and miRNA target genes

MREs in DECs were predicted using two web 
tools: CircInteractome (https://circinteractome.
nia.nih.gov/) [37] and CircBank (www.circbank.
cn) [38]. Overlapping miRNAs from CircBank 
and CircInteractome were used for further anal-
yses. Target genes of the miRNAs were predict-
ed using the open online bioinformatics tool 
TargetScan (https://www.targetscan.org/vert_ 
80/).

Cancer-specific circRNA database (CSCD) 
analysis

CSCD is a database developed for cancer-spe-
cific circRNAs that collects available RNA 
sequencing (total RNA with rRNA-depleted or 
polyA-enriched) datasets from 87 cancer cell 
line samples (http://gb.whu.edu.cn/CSCD/) 
[39]. We used CSCD to obtain the structural 
ring diagram of each candidate circRNA.

Expression and survival analyses using data-
base

The expression levels of interacting miRNAs in 
THCA were further analyzed using the UALCAN 
database (http://ualcan.path.uab.edu/index.
html) [40]. Statistical significance was set at  
P < 0.05. Immunohistochemical data for the 
hub genes in thyroid and PTC tissues were 
downloaded from the Human Protein Atlas 
(HPA; https://www.proteinatlas.org/) using the 
“Tissue” and “Pathology” modules, respective-
ly. The Kaplan-Meier plotter (http://kmplot.
com/analysis/) was used to evaluate the influ-
ence of different expression levels of hub genes 
on the relapse-free survival (RFS) and overall 
survival (OS) of patients with THCA with differ-
ent clinical factors [41]. Hazard ratios, 95% 
confidence intervals (95% CI), and log-rank P 
value were calculated and displayed in survival 
charts. Patients were split based on “automati-
cally select the best cut-off point”, and the fol-
low-up threshold covered all patients. Statistical 
significance was set at P < 0.05.

Gene ontology (GO) and Kyoto encyclopedia 
of genes and genomes (KEGG) enrichment 
analysis

Target genes of DECs were analyzed using the 
Database for Annotation, Visualization, and 
Integrated Discovery (DAVID; https://david.ncif-
crf.gov/) for GO function enrichment and KEGG 
pathway analyses [42]. Statistical significance 
was set at P < 0.05. The GO enrichment analy-
sis was performed using the R package 
clusterProfiler. 

Construction of a protein-protein interaction 
(PPI) network and identification of hub genes

The predicted miRNA target genes and DEGs 
from TCGA-THCA were intersected to obtain 
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overlapping genes. The PPI network of the inter-
secting DEGs was generated using the Search 
Tool for the Retrieval of Interacting Genes 
(STRING) online tool (https://string-db.org/) 
with a confidence score of 0.4. The results were 
imported and visualized using the Cytoscape 
software (version 3.9.1) [43, 44]. The Maximal 
Clique Centrality (MCC) algorithm, an effective 
method for searching hub nodes, was utilized 
via the CytoHubba plugin in Cytoscape to select 
the top 10 genes [45]. The hub gene subnet-
work was extracted using CytoHubba to visual-
ize the genes that directly interacted with these 
top-ranked nodes.

Results

Identification of DECs in PTC

In this study, we aimed to identify novel cir-
cRNAs that may be involved in controlling PTC 
progression. First, we identified DECs between 
normal thyroid tissues and PTC using a public 
microarray dataset. Next, we established a 
putative circRNA/miRNA/mRNA regulatory axis 
linked to PTC progression by predicting inter-
acting miRNAs and their target genes and per-
forming PPI network analysis, pathway enrich-
ment analysis, survival analysis, and hub gene 
identification (Figure 1A). To identify potential 
circRNAs and construct a network of circRNA/
miRNA/mRNA interactions in PTC, we used two 
microarray datasets (GSE93522 and GSE17- 
3299) from the GEO database to screen for 
overlapping circRNAs that were differentially 
expressed in PTC tissues compared to adjacent 
non-tumor tissues. The volcano plot displays 
the distribution of differentially expressed cir-
cRNAs (fold change > 1.5, P < 0.05) between 
PTC and non-tumor tissues in the two datasets 
(Figure 1B). In total, 267 DECs, including 179 
upregulated and 88 downregulated circRNAs, 
were identified in GSE93522, whereas 1147 
DECs, including 562 upregulated and 585 
downregulated circRNAs, were identified in 
GSE173299. We integrated the DECs into a 
Venn diagram, which showed 27 upregulated 
and 19 downregulated circRNAs common to 
both microarray datasets (Figure 1C). To iden-
tify significantly differentially expressed cir-
cRNAs, we selected overlapping DECs with fold-
change ratios greater than two in both datasets 
for further analyses. The seven overlapping cir-
cRNAs (four upregulated and three downregu-

lated), along with their circBase ID, genomic 
locations, circRNA types, and host genes, are 
listed in Table 1. The structural patterns of can-
didate circRNAs predicted using the CSCD 
database are shown in Figure 1D. Six exonic 
circRNAs (hsa_circ_0091710, hsa_circ_004- 
1829, hsa_circ_0011385, hsa_circ_0079891, 
hsa_circ_0005777, and hsa_circ_0021549) 
exhibited structural ring diagrams. However, 
the structural pattern of the upregulated in- 
tronic circRNA hsa_circ_0092299 was not 
observed in CSCD. The expression levels of the 
seven overlapping circRNAs were assessed 
using qRT-PCR in 12 pairs of PTC samples 
along with their corresponding adjacent nontu-
mor tissues. As shown in Figure 1E, all upregu-
lated circRNAs demonstrated a significant 
increase in PTC tissues compared to matched 
nontumor tissues (P < 0.05), consistent with 
the microarray data. Similarly, all downregulat-
ed circRNAs displayed decreased expression in 
PTC tissues (P < 0.05). 

Generally, it is crucial to recognize the signifi-
cance of normalization in maintaining the accu-
racy and reproducibility of the analysis. As a 
result, we conducted data normalization for the 
analysis of the GEO dataset and subsequently 
compared the outcomes. After normalization, 
we depicted differentially expressed circRNAs 
(fold change > 1.5, P < 0.05) through a volcano 
plot comparing PTC and non-tumor tissues 
(Supplementary Figure 1A). Utilizing a Venn dia-
gram, we illustrated 84 upregulated and 59 
downregulated circRNAs shared between both 
microarray datasets (Supplementary Figure 
1B). In accordance with the previous analysis, 
we selected overlapping DECs with fold-change 
ratios exceeding two in both datasets. 
Intriguingly, among the thirteen overlapping  
circRNAs, seven had been previously identified. 
The remaining six newly discovered overlapping 
circRNAs (three upregulated and three  
downregulated) are enumerated in Table 1. 
Supplementary Figure 1C showcased the ring 
structures of four exonic circRNAs (hsa_circ_ 
0021553, hsa_circ_0044556, hsa_circ_00- 
48937, and hsa_circ_0076092). However, the 
structural configurations of the intronic cir-
cRNAs, hsa_circ_0000253 and hsa_circ_ 
0092278, were absent in the CSCD dataset. 
The expression levels of the six circRNAs were 
assessed using qRT-PCR in 12 pairs of PTC 
samples along with their corresponding adja-
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Figure 1. Identification of differentially expressed circRNAs (DECs) in thyroid cancer. A. Flowchart of this study. B. 
Identification of DECs in two Gene Expression Omnibus (GEO) datasets. Volcano plots depicting the DECs obtained 
from GEO datasets, where red dots denote significantly upregulated and downregulated circRNAs. A threshold of 
P < 0.05 and fold change > 1.5 were set. C. Venn diagram showing 27 overlapping upregulated DECs (upper) and 
19 overlapping downregulated DECs (lower) between the two GEO datasets. D. Structural patterns of the six cir-
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cent nontumor tissues. The findings indicated 
that all three upregulated circRNAs demon-
strated a significant increase in PTC tissues 
compared to matched nontumor tissues (P < 
0.05). Similarly, all three downregulated cir-
cRNAs displayed decreased expression in PTC 
tissues (P < 0.001) (Supplementary Figure 1D). 

Prediction of circRNA-interacting miRNAs and 
identification of DEGs

The most commonly reported role of circRNAs 
in cancer is to act as miRNA sponges [46, 47]. 
To identify potential miRNAs that interact with 
the six circRNAs, we used a circRNA-interacting 
miRNA database from CircBank and CircIn- 
teractome and selected the intersection of the 
prediction results of both databases. We found 
that 33 miRNAs may interact with the six cir-
cRNAs. Using Venn diagram analysis, we iden- 
tified 14 intersecting miRNAs for hsa_circ_ 
0092299, 1 intersecting miRNA for hsa_
circ_0041829, 2 intersecting miRNAs for hsa_
circ_0011385 and hsa_circ_0005777, 10 
intersecting miRNAs for hsa_circ_0079891, 
and 4 intersecting miRNAs for hsa_circ_ 

0021549, whereas hsa_circ_0091710 had 
zero interacting miRNAs (Figure 2A and Table 
2). Furthermore, our findings reveal potential 
interactions between 20 miRNAs and the six 
newly discovered circRNAs. Illustrated in 
Supplementary Figure 1E are the specific 
details: we identified 2 intersecting miRNAs for 
hsa_circ_0044556, 5 intersecting miRNAs for 
hsa_circ_0048937, 5 intersecting miRNAs for 
hsa_circ_0092278, 2 intersecting miRNAs for 
hsa_circ_0000253, 4 intersecting miRNAs for 
hsa_circ_0021553, and 2 intersecting miRNAs 
for hsa_circ_0076092 (Table 2).

We then examined the differential expression 
of these 33 intersecting miRNAs in PTC using 
the TCGA database (TCGA-THCA) and analyzed 
the statistically significant results using 
UALCAN (P < 0.05). We identified six miRNAs 
(miR-361, miR-369, miR-486, miR-574, miR-
607, and miR-665) that exhibited a negative 
correlation and one miRNA (miR-182) that 
exhibited a positive correlation with circRNA 
expression. Notably, all six miRNAs were signifi-
cantly downregulated in the THCA group (Figure 
2B). We also assessed the expression of 20 

cRNAs by the Cancer-specific CircRNA Database (CSCD). MRE: miRNA response element; RBP: RNA binding protein; 
ORF: open reading frame. E. qRT-PCR validation of seven differentially expressed circRNAs. The relative expression 
levels of circRNAs in 12 PTC tissues and paired normal tissues. Notably, circ_0011385 was analyzed in 20 pairs, 
circ_0005777 in 18 pairs, and circ_0079891 in 14 pairs, enhancing the comprehensive assessment of their ex-
pression patterns; *P < 0.05 (•: normal tissues, ▪: PTC tissues). 

Table 1. Basic information on circRNAs with |log2FC| > 1 (upper) or < -1 (lower) in the two GEO datas-
ets
|log2FC| > 1

circRNA circbase chrom strand txStart txEnd type best_transcript host gene
hsa_circRNA_105037 hsa_circ_0091710 chrX - 151130894 1.51E+08 exonic NM_004961 GABRE
hsa_circRNA_400070 hsa_circ_0092299 chr22 + 35819173 35819173 intronic ENST00000216122 MCM5
hsa_circRNA_101971 hsa_circ_0041829 chr17 - 7226185 7226185 exonic NM_032442 NEURL4
hsa_circRNA_100146 hsa_circ_0011385 chr1 + 32692131 32692131 exonic NM_003757 EIF3I
hsa_circRNA_102121 hsa_circ_0044556 chr17 - 48271490 48272189 exonic NM_000088 COL1A1*
hsa_circRNA_102430 hsa_circ_0048937 chr19 + 6934997 6937659 exonic NM_001974 EMR1*
hsa_circRNA_400031 hsa_circ_0092278 chr17 + 4797948 4798348 intronic ENST00000347992 MINK1*
|log2FC| < -1
circRNA circbase chrom strand txStart txEnd type best_transcript host gene
hsa_circRNA_104348 hsa_circ_0079891 chr7 - 37250990 37382367 exonic NM_014800 ELMO1
hsa_circRNA_103888 hsa_circ_0005777 chr5 + 73136304 73136585 exonic NM_001080479 ARHGEF28
hsa_circRNA_100775 hsa_circ_0021549 chr11 - 30516842 30557722 exonic NM_001584 MPPED2
hsa_circRNA_001350 hsa_circ_0000253 chr10 - 97999787 97999925 intronic NR_047681 BLNK*
hsa_circRNA_100777 hsa_circ_0021553 chr11 - 30557540 30602041 exonic NM_001145399 MPPED2*
hsa_circRNA_104099 hsa_circ_0076092 chr6 + 35195356 35201078 exonic NM_152753 SCUBE3*
Asterisks (*) denote a newly identified circRNAs.
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newly identified overlapping miRNAs using 
UALCAN. Among these, we pinpointed four miR-

NAs (miR-502, miR-589, miR-624, and miR-
643) that displayed a negative correlation with 

Figure 2. Identification of circRNA-miRNA interactions and differentially expressed genes (DEGs) in the The Cancer 
Genome Atlas (TCGA) dataset of thyroid cancer. A. Venn diagram between the seven target miRNAs predicted by 
CircBank and CircInteractome. B. TCGA expression profiles for the seven miRNAs in thyroid cancer samples (n=501, 
red) and normal samples (n=59, blue). C. Volcano plots of DEGs in the The Cancer Genome Atlas (TCGA)-Thyroid 
Cancer (THCA) dataset. The cutoff criteria used were |log2FC| ≥ 1.0 and adjusted P < 0.05. D. Venn diagram repre-
sent the overlap between miRNA target genes and DEGs from TGCA. Upper; 167 mRNAs were obtained from the in-
tersection of 1,463 upregulated mRNAs (TCGA-THCA dataset) and 1,625 miRNA targets predicted using TargetScan. 
Lower; 12 mRNAs were obtained from the intersection of 1,099 downregulated mRNAs (TCGA-THCA dataset) and 
174 miRNA targets predicted using TargetScan. 
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circRNA expression. Consistent with the afore-
mentioned outcome, all four of these recently 
discovered miRNAs exhibited significant down-
regulation in the THCA group (Supplementary 
Figure 1F).

To investigate the function of these circRNAs  
in PTC, we used the DESeq2 package to ana-
lyze the TCGA-THCA data with the criteria of 
|log2FC| > 1 and adjusted P < 0.05. We identi-
fied 2,562 genes, including 1,463 upregulated 
and 1,099 downregulated genes (Figure 2C). 
The target genes of the seven selected miRNAs 
were predicted using the TargetScan database. 
By intersecting the 1,625 predicted target 
genes for the six downregulated miRNAs with 
the 1,463 upregulated genes from the TCGA-
THCA analysis and the 174 predicted target 
genes for miR-182 with the 1,099 downregu-
lated genes from the TCGA-THCA analysis, we 
obtained 179 shared DEGs (167 upregulated 
and 12 downregulated genes) (Figure 2D). 
Furthermore, we acquired 187 common DEGs 
by intersecting the 1,921 predicted target 
genes of the ten downregulated miRNAs (miR-
361, miR-369, miR-486, miR-502, miR-574, 
miR-589, miR-607, miR-624, miR-643, and 
miR-665) with the 1,463 upregulated genes 
identified in the TCGA-THCA analysis (Supple- 
mentary Figure 1G).

Functional and pathway enrichment analyses

The DEGs targeted by the four circRNA-seven 
miRNAs were subjected to GO functional anno-
tation and pathway analyses using DAVID soft-
ware to understand their functions (Table 3). In 
the biological process (BP) category of GO, 

Table 2. Identification of miRNAs interacting 
with the six circRNAs using the CircBank and 
CircInteractome databases
Up-regulated circRNAs Interacting miRNAs
hsa_circ_0092299 hsa-miR-324-5p

hsa-miR-486-3p*
hsa-miR-515-3p

hsa-miR-574-5p*
hsa-miR-607*
hsa-miR-622
hsa-miR-635
hsa-miR-646
hsa-miR-648

hsa-miR-665*
hsa-miR-1182
hsa-miR-1184
hsa-miR-1303
hsa-miR-1324

hsa_circ_0041829 hsa-miR-369-5p*

hsa_circ_0011385
hsa-miR-361-3p*

hsa-miR-1272
hsa_circ_0044556 hsa-miR-589-5p*

hsa-miR-634
hsa_circ_0048937 hsa-miR-1205

hsa-miR-624-3p*
hsa-miR-630

hsa-miR-643*
hsa-miR-665*

hsa_circ_0092278 hsa-miR-1236-3p
hsa-miR-149-5p
hsa-miR-331-3p
hsa-miR-432-5p

hsa-miR-502-5p*
Down-regulated circRNAs Interacting miRNAs
hsa_circ_0079891 hsa-miR-361-3p*

hsa-miR-1272
hsa-miR-182-5p*

hsa-miR-384
hsa-miR-512-5p
hsa-miR-515-5p

hsa-miR-558
hsa-miR-576-3p

hsa-miR-647
hsa-miR-665

hsa-miR-1206
hsa-miR-1243
hsa-miR-1256
hsa-miR-1270

hsa_circ_0005777 hsa-miR-607
hsa-miR-1225-5p

hsa_circ_0021549 hsa-miR-346
hsa-miR-553

hsa-miR-574-5p
hsa-miR-657

hsa_circ_0000253 hsa-miR-1236-3p
hsa-miR-1324

hsa_circ_0076092 hsa-miR-1206
hsa-miR-643

hsa_circ_0021553 hsa-miR-1257
hsa-miR-548p

hsa-miR-574-5p
hsa-miR-661

Asterisks (*) denote a negative correlation between 
circRNA and miRNA expression.
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DEGs were enriched in functional annotations 
related to cell-cell signaling, single-multicellular 
organism processes, cell differentiation, and 
modulation of synaptic transmission. In the cel-
lular component (CC) category, DEGs were 
enriched in functional annotations related to 
the plasma membrane, cell periphery, and neu-

algorithm of the CytoHubba plug-in, the nine 
highest-scoring genes in the PPI network were 
selected as hub genes. These hub genes were 
BCL2-binding component 3 (BBC3), E2F tran-
scription factor 1 (E2F1), Src family tyrosine 
kinase (FYN), FYN proto-oncogene, myelin-
associated glycoprotein (MAG), syndecan 1 

Table 3. Gene ontology (GO) enrichment analysis
BP term P-value
GO:0007267~cell-cell signaling 2.18E-06
GO:0044707~single-multicellular organism process 2.32E-05
GO:0048869~cellular developmental process 2.54E-05
GO:0030154~cell differentiation 6.38E-05
GO:0050804~modulation of synaptic transmission 6.53E-05
GO:0051701~interaction with host 7.02E-05
GO:0044700~single organism signaling 7.25E-05
GO:0032501~multicellular organismal process 9.50E-05
GO:0023052~signaling 9.85E-05
GO:0032502~developmental process 1.01E-04
CC term P-value
GO:0005886~plasma membrane 9.66E-08
GO:0071944~cell periphery 2.34E-07
GO:0032279~asymmetric synapse 7.57E-06
GO:0098984~neuron to neuron synapse 9.27E-06
GO:0043005~neuron projection 2.02E-05
GO:0097458~neuron part 2.83E-05
GO:0016020~membrane 3.05E-05
GO:0014069~postsynaptic density 3.20E-05
GO:0031224~intrinsic component of membrane 6.39E-05
GO:0099572~postsynaptic specialization 7.07E-05
MF term P-value
GO:0001618~virus receptor activity 4.50E-05
GO:0042802~identical protein binding 5.59E-04
GO:0005509~calcium ion binding 0.001598
GO:0005488~binding 0.005114
GO:0048306~calcium-dependent protein binding 0.007423
GO:0019901~protein kinase binding 0.008912
GO:0005515~protein binding 0.009731
GO:0008324~cation transmembrane transporter activity 0.011631
GO:0034185~apolipoprotein binding 0.011944
GO:0046873~metal ion transmembrane transporter activity 0.012133
KEGG pathway P-value
hsa04514: cell adhesion molecules 0.003455
hsa04115: p53 signaling pathway 0.030927
hsa04215: apoptosis - multiple species 0.03596
hsa01232: nucleotide metabolism 0.04538
The top 10 terms in biological process (BP), cellular component (CC), molecular 
function (MF), and KEGG pathways.

ron-to-neuron synapses. In the 
molecular function (MF) cate-
gory, DEGs were enriched in 
functional annotations related 
to viral receptor activity, calci-
um ion binding, and protein 
kinase binding. KEGG pathway 
analysis revealed that the 
genes were mainly enriched in 
cell adhesion molecules, the 
p53 signaling pathway, and 
apoptosis-multiple species. 

Finally, considering all the data, 
the DEGs targeted by the seven 
circRNAs (hsa_circ_0011385, 
hsa_circ_0041829, hsa_circ_ 
0044556, hsa_circ_0048937, 
hsa_circ_0079891, hsa_circ_ 
0092278, and hsa_circ_009- 
2299) and eleven miRNAs (miR-
182, miR-361, miR-369, miR-
486, miR-574, miR-607, miR-
665, miR-502, miR-589, miR-
624, and miR-643) under- 
went GO functional annotation. 
Within the BP category of GO, 
the DEGs exhibited enrichment 
in functional annotations asso-
ciated with chemical regula-
tion, synaptic transmission, 
and skin development (Supple- 
mentary Figure 1H). In the CC 
category, the DEGs showed 
enrichment in functional anno-
tations related to neuron-to-
neuron synapses, transport ve- 
sicles, and membrane micro- 
domains.

PPI network and hub gene 
identification in PTC

We created a PPI network  
using the STRING online data-
base and Cytoscape software 
(Figure 3A). Using the MCC 
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(SDC1), syndecan 3 (SDC3), synaptosome-
associated protein 25 (SNAP25), thymidine 
kinase 1 (TK1), and thymidylate synthase 
(TYMS) (Figure 3B). A subnetwork of hub genes 
extracted from CytoHubba showed intercon-
nections with other genes, including miRNAs 

and circRNAs (Figure 3C). Of the 9 hub genes, 
miR-486, miR-574, and miR-665 were predict-
ed to be hsa_circ_0092299-interacting miR-
NAs, indicating that hsa_circ_0092299 may 
play an important role in THCA (Figure 3C). GO 
and KEGG functional enrichment analyses were 

Figure 3. Visualization of the protein-protein interaction (PPI) network and the hub genes. A. PPI network of 179 
overlapped genes. The nodes represent the genes, and edges indicate interaction associations between nodes. 
B. Identification of the hub genes from the PPI network. The genes with the top 9 Maximal Clique Centrality (MCC) 
values were considered hub genes. Edges represent the protein-protein associations. Red to yellow color gradients 
indicate the higher MCC ranking of hub genes. Numbers represent path length. C. circRNA-miRNA-hub gene subnet-
work. Red-orange-yellow represents hub genes.
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performed to investigate the functions of the 
hub genes (Table 4). In the BP category of GO, 
the hub genes were enriched in functional 
annotations related to cell development, deoxy-
ribonucleoside monophosphate biosynthetic 
processes, regulation of neuronal apoptotic 
processes, and regulation of neurogenesis. In 
the CC category, the hub genes were enriched 
in functional annotations related to the cyto-
plasm and whole membrane. In the MF catego-
ry, the hub genes were enriched in identical 
protein binding. According to the results of the 
REACTOME pathway analysis, the hub genes 
were mainly enriched in cell surface interac-
tions at the vascular wall, G1/S transition, and 
hemostasis.

We constructed a PPI network involving the 
DEGs targeted by the eleven miRNAs 
(Supplementary Figure 2A). Employing the MCC 
algorithm from the CytoHubba plug-in, we iden-
tified ten hub genes. Interestingly, among these 
ten hub genes, five (BBC3, E2F1, FYN, SNAP25, 
and TK1) had been previously recognized. The 
newly discovered hub genes included BCL2 
Like 1 (BCL2L1), C-X-C Motif Chemokine Ligand 
8 (CXCL8), Harakiri (HRK), Jagged Canonical 
Notch Ligand 2 (JAG2), and Phorbol-12-
Myristate-13-Acetate-Induced Protein 1 (PM- 
AIP1) (Supplementary Figure 2B). By analyzing 
a subnetwork of these hub genes, we predicted 
miR-624, miR-643, and miR-665 to be miRNAs 
interacting with hsa_circ_0048937, suggest-

Table 4. Gene ontology enrichment analysis of the nine hub genes
BP term P-value
GO:0048468~cell development 0.001062
GO:0009157~deoxyribonucleoside monophosphate biosynthetic process 0.002893
GO:0043523~regulation of neuron apoptotic process 0.003991
GO:0050767~regulation of neurogenesis 0.004474
GO:0051402~neuron apoptotic process 0.00489
GO:0090150~establishment of protein localization to membrane 0.005486
GO:0051960~regulation of nervous system development 0.006369
GO:0060284~regulation of cell development 0.006974
GO:1901214~regulation of neuron death 0.00875
CC term P-value
GO:0005737~cytoplasm 0.01826
GO:0098805~whole membrane 0.029556
GO:0098552~side of membrane 0.0306
GO:0000323~lytic vacuole 0.034592
GO:0005764~lysosome 0.034592
GO:0043202~lysosomal lumen 0.037849
GO:0031234~extrinsic component of cytoplasmic side of plasma membrane 0.039726
GO:0005796~Golgi lumen 0.040477
GO:0005773~vacuole 0.043079
MF term P-value
GO:0042802~identical protein binding 8.70E-04
REACTOME Term P-value
R-HSA-202733~cell surface interactions at the vascular wall 1.03E-04
R-HSA-69205~G1/S-specific transcription 1.75E-04
R-HSA-69206~G1/S transition 0.003797
R-HSA-453279~mitotic G1 phase and G1/S transition 0.004884
R-HSA-139915~activation of PUMA and translocation to mitochondria 0.006561
R-HSA-109582~hemostasis 0.008209
R-HSA-3656253~defective EXT1 causes exostoses 1, TRPS2, and CHDS 0.01019
R-HSA-3656237~defective EXT2 causes exostoses 2 0.01019
R-HSA-9694614~attachment and entry 0.013807
R-HSA-4420332~defective B3GALT6 causes EDSP2 and SEMDJL1 0.014529
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ing a potentially significant role for hsa_
circ_0048937, along with hsa_circ_0092- 
299, in the context of THCA (Supplementary 
Figure 2C).

Verification of prognostic values of hub genes

The expression levels of the nine hub genes 
BBC3, E2F1, FYN, MAG, DC1, SDC3, SNAP25, 
TK1, and TYMS were examined in TCGA-THCA 
using the GEPIA database. All nine hub genes 
were significantly upregulated in THCA tissues 
compared with normal tissues (Figure 4A-J). 
Additionally, newly identified five hub genes 
were also upregulated in THCA tissues (Figure 
4K-N). Furthermore, immunohistochemical 
staining results derived from a freely accessi-
ble HPA database, enabling examination of the 
expression of specific protein-coding genes in 
different cancer types, revealed the upregula-
tion of seven genes in PTC [48]. However, the 
gene MAG exhibited moderate staining intensi-
ty in both normal and cancerous tissues (Figure 
5A-H). Notably, strong staining for SNAP25 was 
observed in only one of the three samples, and 
BBC3 expression was not observed in either 
the normal or cancerous tissues (data not 
shown). In cancerous thyroid tissues, we 
noticed moderate and high staining intensities 
for BCL2L1 and JAG2, respectively (Figure 5I, 
5J). However, CXCL8 expression wasn’t identi-
fied in either normal or cancerous tissues, and 
there was no discernible difference in the stain-
ing intensity of HRK and PMAIP1 between the 
normal and cancerous tissues (data not shown).

In addition, using the Kaplan-Meier survival 
curve, we performed RFS and OS analyses of 
the nine hub genes to investigate their prognos-
tic value in thyroid cancer patients. Thyroid can-
cer patients were categorized into the high- and 
low-expression groups based on the gene’s 
expression levels, using the median as the cut-
off point. The results indicated that there was 
no significant association between RFS of thy-
roid cancer patients and the expression levels 
of BBC3 (P=0.48), FYN (P=0.017), MAG 
(P=0.77), SDC1 (P=0.82), SDC3 (P=0.29), and 
SNAP25 (P=0.12) as shown in Figure 6A. 
However, high expressions of E2F1 (P=0.042), 
TK1 (P=0.0071), and TYMS (P=0.0014) were 
associated with unfavorable RFS in thyroid can-
cer patients. Nevertheless, there were no sig-
nificant differences observed between low and 
high gene expressions in OS of thyroid cancer 

patients, including BBC3 (P=0.85), E2F1 
(P=0.064), FYN (P=0.28), MAG (P=0.28), SDC1 
(P=0.02), SDC3 (P=0.032), SNAP25 (P=0.39), 
TK1 (P=0.45), and TYMS (P=0.021) (Figure 
6B). Notably, we found no noteworthy correla-
tion between the OS and RFS of thyroid cancer 
patients and the expression levels of newly 
identified hub genes: E2F1, CXCL8, HRK, JAG2, 
and PMAIP1. 

Discussion

This study provides a circRNA-miRNA-mRNA 
regulatory network in PTC progression. To iden-
tify the differentially expressed circRNAs in 
PTC, we profiled public GEO datasets and iden-
tified two significantly upregulated circRNAs: 
hsa_circ_0041829 and hsa _circ_0092299. 
Additionally, we predicted four miRNAs (miR-
369, miR-486, miR-574, and miR-665) that 
interact with these circRNAs. Moreover, using 
the PPI network, we identified nine hub genes, 
BBC3, E2F1, FYN, MAG, DC1, SDC3, SNAP25, 
TK1, and TYMS, all of which were upregulated 
in PTC.

While batch correction and normalization are 
typically advised for GEO datasets involving 
RNA-seq data from both normal and cancerous 
tissues, we entertained the notion that these 
procedures might exhibit a diminished impact 
on our analysis. This stems from the fact that, 
in both instances-GSE93522 and GSE173299-
researchers meticulously devised the experi-
mental framework to encompass matched 
pairs of normal and cancerous tissues within 
the same individual. Consequently, we posited 
that the paired nature of the samples might 
potentially alleviate batch effects, given that 
any systematic variation affecting both normal 
and cancerous tissues equally could be  
effectively eliminated during the analysis. 
Nonetheless, it’s imperative to acknowledge 
that these measures are still generally recom-
mended to uphold the precision and reproduc-
ibility of the analysis. Therefore, we conducted 
data normalization for the analysis of the GEO 
dataset and subsequently compared the 
results. Ultimately, we discovered thirteen over-
lapping circRNAs, and notably, among these 
thirteen, seven had been previously identified. 
This substantiates our speculation that the 
paired nature of the samples could indeed alle-
viate batch effects. The expression of BBC3, a 
pro-apoptotic BH3-only gene, is induced in 
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response to diverse apoptotic 
stimuli, including DNA damage, 
glucocorticoid treatment, and 
growth factor deprivation [49]. It 
is also downregulated with in- 
creased tumor size, independent 
of p53 expression, in head and 
neck cancer [50]. The expression 
of tyrosine kinase FYN, a mem-
ber of the SRC family of kinases, 
is upregulated in THCA and pro-
motes cell proliferation, invasion, 
and migration [51]. The malig-
nancy-associated gene (MAG) is 
expressed in various tumors and 
preexisting conditions [52]. Den- 
dritic cell 1 (DC1) is critical for 
mediating CD8+ T cell activation 
and antitumor immune respons-
es via cross-presentation, co-
stimulation, and soluble factors 
[53]. The expression of syn-
decan-3 is dysregulated in sev-
eral cancer types and expressed 
in cancer cells and macrophages 
because of limited oxygenation 
in the tumor environment [54]. 
The expression of SNAP25 is sig-
nificantly downregulated in pros-
tate cancer and involved in the 
activation, differentiation, and 
migration of immune cells [55]. 
Among these hub genes, E2F1, 
TK1, and TYMS were significan- 
tly associated with unfavorable 
RFS in thyroid cancer patients. 
Interestingly, the trends of RFS 
and OS in the high-expression 
and low-expression groups, as 
depicted in Figure 6, exhibit com-
plete opposition. Several factors 
can account for the contradictory 
findings between RFS and OS for 
a specific gene. First, the gene’s 
role in different biological pro-
cesses associated with RFS and 
OS could contribute to this dis-
crepancy. If the gene significantly 

Figure 4. Expression of hub genes in thyroid cancer (THCA) using the GEPIA database analysis. Expression of nine 
hub genes (A-J) and newly identified four hub genes (K-N) in THCA based on sample types of normal (black) and 
primary tumor (red) from the Cancer Genome Atlas samples. 

Figure 5. The Protein expression of hub genes in PTC obtained from 
the HPA online database. The staining intensity was classified into four 
categories: not detected, low, medium, and high. Image credit: Human 
Protein Atlas. Images were obtained from: v22. proteinatlas.org, via: 
https://www.proteinatlas.org/ENSG00000101412-E2F1/pathology/ 
thyroid+cancer. https://www.proteinatlas.org/ENSG00000010810-FYN/ 
pathology/thyroid+cancer. https://www.proteinatlas.org/ENSG0000010- 
5695-MAG/pathology/thyroid+cancer. https://www.proteinatlas.org/EN- 
SG00000115884-SDC1/pathology/thyroid+cancer. https://www.protein-
atlas.org/ENSG00000162512-SDC3/pathology/thyroid+cancer. https:// 
www.proteinatlas.org/ENSG00000132639-SNAP25/pathology/thyroid+ 
cancer. https://www.proteinatlas.org/ENSG00000167900-TK1/pathol-
ogy/thyroid+cancer. https://www.proteinatlas.org/ENSG00000176890-
TYMS/pathology/thyroid+cancer. https://www.proteinatlas.org/ENSG00- 
000171552-BCL2L1/pathology/thyroid+cancer. https://www.proteinat-
las.org/ENSG00000184916-JAG2/pathology/thyroid+cancer.
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Figure 6. Prognostic effect of nine hub gene expression in thyroid cancer patients. A. The Kaplan-Meier plots illustrating the relapse-free survival (RFS) of patients 
with thyroid cancer were presented, with P-values and numbers at risk indicated on the plots. The low expression group is represented in black, while the high 
expression group is depicted in red, referring to the hub gene expression. B. The Kaplan-Meier plots illustrating the overall survival (OS) of patients with thyroid 
cancer were presented, with P-values and numbers at risk indicated on the plots. The low expression group is represented in black, while the high expression group 
is depicted in red, referring to the hub gene expression.
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influences tumor growth, metastasis, immune 
response, and other factors, it can result in 
divergent RFS and OS outcomes. Second, the 
impact of other predictive factors needs to be 
considered. RFS and OS may reflect distinct 
predictive factors. For instance, the influence 
of gene expression levels on the likelihood of 
tumor recurrence might have a stronger effect 
on RFS compared to the overall survival period. 
Lastly, it is crucial to acknowledge the limita-
tions of the data. Opposing results between 
gene expression levels and survival analysis 
are often associated with small sample sizes, 
data imbalances, incorrect data collection or 
analysis, and other factors. These limitations 
can affect the reliability of the findings, result-
ing in contradictory outcomes. Recent studies 
have documented that E2F1 is highly expressed 
in PTC cells and enhances their proliferation 
and invasion by upregulating LINC00152 and 
the PI3K/AKT axis [56]. Immunohistochemical 
analysis using an antibody against E2F1 
revealed a prominent intracellular E2F1 protein 
in most primary papillary cancers (16 of 18; 
89%). These data indicate that increased E2F1 
expression might play a significant role in 
human thyroid carcinogenesis through derange-
ment of the Rb-E2F signaling pathway [57]. 
FYN, a member of the SRC family, is increased 
in THCA and significantly associated with an 
increased THCA risk [51, 58]. TK1, a regulatory 
factor that modulates the cell cycle, is upregu-
lated in the serum of patients with thyroid nod-
ules. Knockdown of TK1 suppresses THCA cell 
proliferation, invasion, migration, and epitheli-
al-mesenchymal transition and induces cell 
apoptosis [59]. High TYMS expression increas-
es the viability and invasion of differentiated 
THCA cells [60]. Therefore, these hub genes, 
which are regulated by circRNAs, play impor-
tant roles in PTC progression. The present 
study had certain limitations. Firstly, our selec-
tion of circRNAs was based solely on their large 
fold-change ratios. However, circRNAs with 
large differences may not necessarily be bio-
logically significant. To address this, machine 
learning methods can be employed to consider 
the combined effects of multiple circRNAs and 
their interactions, enabling a more comprehen-
sive understanding of the biological signifi-
cance of differentially expressed circRNAs. 
Secondly, our analysis relied solely on microar-
ray data and bioinformatics results, lacking cor-
responding in vitro and in vivo experiments. To 

further enhance our understanding, it would be 
advantageous to investigate two specific cir-
cRNAs, four miRNAs, and nine hub genes. Such 
an analysis could provide novel insights into 
the molecular mechanisms, potential thera-
peutic targets, and prognostic biomarkers for 
PTC.

In conclusion, we identified differentially ex- 
pressed seven circRNAs between normal thy-
roid tissues and PTC using a public microarray 
dataset. Then, we established a potential cir-
cRNA/miRNA/mRNA regulatory axis that is 
linked to PTC progression by predicting inter-
acting miRNAs and their target genes, PPI net-
work analysis, and finally identifying hub genes.
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Supplementary Figure 1. Data normalization for the analysis of the GEO dataset and identification of DECs in thyroid cancer. A. Identification of DECs in two GEO 
datasets. Volcano plots depicting the DECs obtained from normalized GEO datasets, where red dots denote significantly upregulated and downregulated circRNAs. A 
threshold of P < 0.05 and fold change > 1.5 were set. B. Venn diagram showing 84 overlapping upregulated DECs (upper) and 59 overlapping downregulated DECs 
(lower) between the two GEO datasets. C. Structural patterns of the four circRNAs by the CSCD. D. qRT-PCR validation of six differentially expressed circRNAs. The 
relative expression levels of circRNAs in 12 PTC tissues and paired normal tissues. Notably, circ_0000253 was analyzed in 15 pairs enhancing the comprehensive 
assessment of expression patterns; *P < 0.05, ***P < 0.001 (•: normal tissues, ▪: PTC tissues). E. Venn diagram between the seven target miRNAs predicted by 
CircBank and CircInteractome. F. TCGA expression profiles for the four miRNAs in thyroid cancer samples (n=501, red) and normal samples (n=59, blue). G. Venn 
diagram represent the overlap between miRNA target genes and DEGs from TGCA. Upper; 187 mRNAs were obtained from the intersection of 1,463 upregulated 
mRNAs (TCGA-THCA dataset) and 1,921 miRNA targets predicted using TargetScan. Lower; 12 mRNAs were obtained from the intersection of 1,099 downregulated 
mRNAs (TCGA-THCA dataset) and 174 miRNA targets predicted using TargetScan. H. Visualizing Functional Enrichment Analysis Results for DEGs using Dot Plots. 
Dot size corresponds to gene count within a pathway, while dot color indicates the P-value of the pathway. “BP” signifies Biological Process, and “CC” signifies Cel-
lular Component.
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Supplementary Figure 2. Visualization of the PPI network and the hub genes. A. PPI network of 187 overlapped 
genes. The nodes represent the genes, and edges indicate interaction associations between nodes. B. Identifica-
tion of the hub genes from the PPI network. The genes with the top 10 MCC values were considered hub genes. 
Edges represent the protein-protein associations. Red to yellow color gradients indicate the higher MCC ranking of 
hub genes. Numbers represent path length. C. circRNA-miRNA-hub gene subnetwork. Red-orange-yellow represents 
hub genes.


